
J Cell Mol Med. 2020;24:4981–4991.     |  4981wileyonlinelibrary.com/journal/jcmm

1  | INTRODUC TION

Brain arteriovenous malformations (AVMs) are characterized by di-
rect anastomosis between the arterial and venous channels with-
out any intervention of the capillaries.1 The estimated crude annual 

detection rate has been reported at 1.3 per 100 000 patient-years.2,3 
Along with the advancement of diagnostic techniques, the detection 
rate of brain AVMs is increasing and add up to an estimated preva-
lence of approximately 50 cases per 100 000.4 Clinically, cerebral 
haemorrhage, partial or systemic epileptic seizure, and transient 
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Abstract
Brain arteriovenous malformations (AVMs) are congenital vascular abnormality in 
which arteries and veins connect directly without an intervening capillary bed. So 
far, the pathogenesis of brain AVMs remains unclear. Here, we found that Wilms' 
tumour 1-associating protein (WTAP), which has been identified as a key subunit 
of the m6A methyltransferase complex, was down-regulated in brain AVM lesions. 
Furthermore, the lack of WTAP could inhibit endothelial cell angiogenesis in vitro. In 
order to screen for downstream targets of WTAP, we performed RNA transcriptome 
sequencing (RNA-seq) and Methylated RNA Immunoprecipitation Sequencing tech-
nology (MeRIP-seq) using WTAP-deficient and control endothelial cells. Finally, we 
determined that WTAP regulated Desmoplakin (DSP) expression through m6A modi-
fication, thereby affecting angiogenesis of endothelial cells. In addition, an increase 
in Wilms' tumour 1 (WT1) activity caused by WTAP deficiency resulted in substantial 
degradation of β-catenin, which might also inhibit angiogenesis of endothelial cells. 
Collectively, our findings revealed the critical function of WTAP in angiogenesis and 
laid a solid foundation for the elucidation of the pathogenesis of brain AVMs.
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ischaemic attack are the most common relevant symptoms,5 seri-
ously endangering human health and life. But until now, the patho-
genesis of brain AVMs is still unclear.

N6-methyladenosine (m6A) is identified to be the most common and 
abundant RNA molecular modification in eukaryotes6 and is involved in 
a variety of metabolic processes of RNA, such as RNA transcription, 
shearing, nuclear transport and translation ability.7-15 The methylation 
modification of m6A is reversible by the implication of the methyl-
transferases, demethylases and methylated reading proteins. It is well 
clarified that Wilms' tumour 1-associating protein (WTAP), acting as the 
most important regulatory subunit, forms the core methyltransferase 
complex with METTL3 and METTL14 to catalyse the m6A modifica-
tion.16-20 In mammals, m6A can be reverted to adenosine by the m6A 
RNA demethylase, FTO and ALKBH5.21,22 Furthermore, m6A modifica-
tion requires the specific RNA binding proteins, also known as ‘readers’, 
to perform specific biological functions. RNA pull-down experiments 
have identified a variety of reading proteins, including YT521-B homol-
ogy (YTH) domain-containing protein, heterogeneous nuclear ribonu-
cleoprotein (hnRNP), IGF2BP proteins and eukaryotic initiation factor 
(eIF).23-27 Recently, an increasing number of studies have shown that 
m6A modification widely participates in the regulation of multiple bio-
logical processes8-9,28-32 and exhibited a correlation between aberrant 
cellular m6A level and diseases.33-36 In addition, previous studies have 
reported that zebrafish embryos with deficiency of WTAP displayed 
multiple developmental defects.19 However, it is unclear whether 
WTAP participates in the genesis and progression of brain AVMs.

