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Endothelial damage is central to the pathogenesis of many of the complications of sickle 
cell disease. Circulating extracellular vesicles (EVs) have been implicated in modulating 
endothelial behavior in a variety of different, diseases with vascular pathologies. As seen 
in other hemolytic diseases, the plasma of sickle cell patients contains EVs of different 
sizes and cellular sources. The medium-sized vesicles (microparticles) primarily derive 
from mature red blood cells and platelets; some of these EVs have procoagulant properties, 
while others stimulate inflammation or endothelial adhesiveness. Most of the small EVs 
(including exosomes) derive from erythrocytes and erythrocyte precursors, but some also 
originate from platelets, white blood cells, and endothelial cells. These small EVs may 
alter the behavior of target cells by delivering cargo including proteins and nucleic acids. 
Studies in model systems implicate small EVs in promoting vaso-occlusion and disruption 
of endothelial integrity. Thus, both medium and small EVs may contribute to the increased 
endothelial damage in sickle cell disease. Development of a detailed understanding of 
the composition and roles of circulating EVs represents a promising approach toward 
novel predictive diagnostics and therapeutic approaches in sickle cell disease.
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ENDOTHELIAL CELLS IN THE PATHOGENESIS OF SICKLE 
CELL DISEASE

Sickle cell disease (SCD) is a debilitating disorder in which a single amino acid substitution 
(Glu6→Val in β-globin) results in an abnormal hemoglobin with a propensity to polymerize 
and deform erythrocytes. The altered erythrocytes hemolyze easily, and their rigidity and 
abnormal shapes cause intermittent occlusion of the microvasculature. Repeated ischemic insults 
and ischemia/reperfusion injuries culminate in significant damage to many different organs, 
including the bones, lungs, brain, heart, kidneys, skin, spleen, and endocrine glands.

Alterations of the endothelium (including activation and damage) are central to the 
pathophysiology of sickle cell disease complications (Sundd et  al., 2019). Sickle erythrocytes 
exhibit better adhesion to endothelial cells than red cells from normal individuals (Hoover 
et  al., 1979; Hebbel et  al., 1980). This increased endothelial adhesiveness reflects the increased 
expression or exposure of various adhesion molecules, including phosphatidylserine, the selectins 
(P- and E-), integrins, intercellular-adhesion-molecules (ICAM-1 and ICAM-4), and vascular-
cell-adhesion-molecule-1. Recurrent episodes of occlusion cause direct endothelial injury due 
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to ischemia and ischemia/reperfusion (Hebbel, 2014; 
Hebbel et  al., 2020). The release of erythrocyte contents (like 
hemoglobin or heme) due to hemolysis cause endothelial activation 
through several pathways, including those driven by oxidative 
stress, Toll-like receptors, and NF-κB (Kato et al., 2017). Sickled 
red cells and the byproducts of hemolysis activate other blood 
cells (leukocytes and platelets). Endothelial cells and white blood 
cells release various cytokines. Studies in SCD mice have shown 
that some of these cytokines and other inflammatory mediators 
(like TNFα, heme, and lipopolysaccharide) can induce vaso-
occlusion. Together, all of these factors create an altered 
inflammatory milieu in SCD patients (Hoppe, 2014).

There is significant variability in the severity and frequency 
of complications among individuals with SCD. Predicting 
complications and targeting therapies remain very challenging 
despite extensive investigations of the pathologic pathways. 
We speculate that differences in circulating extracellular vesicles 
(EVs) and their effects on endothelial cells may contribute to 
inter-patient variabilities in disease severity.

DIFFERENT KINDS OF EXTRACELLULAR 
VESICLES

EVs are small vesicles containing cellular contents surrounded 
by lipid bilayers that are produced by many different kinds 
of cells. EVs are best classified according to their differing 
cellular generation pathways, which correlate with their sizes. 
Large and medium EVs are created by cellular damage, while 
small EVs are actively secreted (Colombo et  al., 2014; Cocucci 
and Meldolesi, 2015; Meldolesi, 2018). (1) Apoptotic bodies 
(800  nm–5  μm) are produced during apoptosis via membrane 
disintegration. (2) Microvesicles (200–1,000  nm) are formed 
by pinching off from the cell membrane; vesicles in this category 
have sometimes been termed ectosomes or microparticles. 
Microvesicles contain mainly cytosolic and plasma membrane 
associated proteins. (3) Small EVs (50–200  nm), which are 
often referred to as exosomes, are generated by release from 
the endosomal sorting complex required for transport (ESCRT). 
Therefore, ESCRT proteins and accessory proteins (Alix, TSG101, 
HSC70, and HSP90β) are found in exosomes, as are tetraspanins, 
including CD63, CD9, and CD81. Small EVs also contain 
nucleic acids, including mRNAs and miRNAs.

