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ABSTRACT

Objective: Birth month and climate impact lifetime disease risk, while the underlying exposures remain largely

elusive. We seek to uncover distal risk factors underlying these relationships by probing the relationship be-

tween global exposure variance and disease risk variance by birth season.

Material and Methods: This study utilizes electronic health record data from 6 sites representing 10.5 million

individuals in 3 countries (United States, South Korea, and Taiwan). We obtained birth month–disease risk

curves from each site in a case-control manner. Next, we correlated each birth month–disease risk curve with

each exposure. A meta-analysis was then performed of correlations across sites. This allowed us to identify the

most significant birth month–exposure relationships supported by all 6 sites while adjusting for multiplicity. We

also successfully distinguish relative age effects (a cultural effect) from environmental exposures.

Results: Attention deficit hyperactivity disorder was the only identified relative age association. Our methods

identified several culprit exposures that correspond well with the literature in the field. These include a link

between first-trimester exposure to carbon monoxide and increased risk of depressive disorder (R¼0.725,

confidence interval [95% CI], 0.529-0.847), first-trimester exposure to fine air particulates and increased risk of

atrial fibrillation (R¼0.564, 95% CI, 0.363-0.715), and decreased exposure to sunlight during the third trimester

and increased risk of type 2 diabetes mellitus (R¼�0.816, 95% CI, �0.5767, �0.929).

VC The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association.
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Conclusion: A global study of birth month–disease relationships reveals distal risk factors involved in causal

biological pathways that underlie them.
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INTRODUCTION

Seasonality and climate play an important role in human health and

disease.1 Geography2 and climate3 modulate disease risk and/or se-

verity while also altering our exposure to diverse environmental fac-

tors.2 Prenatal or perinatal exposure to many environmental variables

has been tied with increased disease risk later in life.4,5 This includes

climate factors such as reduced sunlight6 and high humidity.7 Flu or

influenza-like illness (ILI) exposure during pregnancy is also tied to

increased disease risk in offspring.8 Furthermore, exposure to pollu-

tants during pregnancy can increase risk of disease in offspring. Such

pollutants include carbon monoxide,9 nitrogen dioxide,10,11 ozone,12

and sulfur dioxide.13 These exposures are also known to vary season-

ally because of changes in the atmospheric boundary layer depth,

changes in emission rates, and changes in wind and advection.14 The

well-studied relationship between asthma and birth month has been

tied to perinatal exposure to dust mites.15 Dust mite prevalence

depends heavily on temperature and humidity,16 including indoor air

humidity.17 Both humidity and temperature vary seasonally, and sea-

sonal variance depends on climate and geography.18 Therefore, it is

reasonable to hypothesize that seasonal variation in either climate or

pollutant factors could modulate birth month–disease risk patterns

observed in epidemiology studies.

Electronic health records (EHRs) are currently used throughout

the world to record and store health information collected during

clinical encounters.19 Physicians, nurses, technicians, and other hos-

pital caretakers/staff members enter information about patients’

encounters with the health care system into EHRs. Therefore, EHRs

contain a large amount of information pertinent to either billing or

caring for patients (ie, collected during clinical encounters). This

includes prescriptions, diagnoses, laboratory tests and results, proce-

dures, demographics, radiological reports, social worker reports,

various types of clinical imaging, and a large amount of unstruc-

tured clinical notes. These EHRs represent a rich data source for

high-throughput explorations of birth season–outcome relation-

ships. Previously, we constructed an algorithm, called SeaWAS (for

Season-Wide Association Study), to systematically investigate birth

month–disease dependencies across all diseases with sufficient prev-

alence in EHRs,20 where birth month serves as a proxy for seasonal

variance at birth. We conducted our initial study using data from

New York City (NYC). Novel cardiovascular findings were vali-

dated in a separate EHR system, with increased disease risk ob-

served from January through April (winter).21 This EHR was also in

NYC, and therefore subjected to similar climate constraints.21 This

replication was important in increasing our confidence that the find-

ings were not due to unexplained and unmeasurable EHR

biases.20,21 Our previous studies did not identify environmental fac-

tors behind the associations, because they were conducted in a single

climate. Separately, researchers from northern Russia (northern

Kola Peninsula) found that male babies born in the summer and fall

had increased elasticity of blood vessels, which could be protective

against cardiovascular disease later in life. Additionally, their results

point to differences in cardiovascular physiology that have a birth

month–season dependency.22 They also found that female patients

who died from acute myocardial infarction were found to have a sig-

nificant birth season relationship in the Sakha Republic, Russia.23

Importantly, 2 different types of effects can manifest themselves

in variance in disease risk by birth month. The first is cultural/socio-

logical, related to the timing of school start dates, and the second is

related to variance in pollution, climate factors (eg, sunlight) that

vary seasonally. These 2 types of birth month effects are important,

as both can result in changes in disease risk. For cultural effects of

birth month, we investigated relative age effects.24 We define relative

age as an individual’s age relative to his or her peers in the same

school grade. Relative age in school provides a competitive advantage

for certain children with regard to sports performance.24 This can re-

sult in changes in disease risk, as children involved in sports are likely

to experience more physical trauma (eg, head trauma in football).