Desmoplakin (DSP) is a critical component of desmosome and 
plays a central role in maintaining the structure and stability of the 
desmosome.37 In addition, previous studies have demonstrated that 
DSP is essential for the mechanical integrity of epithelium and myo-
cardium.38-40 DSP gene mutations are associated with cutaneous 
or cardiac defects, such as palmoplantar keratoderma, skin fragili-
ty-woolly hair syndrome, lethal acantholytic epidermolysis bullosa, 
arrhythmogenic right ventricular cardiomyopathy and Carvajal syn-
drome.41,42 In addition to cell adhesion, DSP has recently been found 
to be involved in other cellular processes such as proliferation, differ-
entiation and carcinogenesis.40,43 Surprisingly, DSP is not only related 
to epidermal integrity and cardiac function, but also to vascular devel-
opment. For instance, ablation of DSP results in leaky and/or poorly 
formed capillaries, limiting embryonic development.44,45 Therefore, it 
is of great significance to explore the relationship between DSP and 
the pathogenesis of brain AVM.

In the current study, we found that WTAP was down-regulated 
in brain AVM lesions compared with normal cerebral vessels, and 
knockdown of WTAP significantly inhibited tube formation of the 
human endothelial cells. To thoroughly investigate the specific mo-
lecular mechanism, we performed RNA transcriptome sequencing 
(RNA-seq) and Methylated RNA Immunoprecipitation Sequencing 
technology (MeRIP-seq) to screen downstream targets of WTAP. 
Finally, we determined that DSP was stabilized via WTAP-m6A-
IGF2BPs-dependent manner and participated in the regulation 
of angiogenesis. In addition, Wnt pathway was repressed due to 
elevated levels of free Wilms' tumour 1 (WT1) in WTAP-deficient 

endothelial cells, which might be involved in the formation of brain 
AVMs. Our findings determine the mechanism by which WTAP in-
hibits angiogenesis and provide potential therapeutic targets to pre-
vent the formation or progression of brain AVMs.

2  | MATERIAL S AND METHODS

2.1 | Patients and samples

Detailed information on patient recruitment and sample preparation 
could be found in our previous study.46 Briefly, from September 2016 
to November 2017, we recruited 66 patients with brain AVM and 
seven patients with epilepsy as a control at Beijing Tiantan Hospital 
affiliated to Capital Medical University. Brain AVMs samples were 
collected from consecutive patients undergoing surgical treatment. 
The clinical diagnoses of brain AVM were confirmed by digital sub-
traction angiography and histologic evaluation in the hospital's pa-
thology department. In addition, consistent with previous study,47 
intracranial vascular tissue samples without the typical characteris-
tics of brain AVM had been obtained from 7 patients undergoing tem-
poral lobe resection for epilepsy. Informed consents were obtained 
from all patients, and this study was approved by the institutional 
review board of Beijing Tiantan Hospital, Capital Medical University.

2.2 | Cell culture

The human umbilical vein endothelial cells (HUVECs) were pur-
chased from ScienCell (Carlsbad, CA) and maintained in endothe-
lial cell medium (ECM, ScienCell) supplemented with 5% foetal 
bovine serum (FBS, Gibco), 100 U/mL penicillin and 100 μg/mL 
streptomycin.

2.3 | Gene silencing and expression

The siRNAs targeting specific genes were designed and synthesized by 
Guangzhou RiboBio (Table S1). Endothelial cells were transfected with 
siRNAs using Lipofectamine RNAiMAX (Invitrogen). The plasmid ex-
pressing Flag-tagged Homo sapiens WTAP was synthesized by Shanghai 
Genechem Co., Ltd. Constructed plasmid was transfected into the en-
dothelial cells according to the manufacturer's instructions of jetPRIME 
kit (Polyplus-transfection). After transfection for 48 hours, endothelial 
cells were harvested for subsequent mRNA or protein expression analysis.