Many EVs end up within the bloodstream. When circulating 
EVs encounter endothelial cells, they can affect their behavior, 
either through interactions at the cell surface or by transfer 
of contents (including proteins, lipids, DNA, mRNA, and 
microRNAs) carrying signals from their cell of origin. Therefore, 
EVs (particularly exosomes, which contain nucleic acids) are 
thought to play a role in regulating endothelial responses to 
damage (Ridger et  al., 2017; Oggero et  al., 2019).

The International Society for Extracellular Vesicles (ISEV) 
has developed recommendations regarding collection of blood 
or culture samples, isolation of vesicles, and definition of 
the cellular origins of EVs (Théry et  al., 2018). Methods 
used to isolate EVs include serial centrifugation, size exclusion 
chromatography, and precipitation. These techniques differ in the 

yield of EVs and their contamination with non-EV material. 
Depending on isolation methods, small EVs can be 
contaminated with clumps of proteins, viral particles, 
lipoproteins, and ectosomes. Differences in preparations due 
to differing isolation methods may contribute to confounding 
results in different studies.

EXTRACELLULAR VESICLES IN THE 
PATHOGENESIS OF VASCULAR 
DISEASES

The potential importance of EVs in contributing to the vascular 
abnormalities of SCD is supported by the data implicating them 
in other cardiovascular diseases that have some of the features 
observed in SCD. As with SCD, thrombosis, endothelial dysfunction 
and damage, ischemia-reperfusion injury, and inflammation are 
key components of various cardiovascular diseases.

Most of the links between circulating EVs and cardiovascular 
disease are correlative. Several studies have shown significantly 
increased levels of circulating EVs (microvesicles and exosomes) 
derived from endothelial cells, leukocytes, platelets, and/or 
erythrocytes in patients with different cardiovascular diseases, 
including ischemic coronary artery disease (reviewed by Jansen 
et  al., 2017; Ridger et  al., 2017). In diabetic patients, increased 
numbers of endothelial EVs correlate with endothelial dysfunction 
detected as worsened arterial elasticity and endothelium-
dependent dilation (Feng et  al., 2010).

Because vesicle composition and content represent specific 
signatures of cellular activation and injury, differences in EV 
profiles have been proposed as useful tools for diagnosing 
and monitoring risk and activity of cardiovascular diseases. 
Some studies have identified vesicular microRNAs that may 
discriminate different groups of patients (Jansen et  al., 2017). 
As examples, in one study, increased levels of miR-126 and 
miR-199a in circulating EVs were associated with a lower rate 
of major adverse cardiovascular events (Jansen et  al., 2014), 
while in a different study, patients with acute coronary syndrome 
had higher levels of miR-208a in serum EVs than control 
subjects (Bi et  al., 2015).

The direct contribution of EVs to endothelial pathology is best 
supported by several examples of studies showing vascular and 
inflammatory effects of these EVs. The platelet microparticles may 
make a procoagulant contribution to thrombotic cardiac diseases 
through the exposure of negatively charged phosphatidylserine 
on their surfaces, which can enhance clot formation. Platelet 
microparticles also stimulate cultured endothelial cells to increase 
their adhesiveness (Barry et  al., 1998). In vitro, endothelial EVs 
induce vasorelaxation and nitric oxide production, but they impair 
capillary angiogenesis (Brodsky et al., 2004; Mezentsev et al., 2005). 
Monocyte exosomes induce endothelial expression of cytokines 
and adhesion proteins (Tang et  al., 2016).

There are also ongoing attempts to develop EVs as therapeutics 
for cardiovascular diseases. In stroke and myocardial infarction 
models, EVs from mesenchymal stem cells have increased survival 
of cardiomyocytes, promoted angiogenesis, decreased infarct 
size, and improved neurologic recovery (Giebel et  al., 2017).
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EXTRACELLULAR VESICLES IN OTHER 
HEMATOLOGIC DISORDERS

One of the major sequelae of SCD is hemolysis, the breakdown 
of erythrocytes. A predictable consequence of hemolysis is the 
generation of EVs derived from the red cells. Some insights 
regarding EVs in SCD can be  garnered from studies of EVs 
in relation to other red blood cell disorders.