Also children younger than their peers are more likely to be victims of

bullying, which can alter neurological development via direct trauma

(eg, concussion) or indirect trauma (eg, depression). By definition,

bullying involves a difference in power between the bully and the vic-

tim with regard to psychological or physical prowess, both depending

on relative age.25 It is important to separate and distinguish these cul-

tural effects from other birth season effects that are due to variance in

seasonal environmental exposures (eg, sunlight, pollution).

In this study, we investigate the relationship between developmental

stages (first, second, third trimester; perinatal or pregnancy-wide) and

seasonal environmental exposures (climate, pollution, flu) for birth

month–disease relationships. We also delineate birth month–disease

relationships due to differences in school cutoff dates across sites, indi-

cating the effect of relative age on human health and disease. Because of

the diversity of diseases associated with birth month or season, different

mechanisms and exposures are likely to be involved, depending on the

particular disease implicated. We present results obtained using data

from 6 distinct institutions, in 3 countries, spanning 5 cities, and with 4

distinct climates. We identify risk factors involved in birth season asso-

ciations; however, we only refer to “causal risk factors” in instances

where our results reveal the distal causal risk factor in an already estab-

lished biological pathway, as we do not perform causal inference.

METHODS

Data
Clinical data

Birth month–disease risk data were obtained from 6 different hospi-

tals or study sites. Permission was obtained from each institution’s

local Institutional Review Board, which conforms to each country’s,

and in some cases state’s, laws and guidelines. Our algorithm con-

forms to the Common Data Model (CDM) adopted by the Observa-

tional Health Data Sciences and Informatics (OHDSI) consortium26

and was published on GitHub,27 allowing for broad distribution.28

We ran our SeaWAS at 3 OHDSI collaborator sites using OHDSI-

formatted R scripts that were run locally on each site’s EHR data-

bases. Three study sites were not OHDSI participants at the time of

the study. Therefore, code was formatted to meet those individual

institutions’ data schemas. For non-OHDSI participants, we mapped
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International Classification of Diseases, Ninth Revision codes to the

Systemized Nomenclature for Medicine–Clinical Terms (SNOMED-

CT) codes using the schema contained within the CDM.20,26 There-

fore, both non-OHDSI participants and OHDSI participants fol-

lowed the same data-mapping schema. Other changes made to

scripts for non-OHDSI participants were mechanical in nature, and

consisted of changing table locations based on the local data struc-

ture (eg, a Person table vs a Patient Demographics table). No con-

ceptual changes were made between OHDSI and non-OHDSI

participants. As in the original algorithm, only the first instance of a

diagnosis for each patient was included (for full algorithm details,

see Boland et al.).20 Hereafter, we refer to distinct medical

SNOMED-CT diagnoses as diseases, realizing that some may be in-

dicative of medical conditions.

First, site characteristics were obtained, including patient demo-

graphics, setting (climate, inpatient/outpatient), and CDM version

number (if an OHDSI data partner). For climate, we used the Köp-

pen-Geiger climate classification system29,30 to describe the high-

level climate of each region.

The SeaWAS algorithm returns birth month–disease risk curves

for all diseases with at least 1000 patients at a given site. Those curves

were then used as input into the developmental time point–exposure–

disease model described below in the Statistical Modeling section.