2.4 | RNA isolation and qRT-PCR

Total RNAs were extracted and purified using TRIzol reagent 
(Invitrogen) according to the manufacturer's instructions. cDNA 
was reverse transcribed from total RNAs using the PrimeScript™ 
RT reagent Kit with gDNA Eraser (TaKaRa Co). qRT-PCR was 
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performed using the SYBR® Premix Ex Taq™ II (TaKaRa) on the 
QuantStudio™ real-time PCR system (Applied Biosystems). Primers 
for specific genes were listed in Table S2. Finally, the relative analy-
sis of gene expression was evaluated using the 2−ΔΔCT method.

2.5 | Western blotting

Endothelial cells were harvested and lysed in RIPA lysis buffer supple-
mented with protease and phosphatase inhibitors. Protein samples 
were separated by sodium dodecyl sulphate polyacrylamide gel elec-
trophoresis (SDS-PAGE) and transferred onto a polyvinylidene dif-
luoride (PVDF) membrane (Merck Millipore). After blocking for 1 hour 
in 5% skimmed milk, the membranes were incubated with the specific 
primary antibodies as follows: anti-WTAP (ab195380; abcam), anti-
β-Actin (ab8227; abcam), anti-CTNNB1 (ab32572; abcam), anti-DSP 
(25318-1-AP; proteintech), anti-IGF2BP1 (22803-1-AP; proteintech), 
anti-IGF2BP2 (11601-1-AP; proteintech) and anti-IGF2BP3 (14642-1-
AP; proteintech). After that, the PVDF membranes were incubated 
with Horseradish peroxidase-conjugated anti-rabbit/mouse IgG 
(M21002/M21001; Abmart), and then, the immunolabelled proteins 
were visualized using ECL reagent (Merck Millipore).

2.6 | Immunofluorescence

The endothelial cells were fixed using 4% paraformaldehyde for 
20 minutes. After that, the cells were incubated with 0.3% Triton 
X-100 for 10 minutes and blocked non-specific binding sites with 5% 
BSA. Next, the cells were incubated with primary antibodies against 
m6A (202003; Synaptic Systems) or β-catenin (ab32572, Abcam) 
overnight at 4°C and subsequently were incubated with Alexa Fluor 
594- or Alexa Fluor 488-conjugated goat anti-rabbit secondary an-
tibody at room temperature for 1 hour. Finally, nuclear staining was 
performed with DAPI at room temperature, and the cells were ob-
served using EVOS™ FL Auto 2 Imaging System (Invitrogen).

2.7 | Tube formation assay

Tube formation assays were performed using Ibidi μ-Slide 
Angiogenesis (Ibidi) according to the manufacturer's protocol. A total 
of 15 000 endothelial cells in 50 μL complete media were plated to 
the inner well of µ-Slide filled with Matrigel. Then, the μ–Slides were 
incubated at 37°C as usual. About 24 hours later, the tube forma-
tions were imaged under the Fluorescence Inversion Microscope 
System and analysed using the Image J software.

2.8 | RNA stability assays

Endothelial cells were transfected with siRNAs against specific 
genes or negative control siRNA using Lipofectamine RNAiMAX 

(Invitrogen). Twenty-four hours after transfection, cells were treated 
with 10 μg/mL actinomycin D (MCE, HY-17559) and collected at 
indicated time points. The total RNAs were extracted by TRIzol 
(Invitrogen) at indicated time points and analysed by qRT-PCR. The 
turnover rate and half-life of mRNA were estimated according to a 
previously published paper.48