Generation and release of EVs occur during the normal 
maturation of red blood cells and during pathological damage. 
Secretion of exosomes is a major process by which maturing 
erythrocyte precursors (especially reticulocytes) dispose of 
membrane and cytosolic proteins (like transferrin receptor; 
Johnstone et al., 1987; Ovchynnikova et al., 2018). Microvesicles/
ectosomes are generated by the outward budding from the plasma 
membrane of normal red blood cells (Nguyen et  al., 2016). It 
is well-known to experts in blood banking that microvesicles 
are increasingly generated during storage of red blood cells (Kuo 
et al., 2017). These artificially generated EVs have been reported 
to have vasoregulatory and immunomodulatory properties (Said 
and Doctor, 2017; Almizraq et  al., 2018). Microvesicles may 
also be  generated from circulating erythrocytes by mechanical 
or complement-mediated damage (Westerman and Porter, 2016).

It has long been recognized that normal platelets and 
megakaryocytes also release medium-sized EVs (or microparticles; 
Crawford, 1971). The release of platelet microparticles can 
be  triggered by activation of platelets by physiological agonists 
and by storage, cryopreservation, and shear stress (Boilard 
et  al., 2015). These microparticles may have a procoagulant 
effect by providing a surface for coagulation factors to assemble 
(Owens and Mackman, 2011). Elevated levels of circulating 
microparticles have been observed in many thrombotic disorders 
(Nomura and Shimizu, 2015).

Like SCD, the thalassemias (a group of genetic disorders that 
involve underproduction of hemoglobin) are hemoglobinopathies 
that result in hemolysis (among other manifestations). However, 
much less endothelial damage occurs in the thalassemias than 
is typically observed in SCD. Several studies of β-thalassemia 
patients have demonstrated increased abundances of circulating 
medium-sized EVs, especially those who have been splenectomized 
(Agouti et al., 2015; Klaihmon et al., 2017a). These microparticles 
derive from erythrocytes, platelets, and endothelial cells. The 
platelet-derived microparticles have been implicated in the 
increased propensity of thalassemia patients to thrombosis 
(Pattanapanyasat et al., 2007; Agouti et al., 2015). The abundance 
of circulating EVs and the thrombotic risk return to normal 
after successful treatment of the thalassemia by hematopoietic 
stem cell transplantation (Klaihmon et  al., 2017b).

Paroxysmal nocturnal hemoglobinuria (PNH) is a disease that 
results in hemolysis (and thrombosis) due to an acquired clonal 
abnormality that causes increased sensitivity to complement-
mediated cell lysis. In PNH patients, the blood contains increased 
numbers of platelet EVs, while erythrocyte-derived EVs are 
present, but in quantities that are similar to those in control 
subjects without PNH (Ninomiya et al., 1999; Kozuma et al., 2011; 
Freitas Leal et al., 2019). However, in these patients, both groups 

of EVs appear to be  prothrombotic (Kozuma et  al., 2011). 
Interestingly, despite a lack of increased numbers, the vesicles 
that are present are clearly a degree more prothrombotic in vitro 
than in controls. Treatment of patients with Eculizumab (to block 
complement-mediated lysis) decreases both the abundance of 
microvesicles and the thrombotic risk (Weitz et al., 2012). In vitro 
studies related to PNH have demonstrated that microparticles 
can interact with erythrocytes, since microvesicles derived from 
normal red blood cells can transfer glycophosphoinositide-anchored 
proteins to PNH erythrocytes (Sloand et  al., 1998). Only a 
few  exploratory studies have examined small EVs in PNH 
(Teruel-Montoya et  al., 2019; Vallejo et  al., 2019).

Increased numbers of circulating microvesicles have also been 
detected in other hemolytic disorders, including autoimmune 
hemolytic anemia (Kidd et  al., 2015), complement-mediated 
hemolysis (Arvidsson et al., 2015), malaria (Mantel et al., 2013), 
and hereditary erythrocyte membrane disorders (Alaarg et  al., 
2013). In contrast, reduced numbers of circulating microvesicles 
and external exposure of phosphatidylserine are observed in 
patients with Scott syndrome, a rare bleeding disorder of unknown 
genetic basis in which cells have abnormalities of cellular calcium 
handling (Bevers et  al., 1992; Morel et  al., 2011). Elucidation 
of this disease might help with the development of therapeutic 
approaches to reducing levels of procoagulant microparticles.