Exposure data

To study the relationship between exposure and birth season, we re-

quired a dataset containing seasonal variance in exposures across a

variety of exposure types and locations. We investigated 6 climate

variables (mean sunshine hours, minimum temperature, maximum

temperature, rainfall in inches, relative humidity, days of precipita-

tion), 5 pollutant variables (fine particulate matter [PM 2.5 lm in di-

ameter], ozone [O3], carbon monoxide [CO], nitrogen dioxide

[NO2], and sulfur dioxide [SO2]), and flu/ILI in this study. We chose

exposures meeting the following criteria: (1) linked to disease and

birth-related outcomes in the literature, and (2) data were available

at all 6 sites (including Asian sites). Supplementary Figure S3 illus-

trates the variation in seasonal exposure for each of the 12 factors

(climate, pollution, and influenza) across all sites. Exposure data

were assembled from the Centers for Disease Prevention and Con-

trol (CDC), the Environmental Protection Agency, and the National

Oceanic and Atmospheric Administration. For Taiwanese and Ko-

rean data, we used data from the Korean Meteorological Adminis-

tration, the Taiwanese Central Weather Bureau, and the Korean

CDC Virological Surveillance. Supplementary Table S2 contains the

sources for the exposures used in our study. When data were

unavailable in a freely accessible public dataset, we used published

literature to obtain the required seasonality in pollutant or flu expo-

sure information and noted this in Supplementary Table S2.

Statistical modeling
Delineating culture effects from seasonal environmental effects

The first step in modeling the relationship between birth month–

disease risk and various exposures was to distinguish birth month

effects that were driven by purely cultural elements from those due

to exposure to the environment, pollution, or some other factor. For

instance, in sports, the age of a child athlete relative to his or her

peers determines his or her ability to succeed. This has been demon-

strated in multiple cases24,31 and has been characterized as the

“relative age effect.” Children who are “older” relative to their

peers are more likely to succeed in athletics, whereas children

“younger” than their peers are at increased risk of being victims of

bullying.32 To study the relative age effect, we collected the public

school cutoff dates for each study site; these are listed in Supplemen-

tary Table S3. We adjusted data from each institution using the cutoff

dates from that region. Therefore, curves ranged from 6 months older

than the average child (ie, just after the cutoff date) to 6 months youn-

ger than the average child (ie, just before the cutoff date).

A regression model for the relationship between relative age (þ6

months vs average. . .�6 months vs average) and disease risk was

used to compute the significance of relative age for each disease at

each site. Diseases that were nominally significant across all 6 sites

were considered to have significant cultural effects.

Modeling seasonal environmental exposures occurring during devel-

opment. Twelve seasonally varying environmental exposures were

identified as potential factors involved in birth month–disease rela-

tionships (Supplementary Figure S4). To model the relationship be-

tween exposures and birth month–disease risk, we first modeled the

exposure level for each critical developmental time point. The tri-

mester when an exposure occurs is vital in determining the effects

on the offspring,33,34 therefore we examined the cumulative expo-

sure for each factor across each of the 3 trimesters. In addition, we

investigated pregnancy-wide exposure (cumulative exposure across

the entire pregnancy) and perinatal exposure (exposure at birth), as

these also represent critical developmental periods.

We obtained the average gestation period in weeks for each

country. The mean gestation was 38.5 weeks in Taiwan,35 39.17

weeks in South Korea,36 and 38.6 weeks in the United States,

according to the CDC.37 These average gestation periods were used

to compute the typical conception month for each birth month.

Next, the cumulative exposure for each developmental stage (eg,

first trimester) for each factor (eg, sunlight, rainfall) was calculated for

a given birth month. We made these calculations using the midpoints

of each month. For example, an October birth month would have a

typical first-trimester period from mid-January to mid-April, a typical

second-trimester period of mid-April to mid-July, and a typical third-

trimester period of mid-July to mid-October. Therefore, first-trimester

sunlight exposure for an October birth month would include sunlight

exposure from mid-January through mid-April, and so on.

Meta-analysis across all 6 sites using random effects modeling

First, we correlated each exposure–developmental stage (eg, first,

second, third trimester) with the disease relative risk by birth month

per site. Each disease was compared against each developmental

time point for each factor (eg, sunlight, rainfall). Pearson’s correla-

tion was determined for the relationship between the exposure dur-

ing a certain period (eg, first trimester) and disease risk. For each

computation, the environmental exposure and the disease risk birth

month curve each consisted of a set of 12 numeric data points. Pear-

son’s correlation was used because both variables were numeric.

They were ordered to reflect the birth month. Because the seasonal-

ity of exposures varied across sites, these correlations were per-

formed for each study site.