2.9 | Methylated RNA immunoprecipitation

m6A modifications on specific genes were determined using 
the Magna MeRIP m6A Kit (Millipore, 17-10499) according to 
the manufacturer's instructions. In brief, for MeRIP-seq, 300 μg 
total RNAs from control and WTAP-deficient endothelial cells 
were chemically fragmented into about 100 nucleotides in 
length by incubation in fragmentation buffer (10 mmol/L ZnCl2, 
10 mmol/L Tris-HCl, pH 7.0) at 94°C for 3 minutes. The reaction 
was then stopped with 0.05 mol/L EDTA, followed by magnetic 
immunoprecipitation with the monoclonal antibody towards 
m6A. Methylated RNAs were eluted by competition with free 
m6A and extracted using the RNeasy kit (Qiagen). Thereafter, 
the library construction and sequencing were performed by 
Cloud-Seq Biotech Ltd. Co. Both the m6A-IP samples and the 
input samples without immunoprecipitation were used for 
RNA-seq library generation with NEBNext® Ultra II Directional 
RNA Library Prep Kit (New England Biolabs, Inc). The library 
quality was evaluated with BioAnalyzer 2100 system (Agilent 
Technologies, Inc). Library sequencing was performed on an il-
lumina Hiseq instrument with 150 bp paired-end reads. Paired-
end reads were harvested from Illumina HiSeq 4000 sequencer 
and were quality controlled by Q30. After 3’ adaptor-trimming 
and removing low quality reads by cutadapt software (v1.9.3), 
clean reads of all libraries were aligned to the reference genome 
(HG19) by Hisat2 software (v2.0.4). Methylated sites on mRNAs 
(peaks) were identified by MACS software. Differentially meth-
ylated sites were identified by diffReps. The raw data have been 
deposited in GEO database, and the accession number is GSE14 
2386.

For m6A-IP-qPCR, the total RNAs were fragmented into 300-
nt fragments after incubation in fragmentation buffer at 94°C for 
30 seconds and immunoprecipitated by anti-m6A antibody accord-
ing to the procedure shown above. One-tenth of the fragmented 
RNAs were saved as input control, and the enrichment of m6A was 
quantified using qRT-PCR.

2.10 | Statistical analysis

All experiments were performed at least three independent rep-
licates, and statistical analyses were performed using GraphPad 
Prism6 software. Statistical significance was calculated by unpaired 
Student's t test. Results are presented as mean ± SEM, and a P value 
of less than .05 was considered statistically significant.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE142386
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE142386
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3  | RESULTS

3.1 | WTAP is down-regulated in brain AVMs 
lesions and is required for angiogenesis

From September 2016 to November 2017, a total of 66 patients with 
brain AVM were included in the main study group. Intracranial vascu-
lar tissues from seven patients with epilepsy were included as con-
trols. RNA sequencing was performed on collected tissue samples to 
derive differential gene expression profiles between control and brain 
AVMs. Through analysing the results of RNA-seq, we identified a total 
of 5118 genes that were differentially expressed, and that 2680 and 
2438 genes were significantly up-regulated and down-regulated in 
brain AVMs, respectively (Table S3). Surprisingly, we found that al-
though the expression levels of the m6A methyltransferases METTL3 
and METTL14 were not significantly different, WTAP was down-
regulated in brain AVMs lesions compared with normal brain vessels 
(Figure 1A; Figure S1; Table S3). In addition, the expression level of 
WTAP obtained by high-throughput sequencing was confirmed by 
qRT-PCR (Figure 1B). To investigate the functional changes in vascu-
lar endothelial cells that involved in the pathophysiological process 
of brain AVMs, we knocked down WTAP in human endothelial cells 
using specific siRNA (Figure 1C). The functional assays showed that 
knockdown of WTAP significantly inhibited the tube formation of 
vascular endothelial cells (Figure 1D). Therefore, we concluded that 
WTAP played a critical role in angiogenesis of vascular endothelial 
cells.