MEDIUM-SIZED EXTRACELLULAR 
VESICLES (MICROPARTICLES) IN 
SICKLE CELL DISEASE

There have been a number of studies of medium-sized EVs 
in relation to SCD (reviewed by Hebbel and Key, 2016). Many 
years ago, it was demonstrated that sickling and un-sickling 
of sickle erythrocytes induced by oxygenation-deoxygenation 
cause loss of membrane by the shedding of “micro-spherules” 
(Padilla et  al., 1973) or the formation of “microspicules” that 
degrade to form microvesicles (Allan et al., 1982). These particles 
are spectrin-free, but their membranes are otherwise similar 
to the plasma membrane of red blood cells. They have red 
cell cytoplasmic contents like hemoglobin. Electron micrographs 
show that these microvesicles are rather heterogeneous with 
diameters of 150–400  nm (Allan et  al., 1981).

These erythrocyte-derived microvesicles have been identified 
in the blood of sickle cell patients, as have vesicles derived from 
platelets, white blood cells, and endothelial cells (Tantawy et  al., 
2013; Hebbel and Key, 2016). The consensus of many studies 
is that the abundance of circulating microparticles is increased 
in individuals with SCD as compared with normal subjects, but 
the abundance is not consistently altered in association with 
pain crises (Nebor et al., 2014; Hebbel and Key, 2016). Microparticle 
levels are increased in association with hemolysis (Westerman 
et  al., 2008; van Beers et  al., 2009; Merle et  al., 2018; Olatunya 
et al., 2019). It is unclear whether levels of microparticles (either 
total or those from a specific cell type) are useful biomarkers 
for disease severity or complications (Hebbel and Key, 2016).

Several studies have suggested possible pathogenic roles of 
circulating microparticles in SCD. Many of the microparticles 
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FIGURE 1 | Circulating small extracellular vesicles (EVs) from sickle cell 
patients cause damage to endothelial cell monolayers. (A–F) representative 
photomicrographs show the localization of VE-cadherin (green) and nuclei 
(blue in B,D,F) in endothelial cells 48 h following treatment with no EVs 
(A,B) or EVs from a subject with sickle cell disease (SCD) purified by 
precipitation (C,D) or by size exclusion chromatography (E,F). White stars 
indicate spaces between cells. Scale bar is 20 μm. In the examples shown, 
the monolayer disruption was 0% (A,B), 1.9% (C,D), or 7.5% (E,F). This 
figure contains different examples illustrating the observations in our previous 
publication (Lapping-Carr et al., 2017, 2020).

contain tissue factor and may exert procoagulant effects 
(Shet et  al., 2003; van Beers et  al., 2009). The infusion of SCD 
erythrocyte microparticles in mice leads to production of reactive-
oxidative species, vasodilation, and vaso-occlusion in the kidneys 
(Camus et  al., 2015). These changes may be  caused by transfer 
of heme contained in microparticles to endothelial cells. Microparticles 
released during vaso-occlusive crises increase endothelial ICAM-1 
levels and neutrophil adhesion (Garnier et  al., 2020).

A recent study emphasizes the importance of platelet EVs 
in the pathogenesis of SCD. Using sickle mice and human 
SCD blood flowing through a microfluidics chamber, Vats et al. 
(2020) found that activation of the platelet inflammasome led 
to the production of platelet EVs containing interleukin-1β 
and caspase-1. Moreover, the EVs promoted lung vaso-occlusion. 
Size analysis of the EVs in this study suggests that they included 
both small and medium-sized EVs.

Some treatments that have beneficial consequences for SCD 
patients may also modulate microparticle abundance or 
detrimental properties. Hydroxyurea treatment has been 
associated with a decrease in microparticles derived from 
erythrocytes and platelets (Nébor et  al., 2013). Exchange 
transfusion may reduce the abundance of erythrocyte-derived 
microparticles (Mahfoudhi et  al., 2012).