Next, we employed a meta-analysis approach to harness all data

from our diverse sites. We used the DerSimonian-Laird (DSL)

random-effect meta-analytical approach38 to determine an overall

site-wide correlation coefficient representing the effect of a specific

exposure (eg, sunlight) on a given disease (eg, depression) during a

specific developmental stage (eg, first trimester). The DSL method

transforms each site-specific correlation coefficient to a Fisher Z
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value, with a standard error determined by the site-specific sample

size. This weighs correlations from sites with larger sample sizes for

a given disease higher than correlations from sites with lower sample

sizes. A summary correlation coefficient can then be computed from

these sample-size adjusted correlations. This summary statistic rep-

resents the overall correlation obtained from the meta-analysis

across the 6 sites. The DSL method was implemented based on

Schulze39 and incorporated in the R metacor library,40 with wide-

spread use among the research community.41

Hence, our method determines the correlation between each of

12 exposures across 133 diseases during 5 different developmental

stages (ie, 3 trimesters, pregnancy-wide, and perinatal). Therefore,

multiple comparisons must be accounted for in the analysis. To re-

main as stringent as possible and bias ourselves against finding

disease-exposure relationships, we used Bonferroni’s method

of P-value correction that adjusts for all comparisons, including all

133 diseases, 12 exposures, and 5 developmental stages

(133�12�5¼7980 tests). This stringent threshold allows us to

state that exposure X during stage Y is associated with increased or

decreased risk of disease Z. Figure 1 illustrates the overall method to

find significant exposure-disease relationships for a given develop-

mental stage.

RESULTS

Data
We obtained data from 6 study sites: Columbia University and

Mount Sinai Hospital in New York City, New York; Vanderbilt

University in Nashville, Tennessee; the University of Washington in

Seattle, Washington; Ajou University in Suwon, South Korea; and

the Taiwan National Health Insurance program, which contains

data from each of Taiwan’s 4 geographic regions. Table 1 contains a

breakdown of the patient demographics from each study site. Over-

all, patients were middle-aged, ranging from a median of 35 years

old in Taiwan to 53 years old at Mount Sinai Hospital. However,

most datasets had a median age in the 40s. Race and ethnicity varied

by site due to differences in local populations. Both datasets from

Asia did not collect race/ethnicity data, only nationality, with the as-

sumption that the majority of patients were Asian. The percentage

of Hispanic patients also varied across sites, with 2–4% at the Uni-

versity of Washington and Vanderbilt University vs 17–21% at both

NYC sites.

We collected the birth month–disease risk curves for each disease

with at least 1000 patients at each study site. Supplementary Figure

S1 depicts the overlap among all diseases with at least 1000 patients

per site across sites. In total, 133 diseases had at least 1000 patients

at all 6 sites, and we focused the remainder of our analyses on these

diseases. Disease-specific sample sizes varied across sites. Essential

hypertension was the most common disease at all 4 US sites. Both

Asian sites showed increased prevalence of gastrointestinal issues

and lower incidence of cardiovascular disease. Supplementary Table

S1 depicts the top 5 diseases from each site. Supplementary Dataset

S1 contains the sample size (N) for each condition at each of the

6 sites.

Statistical modeling
We first investigated the relationship between relative age, as deter-

mined by school cutoff dates, and birth month vs disease risk. Out

of 133 diseases, only 1 disease was significantly associated with rela-

tive age across all 6 sites, attention deficit hyperactivity disorder

(ADHD). The results both before relative age adjustment (ie, unad-

justed birth month) and after are shown in Figure 2. The average dif-

ference in ADHD risk due to relative age was 17.97% (average peak

of 1.084 vs average trough of 0.904), with children younger than

their peers experiencing greater ADHD risk. No other diseases were

significantly correlated with relative age.

Next, we investigated the relationship between exposures at cer-

tain developmental stages (eg, a given trimester) and disease risk. Our

method, shown in Figure 1, determines the correlation between each

of 12 exposures across 133 diseases at 5 different developmental

stages. Therefore, multiple comparisons must be accounted for in the

analysis. Figure 3 shows the Manhattan plot for each developmental

stage. We report results as significant if they pass the Bonferroni cor-

rection threshold for multiple comparisons across all analyses (ie, 133

diseases�12 exposures�5 time points¼7980 tests).

A total of 56 distinct diseases were significantly associated with

at least 1 exposure during at least 1 developmental stage. These 56

diseases were involved in 150 distinct disease–exposure–

developmental stage tuples. Twenty-seven diseases were signifi-

cantly associated across multiple exposure stages. This was expected

due to the inherent correlation among exposures. One disease,

dysuria, was involved in 14 tuples (disease-exposure-stage).

Supplementary Dataset 2 contains all significant disease–exposure–

developmental stage tuples.

Several first-trimester exposures were significantly correlated or

anti-correlated with increased risk of depressive disorder later in life

(Figure 4A), including low sunlight and temperature. However, the

most significant association was a positive correlation between first-

trimester carbon monoxide (CO) exposure (R¼0.725, confidence

interval [95% CI], 0.529-0.847) and increased risk of depressive disor-

der. The relationship is shown in Figure 4B for all 6 individual sites.