3.2 | Analysis of potential targets for WTAP

Wilms' tumour 1-associating protein has been identified to function 
as a significant regulatory subunit in the m6A methyltransferase 
complex and plays a critical role in epitranscriptomic regulation 
of RNA metabolism.19 As shown in Figure 2A, silencing of WTAP 
dramatically reduced the m6A modification level in endothelial 
cells. To profile the difference in m6A methylation of mRNA, we 
performed MeRIP-seq using control and WTAP-deficient human 
endothelial cells. The results showed that the level of m6A modi-
fication of 533 genes in WTAP-deficient endothelial cells was sig-
nificantly lower than that of the control cells (Figure 2B; Table S4). 
Next, we performed RNA sequencing to fully elucidate the mo-
lecular mechanisms of m6A function. About 452 up-regulated and 
495 down-regulated genes were identified in WTAP-deficient en-
dothelial cells, respectively (Figure 2C; Table S5). GO enrichment 
analysis revealed that the up-regulated genes were enriched in 
tube morphogenesis, regulation of growth and certain metabolic 
pathways (Figure 2D). Correspondingly, the down-regulated genes 
were enriched in immune-related pathway (Figure 2D). We then 
analysed the expression levels of 533 WTAP potential targets in 
WTAP-deficient endothelial cells. About 74 targets were shown 
to be differentially expressed genes, including six up-regulated 
and 68 significantly down-regulated genes (Figure 2E). Therefore, 
we speculated 74 differentially expressed genes were the directly 
downstream of WTAP and participated in regulation of tube for-
mation in endothelial cells.

F I G U R E  1   WTAP is down-regulated 
in brain AVMs and is required for 
angiogenesis. A, RNA-seq showing the 
expression levels of WTAP in brain 
AVMs lesions versus normal vessels. 
B, Differential expression of WTAP 
identified in high-throughput sequencing 
was verified by qRT-PCR. C, qRT-PCR and 
Western blot analysis of the knockdown 
efficiency of WTAP in endothelial cells. 
D, Representative bright-field images and 
statistical analysis of tube formation assay 
of control and WTAP-deficient endothelial 
cells. Data are shown as mean ± SEM of 
three independent experiments. P values 
were calculated using Student's t test. 
*P < .05; **P < .01; ***P < .001



     |  4985WANG et Al

3.3 | DSP is the downstream target of WTAP

Previous studies have shown that METTL3 is the most important 
m6A methyltransferase. Therefore, we also performed MeRIP-seq 
and RNA-seq on METTLE3 knockdown endothelial cells, and the 
identified differential expressed genes and differentially methyl-
ated peaks had been listed in Tables S6 and S7, respectively. In 
addition, IGF2BPs have been identified as the m6A readers and 
promote the stability of their target mRNAs in an m6A-dependent 
manner.26,27 In WTAP-deficient endothelial cells, most of the dif-
ferentially expressed genes in 533 transcripts with lower m6A 
modification levels were down-regulated. Therefore, we specu-
lated that IGF2BPs as the main m6A readers are involved in the 
regulation of mRNA stability by WTAP in endothelial cells. Taking 
these into consideration, we combined the previously published 
data of IGF2BPs targets identified by RIP and PAR-CLIP with our 
MeRIP-seq and RNA-seq data on METTL3- and WTAP-deficient 
endothelial cells for conjoint analysis to further determine the cer-
tain target.26 Since DSP was also the common target for METTL3 

and IGF2BPs, it was selected for further analysis among all the 
potential WTAP targets (Figure 3A). MeRIP-seq and RNA-seq data 
showed that knockdown of WTAP or METTL3 sharply reduced 
enrichment of m6A peaks and significantly down-regulated DSP 
mRNA levels (Figure 3B; Table S8). Moreover, the results of qRT-
PCR and Western blot confirmed the results of high-throughput 
sequencing-knockdown of WTAP significantly reduced the mRNA 
level of DSP, while overexpression of WTAP increased the ex-
pression level of DSP (Figure 3C-E). Consistent with MeRIP-seq 
results, m6A-IP-qPCR results showed that the m6A enrichment 
in DSP was nearly abolished in WTAP-deficient endothelial cells 
(Figure 3F). Furthermore, compared with the control, the half-lives 
of DSP mRNA were dramatically shortened, indicating that WTAP 
can affect the stability of DSP mRNA (Figure 3C). It is well known 
that m6A peaks in mammalian cells are significantly enriched in 
RRACH motif (R = G or A; H = A, C or U).23,49 By using the online 
bioinformatics tool m6Avar (http://m6avar.renlab.org/) for analy-
sis, we found that with the exception of the peak distributed in 
chr6 7756581-7576689 (HG19), all other identified m6A peaks 