SMALL EXTRACELLULAR VESICLES IN 
SICKLE CELL DISEASE

There have only been a few studies of small EVs, or exosomes, 
in relation to the pathophysiology of SCD. We  have shown 
that the plasma of children and young adults with SCD contains 
abundant small EVs (Khalyfa et  al., 2016; Lapping-Carr et  al., 
2017). Small EVs can also be  generated from the platelets of 
human SCD subjects and sickle mice (Vats et  al., 2020).

The small EVs in our preparations comprise relatively uniform 
populations of particles as assessed by nanoparticle tracking 
analysis. Immunoblotting shows that the small EVs contain 
flotillin and CD63 (which are found in exosomes), but they 
do not contain proteins from the endoplasmic reticulum or 
lipoproteins (Lapping-Carr et  al., 2020). In both control and 
SCD subjects, most of the circulating EVs derive from red 
blood cell precursors (Khalyfa et  al., 2016; Lapping-Carr et  al., 
2017). However, some of the small EVs contain marker proteins 
implying origin from platelets, white blood cells, and endothelial 
cells. EVs that derive from monocytes are more abundant in 
SCD subjects than in controls (Lapping-Carr et al., 2017). Even 
when at a healthy baseline, the abundance of circulating small 
EVs was greater in individuals with SCD than in control subjects 
without the disease (Lapping-Carr et  al., 2017). However, the 
number of plasma small EVs did not differ significantly among 
patients at baseline nor did they differ within the same individual 
whether obtained at baseline vs. during an episode of acute 
chest syndrome (ACS; Lapping-Carr et  al., 2017, 2020). There 
are differences in microRNA profiles of the EVs from healthy 
controls vs. mild vs. severe SCD subjects (Khalyfa et al., 2016).

Because of their roles in other vasculopathies, we considered 
that circulating EVs might contribute to the vascular 

damage  of  SCD. We  tested this hypothesis by applying small 
EVs isolated from plasma to monolayers formed of cultured 
microvascular endothelial cells. Monolayer integrity was studied 
physiologically (by Electric Cell-substrate Impedance Sensing; 
Khalyfa et al., 2016; Lapping-Carr et al., 2017) or by microscopy 
(Lapping-Carr et al., 2017, 2020). Electric Cell-substrate Impedance 
Sensing (ECIS) studies showed that small EVs isolated at baseline 
from subjects with a history of ACS caused greater monolayer 
disruption than was caused by EVs from patients with no history 
of ACS. This endothelial disruption can be  visualized as the 
opening of spaces between cells in the monolayer (as illustrated 
in Figure 1). Moreover, small EVs isolated from the same patient 
during an episode of ACS cause substantially more monolayer 
disruption, detected as  opening of spaces between cells, and 
reductions of intercellular junction proteins (including VE-cadherin 
and ZO-1; Khalyfa et  al., 2016; Lapping-Carr et  al., 2020).

These studies have led us to a model regarding how circulating 
EVs might contribute to the pathophysiology of ACS (and 
perhaps other vascular complications of SCD; illustrated in 
Figure 2). Small EVs/exosomes (packaged with unique proteins 
and nucleic acids, including mRNAs and miRNAs) undergo 
regulated release and subsequent uptake by endothelial cells. 
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In healthy control subjects and in a subset of individuals with 
SCD (at baseline), small EVs in the plasma have no detectable 
effect on the endothelium. However, in some SCD patients 
(those with a history of ACS at baseline and more so during 
an ACS episode), circulating small EVs encounter the 
endothelium. They cause a series of changes including disruption 
of intercellular junctions, rearrangement of the actin cytoskeleton, 
and opening of gaps between cells.

FUTURE DIRECTIONS

Our model and the recent studies from other groups raise a 
number of issues and testable questions. What are the qualitative 
differences between small EVs of patients with or without a 

history of ACS? What is the cellular source of the EVs that 
are important in the vasculopathy of SCD? What are the 
differences between EVs isolated from the same patient at 
baseline and during an episode of ACS? Are similar differences 
present in patients with other complications (like vaso-occlusive 
crises)? Are these differences due to differing contents of 
microRNAs that influence gene expression in the target 
endothelial cells or due to protein components that stimulate 
inflammation? Can we  identify specific EV components (like 
microRNAs or protein components) that mediate endothelial 
changes? Can we  use them as biomarkers to identify patients 
at increased risk or as novel therapeutic targets?
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