Atrial fibrillation was positively correlated with PM 2.5 expo-

sure during the first trimester (Figures 5A and B). Taiwan and South

Korea both had fewer patients with atrial fibrillation (10 476

patients in Taiwan and 2241 in South Korea) than US sites (which

ranged from 36 837 to 58 771 patients), and the relationship was

not as strong in those locations. Further, we found that lack of sun-

light during both the third trimester and the perinatal period in-

creased risk of type 2 diabetes mellitus (T2DM) later in life. The

correlation between low sunlight and increased risk of T2DM in the

offspring was stronger during the third trimester (R¼�0.816, 95%

CI, �0.5767, �0.929) than during the perinatal period

(R¼�0.580, 95% CI, �0.420, �0.705) (Supplementary Figure S2).

The individual site breakdown of the relationship between exposure

and low amounts of sunlight during the third trimester and later risk

of T2DM is shown in Figures 5C and D.

DISCUSSION

Our study provides a global interpretation of birth month–disease

risk relationships and allows us to study a number of different possi-

ble mechanisms. We integrate results from more than 10 million

unique individuals across 3 countries, 2 continents, and 5 distinct

climates. We successfully distinguish birth month–disease relation-

ships driven by relative age (a cultural effect) vs seasonal environ-

mental exposures, including climate factors, pollution, and

influenza. We found that ADHD was significantly correlated with

relative age, having an average difference in disease risk of 17.97%,

with younger children experiencing greater risk than their peers. We

also found several exposures occurring during the prenatal period

(ie, maternal exposures) that influence risk of disease in the
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Figure 1. Schema depicting the model that captures the effects of environmental exposure at various developmental time points during prenatal/perinatal

development. Results are integrated across multiple sites using the DerSimonian-Laird random effects meta-analytical approach.
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offspring, and also perinatal exposures (ie, direct exposure to the

offspring) that influence lifetime disease risk. Importantly, we only

refer to causal risk factors in instances where our results reveal the

distal causal risk factor in an already established pathway. In other

instances, further testing would be required to clearly state whether

our findings are causal factors or strongly correlated with another

untested causal factor. We discuss our findings below.

Culture effects can induce birth month–disease depen-

dencies: the tale of relative age
The relative age effect is the phenomenon whereby children are pref-

erentially selected based on their age relative to their peers.24,31 This

is commonly studied among athletes, for whom the slight advan-

tages due to age, including size, mental agility, and timing of the on-

set of puberty, provide slightly older children with a distinctive edge

over their classmates. Sociologists have also looked into the effect and

found that children who are younger relative to their peers are at in-

creased risk of being victims of bullying.32 Each of these relative age

effects could alter an individual’s risk of disease later in life. There-

fore, we explicitly investigated the relationship between relative age,

calculated using birth month distributions, and lifetime disease risk of

all diseases in our study. Of the 133 we tested, we found one disease,

ADHD, to be significantly correlated with relative age (Figure 2).

A study among Taiwanese children also found a significant rela-

tionship between relative age and ADHD.42 This effect was also found

in Iceland, where they also describe a relationship between academic

performance and relative age.43 Other researchers have also studied the

connection between academic performance, ADHD, and relative age,

finding increased risk for adverse outcomes among younger children.44

While individual countries and sites have described the relation-

ship between relative age and ADHD, this is the first comprehensive

study to investigate relative age and disease across 3 distinct coun-

tries, 6 sites, and 4 distinct school cutoff dates. While validating

A

B

Figure 2. Method to detect the existence of a relative age effect in birth month–disease associations and results. (A) Illustrates the method of adjusting birth

month–disease associations by school cutoff dates to calculate the relationship between relative age and disease risk. Taiwan and Seattle, Washington, are grouped to-

gether because the school cutoff date is the same at both locations (August 31). (B) Shows the only significantly associated disease found across all 6 sites between relative

age and disease risk, attention deficit hyperactivity disorder (ADHD). The average difference in relative risk (RR) by relative age was calculated, resulting in a difference of

17.97% in peak vs trough months. Peak risk was observed in the�5 month and trough (lowest risk) was observed in theþ4 month. Average peer age occurred at 0.
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other site-specific studies, our work also increases the need for pro-

vider awareness of this issue when diagnosing ADHD.

All prenatal exposures affecting the offspring’s lifetime disease

risk are mediated through the fetal-maternal barrier. Therefore, we

refer to prenatal exposures as maternal exposures that influence the

offspring’s disease risk, and we refer to perinatal exposures as direct

exposures to the newborn offspring.