F I G U R E  2   Analysis of potential targets for WTAP. A, Immunofluorescent staining for m6A in control and WTAP-deficient endothelial 
cells. B, Volcano map showing the m6A enrichment peaks in WTAP-deficient endothelial cells compared with control. Significantly increased 
and decreased peaks (fold change > 2, P value < .001) were highlighted in Teal and brown, respectively. C, Heat map depicting differentially 
expressed genes between control and WTAP-deficient endothelial cells (fold change > 1.2, P value < .05). D, GO analysis of the down-
regulated genes in WTAP-deficient endothelial cells. E, Pie chart displaying the transcription level of genes with reduced m6A modification

http://m6avar.renlab.org/
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contained at least one RRACH motif. Collectively, DSP was regu-
lated by WTAP via m6A-dependent manner. Similar to knockdown 
of WTAP, the ability of tube formation was drastically decreased in 
the endothelial cells with silencing of DSP (Figure 3G). Surprisingly, 
we found DSP was significantly down-regulated in brain AVMs le-
sions compared with normal brain vessels (Figure 3H; Table S3). 
Thus, down-regulated WTAP repressed the expression level of 
DSP and ultimately inhibited the tube formation of endothelial 
cells, which may be related to the pathophysiology of brain AVMs.

3.4 | The stability of DSP mRNA depends on the 
m6A reader IGF2BPs

Previous study has demonstrated IGF2BP1/2/3 recognize the con-
sensus GGAC sequence through the K homology domains.26 We 
also found that the peak distributed in chr6 7579507-7581802 
(HG19) contained the GGAC motif. Subsequently, we knocked 
down IGF2BP1, IGF2BP2 and IGF2BP3, respectively, to elucidate 
whether m6A readers IGF2BPs were involved in the regulation of 

DSP expression. The knockdown efficiency was identified by qRT-
PCR and Western blot (Figure 4A-C) Consistent with our hypothesis, 
DSP mRNA expression levels were significantly reduced after siRNA 
inhibited any member of IGF2BPs in endothelial cells (Figure 4D-F). 
After treatment with actinomycin D, the mRNA levels of DSP were 
also reduced in IGF2BPs deficient endothelial cells (Figure 4D-F). 
However, RNA stability assays showed that the half-lives of DSP 
mRNA in IGF2BP1 and IGF2BP3 deficient endothelial cells were 
dramatically shortened compared with control cells, while the half-
life of DSP mRNA in IGF2BP2 deficient cells was slightly changed 
(Figure 4D-F). Taken together, these results suggested that methyl-
ated DSP mRNAs could be recognized by the IGF2BP1 and IGF2BP3 
to prevent degradation and maintain stability.

3.5 | WNT signalling pathway is inhibited in WTAP-
deficient endothelial cells

It is well known that Wnt signalling plays a central role in embryonic 
development, differentiation, cell motility, cell proliferation, adult 

F I G U R E  3   DSP is the downstream target of WTAP. A, Venn diagram showing DSP was the potential target of WTAP. B, Integrative 
Genomics Viewer (IGV) tracks displaying MeRIP-seq and RNA-seq reads distribution in DSP mRNA. C, The half-life of DSP mRNA in WTAP 
depletion endothelial cells. D, qRT-PCR analysis of the mRNA level of DSP in WTAP overexpressing endothelial cells. E, Western blot 
analysis of indicated proteins in WTAP-deficient and overexpressing endothelial cells. F, m6A-IP-qPCR displaying m6A enrichment in DSP 
mRNA in control and WTAP-deficient endothelial cells. G, Effects of DSP on tube formation of endothelial cells. H, RNA-seq showing the 
expression levels of DSP in brain AVMs lesions vs normal vessels. Data are shown as mean ± SEM of three independent experiments. P 
values were calculated using Student's t test. *P < .05**, P < .01; ***P < .001
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tissue homeostasis, angiogenesis and so on.50-53 Furthermore, 
Wnt signalling can activate canonical β-catenin-dependent path-
way and at least two well-characterized β-catenin-independent 
pathways, the planar cell polarity (PCP) pathway and the Wnt/
Ca2 + pathway.54,55 However, Wnt signalling pathway has been re-
ported to be inhibited by targeting the WTAP-WT1-TBL1 axis.56,57 
WT1 is a negative regulator of the Wnt signalling pathway. 
WTAP can interact with WT1 and form a WTAP/WT1 complex. 
Therefore, a decrease in WTAP protein levels leads to the release 
of free WT1, which results in the induction of transducing β-like 
protein 1 (TBL1) and ultimately reduces the level of β-catenin 

protein.56 Therefore, it was worthwhile to explore whether WTAP 
affects the Wnt signalling pathway through the WT1-TBL1 axis 
in endothelial cells. Same as previous research results, silenc-
ing or overexpression of WTAP did not affect the expression of 
WT1 in endothelial cells, but reduced or increased the protein 
level of β-catenin, respectively, without affecting its mRNA lev-
els (Figure 5A-C). Meanwhile, immunofluorescent staining results 
indicated that knockdown or overexpression of WTAP inhibited 
or facilitated the translocation of β-catenin to the nucleus, respec-
tively (Figure 5D,E). In summary, WTAP could modulate the Wnt 
signalling pathway via releasing free WT1 in endothelial cells.

F I G U R E  4   The stability of DSP mRNA depends on the m6A reader IGF2BPs. A-C, qRT-PCR and Western blot analysis of the knockdown 
efficiency of IGF2BP1-2-3 in endothelial cells. D-F, The mRNA half-life of DSP transcript in IGF2BP1, IGF2BP2 and IGF2BP3 depletion 
endothelial cells (upper); DSP mRNA levels of the knockdown IGF2BPs and control endothelial cells at different time points (lower). Data are 
shown as mean ± SEM of three independent experiments. P values were calculated using Student's t test. *P < .05; **P < .01; ***P < .001
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4  | DISCUSSION

Brain AVMs, characterized by direct connection between cerebral 
arteries and veins, have been identified as the important risk fac-
tor in fatal symptoms such as cerebral haemorrhage, epilepsy and 
stroke.1,5 But until now, the pathogenesis of brain AVMs is still un-
clear. In this study, we found WTAP was down-regulated in the le-
sions of brain AVMs by transcriptome sequencing (Figure 1A, B). And 
WTAP could affect the angiogenesis of endothelial cells (Figure 1D). 
Therefore, down-regulated WTAP might participated in the patho-
physiological process of brain AVMs.

Genetic and epigenetic mechanisms have been elucidated to 
play an important role in the pathogenesis and development of 
brain AVMs. For example, somatic activating KRAS mutations 
were detected in most tissue samples of sporadic non-familial 
brain AVM.47 In terms of epigenetics, decreased expression of 
miRNA-18a in endothelial cells cultured from brain AVMs altered 
the production of anti- and pro-angiogenic factors.58 Furthermore, 
aberrant epigenetic modifications in the genome of endothe-
lial cells may drive the artery or vein to an aberrant phenotype. 
Previous studies suggested a significant correlation between DNA 
methylation levels and brain AVM risk.59 Considering that WTAP is 
an important regulatory subunit of m6A methyltransferase com-
plex,19 and can significantly affect the level of m6A modification 
in endothelial cells (Figure 2A), we speculated that RNA epigenetic 
modifications-m6A is also likely to be related to angiogenesis and 
the formation of brain AVM.