Sunlight during third trimester and risk of type 2

diabetes mellitus in offspring
Sunlight was inversely correlated with T2DM during the third tri-

mester (R¼�0.816) and the perinatal period (R¼�0.580). Low

vitamin D exposure during pregnancy has been linked to in-

creased risk of gestational diabetes,45 which is diabetes of the

mother during pregnancy. Gestational diabetes is shown to in-

crease the risk of T2DM among offspring, with a reported odds

ratio of 7.76.46 In our current study, we link sunlight during the

third trimester of pregnancy to changes in T2DM risk among off-

spring later in life.

We depict the link between prior work described in the literature

and our current findings in Figure 5D. Each of the links details one

small piece of the larger puzzle that we are attempting to recon-

struct. In causal terms, those prior studies found the proximal

causes, whereas we reveal the distal factor that can explain the

smaller steps in the proximal pathway.47,48

Mechanistically, our results also fit into the “thrifty phenotype”

hypothesis, which states that inadequate early nutrition impairs de-

velopment of the pancreas, which in turn greatly increases the sus-

ceptibility of the offspring to T2DM.49,50 Gestational diabetes is
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often an indicator of impaired prenatal nutritional status. Our work

links a distal factor, low sunlight exposure during the third trimes-

ter, to increased risk of T2DM in offspring. By uncovering a distal

factor in this mechanism, we have opened the door for evolutionary

biologists to delve further into this relationship to find a fitness ben-

efit, if one does in fact exist.

A

B C

Figure 4. Depressive disorder and first-trimester exposure to carbon monoxide. (A) Depressive disorder and first-trimester exposure to all environmental fac-

tors. Larger squares in (A) indicate correlations with larger confidence intervals, which typically occur when the number of patients at a given site is low for a par-

ticular disease. (B) Relationship between depressive disorder and first-trimester carbon monoxide exposure at each study site. Each site has its own subplot in

(B); the colored line is the relative risk of depressive disorder at that site by birth month. The solid black lines indicate first-trimester exposure to carbon monoxide

(CO) at each site. (C) Connecting the literature on first-trimester CO exposure and offspring’s risk of depressive disorder and our current study. Solid black arrow

denotes each literature link, with directionality denoted by up or down red arrows. High CO exposure increases the risk of lower hippocampus functioning (Mereu

et al55). Reduced hippocampus functioning is a hallmark of depression/depressive disorder.56 The major link in our current study is the link between first-trimester

CO exposure and increased risk of depressive disorder (thick dashed green line). Moffitt et al.52 found that for a large group of patients, there is a combined disor-

der involving generalized anxiety disorder (GAD) and major depressive disorder (MDD). We also found a lower correlation between GAD and first-trimester expo-

sure to CO, suggesting that patients afflicted with both diseases could have been exposed to CO.
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A B

C D

Figure 5. Atrial fibrillation and first-trimester exposure to fine particulate matter (PM 2.5), and type 2 diabetes mellitus and third-trimester exposure to sun-

light. (A) Atrial fibrillation and first-trimester exposure to fine particulate matter (PM 2.5) at each study site. The colored line is the relative risk of atrial fibrillation

by birth month per site. Solid black lines indicate first-trimester exposure to PM 2.5 per site. (B) First-trimester PM 2.5 exposure and offspring’s risk of atrial fibril-

lation: the literature and our current study. Solid black arrow denotes each literature link, with increase/decrease in risk depicted by up or down red arrows. Expo-

sure to high PM 2.5 increases the risk of gestational hypertension.63 Gestational hypertension increases the risk of high blood pressure in the offspring.61 High

blood pressure is a risk factor for atrial fibrillation.62 We found a distal cause: prenatal exposure to PM 2.5 increases the risk of atrial fibrillation, whereas others

report findings of proximal causes in the same causal pathway. (C) Type 2 diabetes mellitus (T2DM) and third-trimester exposure to sunshine at each study site.

The colored line is the relative risk of T2DM by birth month per site. Solid black lines indicate third-trimester exposure to mean sunshine hours per site. (D) Third-

trimester exposure to sunshine and T2DM: the literature and our current study. Solid black arrow denotes each literature link, with increase/decrease in risk

depicted by up or down red arrows. Low sunlight lowers vitamin D levels in the bloodstream. Zhang et al.45 2008 found that low vitamin D levels increased the

risk of gestational diabetes in pregnant women. Clausen et al.46 2008 found that gestational diabetes increased the risk of T2DM in offspring exposed in utero.

Our current study is denoted by the green dashed arrow, which connects third-trimester sunlight levels with T2DM risk later in life. Note that we are uncovering

the distal causal risk factors vs proximal causes.
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First-trimester exposures and risk of depressive

disorder in offspring
Risk of depressive disorder and birth month is an association that is

studied often in the literature.51 An Australian study investigated the

relationship between birth month in both the Southern and Northern

Hemispheres, finding that the timing of the peak of flu was important

in explaining the birth season–depression/suicide relationship.51

Figure 4A shows that first-trimester exposure to ILI was a signifi-

cant factor in depressive disorder, with a slightly lower correlation

value (R¼0.612, 95% CI, 0.384-0.770) than CO exposure

(R¼0.725, 95% CI, 0.529-0.847). Depressive disorder was also sig-

nificantly anti-correlated with sunlight (R¼�0.625, 95% CI,

�0.452 to �0.753) and temperature (high temperature, R¼�0.645,

95% CI, �0.462 to �0.779; low temperature, R¼�0.651, 95% CI,

�0.446 to �0.790), indicating that lack of sunlight during the first

trimester also appeared to be related to depressive disorder. Because

the strongest factor was CO exposure, we focus on the mechanisms

underlying a relationship between first-trimester CO exposure and

depressive disorder. Additionally, prior studies investigated a con-

nection between ILI/flu and sunlight with depressive disorder with-

out investigating pollutant variables such as CO that are often

correlated with sunlight.

We found generalized anxiety disorder (R¼0.404, 95% CI, 0.264-

0.528) to also be significantly associated with first-trimester CO expo-

sure, although the relationship was weaker. Importantly, generalized

anxiety disorder was only significantly associated with variance in CO

exposure and no other variable (such as flu or sunlight). This further bol-

stered our hypothesis of a mechanistic link between both depressive dis-

order and generalized anxiety disorder and first-trimester exposure to

CO. Additionally, a study by Moffitt et al.52 found that generalized anxi-

ety disorder (GAD) and major depressive disorder (MDD) often occur

together with no apparent sequential pattern, suggesting that

GADþMDD may be a disease of its own. Therefore, finding that GAD

and depressive disorder were significantly correlated with first-trimester

CO exposure suggests that we may be uncovering a link between them.

Chronic CO poisoning exhibits itself clinically as chronic fatigue,

depression, and often a diagnosis of influenza infection (due either to

the patient’s weakened immune system or to flu-like symptoms that

patients often present with),53 underscoring the importance of CO ex-

posure in depression. Prenatal exposure to CO was shown to cause

learning and memory deficits, indicating that maternal exposure to CO

crosses both the fetal-maternal and blood-brain barriers.54 First-

trimester exposure to CO was shown to cause intrauterine growth re-

tardation12 and disrupt hippocampus functioning.55 Shrinking of the

hippocampus is one of the critical hallmarks of depression.56 The link

between first-trimester CO exposure and both GAD and depressive dis-

order may be mediated through a shrinking of the hippocampal struc-

tures caused by prenatal CO exposure. We depict the link between

these prior studies on prenatal CO exposure and depression from the

literature and our current findings in Figure 4C. The major link in our

current study is the link between first-trimester CO exposure and in-

creased risk of depressive disorder (thick dashed green line). We also

found a lower correlation between GAD and first-trimester exposure

to CO, suggesting that it could be patients afflicted with both diseases

as described by Moffitt et al.52 who were exposed to CO.

Fine particulate matter during first trimester and risk of

atrial fibrillation in offspring
We found a positive correlation between atrial fibrillation and PM

2.5 exposure during the first trimester (R¼0.564, 95% CI, 0.363-

0.715). Taiwan and South Korea both had very low incidence of

atrial fibrillation, and the relationship was not as strong in those

locations, suggesting the possibility that an additional factor may

mediate the relationship (Figure 5A). In adults, PM 2.5 exposure has

been associated with adverse cardiovascular outcomes, including in-

creased heart failure and mortality.57–59 Exposure to PM 2.5 in

adults was also associated with increases in systolic blood pres-

sure.60 Children of mothers with gestational hypertension were

found to have higher blood pressure and elevated cholesterol and

apolipoprotein B levels.61 High blood pressure is a risk factor for

later development of atrial fibrillation.62 Exposure to fine air partic-

ulates increased the risk of gestational hypertension in pregnant

women.63 We propose a mechanism that connects atrial fibrillation

and first-trimester exposure to fine particulate matter by elevating

maternal blood pressure and inducing gestational hypertension. We

depict the link between the prior literature on this topic and prenatal

fine air particulate exposure and increased risk of atrial fibrillation

in Figure 5B. We uncovered a link between first-trimester exposure

to fine air particulates and increased risk of atrial fibrillation later in

life, which is a distal cause, with the proximal causes all outlined to-

gether in Figure 5B.