In the current study, we performed MeRIP-seq and RNA-seq 
to reveal underlying molecular mechanisms by which WTAP reg-
ulated angiogenesis. Finally, we identified DSP as a downstream 
target of WTAP-mediated m6A modification (Figure 3A-F). DSP is 
a critical component of desmosome and is essential for maintain-
ing the integrity of tissues, especially those under high mechan-
ical stress, such as epidermis and myocardium.38,40 Moreover, 
previous studies have demonstrated DSP can modulate gene 
expression, differentiation and microtubule dynamics, indicat-
ing that biological functions for this protein exceed its central 
role in cell-cell adhesion.60,61 Particularly, ablation of DSP leads 
to leaky and/or poorly formed capillaries, limiting embryonic de-
velopment.45 Here, we confirmed DSP was an essential compo-
nent of angiogenesis in endothelial cells (Figure 3G), and DSP was 
significantly down-regulated in brain AVMs lesions (Figure 3H; 
Table S3). Consequently, WTAP could regulate DSP expression 
through m6A modification to affect angiogenesis in brain AVMs. 
Our findings expanded new developmental processes involving 
m6A modification in addition to cell differentiation, circadian 
rhythm, DNA damage response, sex determination, neuronal 
disorder, infectious diseases and tumorigenesis, and increased 
our understanding of the pathogenesis of brain AVM. Moreover, 
there are many other types of modifications in RNA, and their 
functions are being elucidated. Among them, it is noticeable that 
m5C, m7G and ac4C have been found to play important regula-
tory roles in the metabolic process of their modified RNA.62-64 
The role of these epigenetic and other epigenetic factors, such as 

F I G U R E  5   Wnt signalling pathway is inhibited in WTAP-deficient endothelial cells.56 A, qRT-PCR analysis of the mRNA levels of specific 
genes in WTAP-deficient or (B) overexpressing endothelial cells. C, Western blot analysis of the protein level of β-catenin after silencing 
or overexpressing WTAP. D, Immunofluorescent staining for β-catenin in WTAP-deficient or (E) overexpressing endothelial cells. Data are 
shown as mean ± SEM of three independent experiments. P values were calculated using Student's t test. *P < .05; **P < .01; ***P < .001
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histone modifications and chromatin states, in the development 
of AVM requires further research to improve our understanding 
of disease.

Wilms' tumour 1-associating protein is a ubiquitously expressed 
nuclear protein, which was first identified as the partner of WT1, a 
protein playing an essential role in normal development.65 WT1 is a 
transcription factor that governs the expression of a range of effec-
tors, including genes which regulate the Wnt signalling pathway.66 
For instance, degradation of WTAP enhances the WT1-binding ac-
tivity to induce the expression of TBL1, and this finally results in 
the degradation of β-catenin.56 In this study, we further confirmed 
this conclusion: WTAP can antagonize the activity WT1, which neg-
atively regulates the Wnt signalling pathway (Figure 5). The Wnt 
signalling pathway is one of the pivotal regulatory systems in co-or-
dinating endothelial cells behaviour to govern vascular morphogen-
esis.67-69 In particular, endothelial-specific loss of β-catenin leads to 
defective vascular remodelling and impairs the development of the 
embryonic vasculature.70 On the basis of the above, we speculated 
that WTAP could also inhibit angiogenesis by negatively regulating 
the Wnt pathway.

Overall, our results revealed that WTAP expression level was re-
duced in lesions of brain AVMs, which would inhibit angiogenesis of 
endothelial cells. Mechanistically, DSP mRNA was rapidly degraded 
in WTAP-deficient endothelial cells due to reduced m6A modifica-
tion. On the other hand, the lack of WTAP enhanced WT1 activity, 
thereby repressing the Wnt signalling pathway. These findings will 
contribute to the elucidation of the pathogenesis of brain AVMs and 
provide potential targets for treatment.
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