Perinatal exposures and later risk of disease
We also found diseases that were tied to exposures during the peri-

natal period (ie, the environment the baby is born into). One such

relationship is perinatal flu exposure and lifetime risk of anemia

(R¼0.660, 95% CI, 0.467-0.793). Some regions, such as NYC and

South Korea, illustrated near perfect correlation between flu expo-

sure and lifetime risk of anemia, while other sites had lower correla-

tion. Newborns are at increased risk of developing infections due to

influenza or other viruses due to their developing immune systems.64

Anemia often results as part of the body’s innate immune system to

fight infections.65 The uncovered link between perinatal flu expo-

sure and anemia may be mediated through an immune pathway.

Limitations
Our method investigates the presence or absence of correlations be-

tween exposures during different developmental stages and lifetime

disease risk. We used the DSL meta-analysis method to uncover only

correlations that were consistent across all study sites (ie, robust).

While we probe deeply into how specific exposures can affect life-

time disease risk, there are other exposures (eg, diet) that we were

unable to investigate in this study due to lack of available data. Im-

portantly, if a co-varying environmental factor exists that was not

included in our analysis and was correlated with an exposure or out-

come in our analysis, then we may be uncovering an association that

is due to this other unmeasured factor. For example, if seasonal

smoking (an example of an unmeasured confounding exposure)

were correlated with either CO seasonality (measured exposure) or

lung cancer (measured outcome), then this would be a confounder.

This is not as likely, given the number of sites and the diversity of

our sites (Asia vs US). By using the DSL method, we make use of a

random effects model, which should reduce the effects of unmeas-

ured confounding.66

Additionally, given our use of EHR data, there are many latent

(hidden) factors related to insurance practice and guidelines with re-

gard to coding of diagnoses.67 Using data from different countries

helps to minimize these biases, given that insurance coding practices

often are country-specific68; however, other latent effects due to use

of EHR data may remain, as these are often difficult to assess.
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Therefore, this remains a limitation of our work. We are confident

in our findings that support the literature with regard to specific

causal mechanisms. However, the quality of specific publicly avail-

able pollution and climate data could affect the meaningfulness of

some specific results. We used only freely available data sources for

seasonal exposure data. We provide all sources and seasonal infor-

mation in the Supplement. More robust sources of data may exist in

certain research laboratories in the world, but they are not freely

available. We strongly support open science and transparency to the

extent possible.69

Generalizability
Importantly, our methods can be used to find culprit exposures for

birth month effects observed in highly dissimilar countries, eg, in Af-

rica. But the number of potential culprit exposures would likely

need to be increased due to their unique exposures and circumstan-

ces. Our methods should be highly generalizable across all cultural

and climate bounds. However, our results, such as third-trimester

sunlight and diabetes, may not generalize to countries with low so-

cioeconomic status, because diabetes is often a disease of the afflu-

ent, and therefore some of the specific findings of this study are

likely most applicable to countries with similar socioeconomic cir-

cumstances, eg, European and Asian countries. We also want to cau-

tion readers not to make individual-level assertions from our

population-level analysis. Individual-level assertions require a pro-

spective randomized controlled trial to establish. Our work confirms

known findings and identifies areas that may be worthy of prospec-

tive human studies in the future.

CONCLUSION

In conclusion, this comprehensive study of factors involved in birth

month–disease risk used data from more than 10 million patients, 3

countries, 2 continents, and 5 climates. We were able to distinguish

the cultural effect of relative age from seasonal environmental expo-

sures that affect birth month–disease dependencies. We were also

able to identify both the seasonal environmental exposure and the

stage that resulted in increased disease risk. Others in the literature

have identified the proximal causes behind these relationships,

whereas we identify distal causal risk factors. Several important

findings include a link between both depressive disorder and gener-

alized anxiety disorder and first-trimester exposure to carbon mon-

oxide. Lack of sunlight exposure during the third trimester was

correlated with increased type 2 diabetes mellitus risk. Finally, in-

creased risk for atrial fibrillation occurred with first-trimester expo-

sure to fine air particulates. By identifying the distal causal risk

factors in these disease pathways, we are able to identify areas that

may require seasonal dosing of prenatal supplements.
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