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Knowledge-based analysis of genetic
associations of rheumatoid arthritis to inform
studies searching for pleiotropic genes:
a literature review and network analysis
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Abstract

Introduction: Pleiotropy describes the genetic effect of a single gene on multiple phenotypic traits. Gene variants
directly affect the normal processes of a series of physiological and biochemical reactions, and therefore cause a
variety of diseases traits to be changed accordingly. Moreover, a shared genetic susceptibility mechanism may exist
between different diseases. Therefore, shared genes, with pleiotropic effects, are important to understand the
sharing pathogenesis and hence the mechanisms underlying comorbidity.

Methods: In this study, we proposed combining genome-wide association studies (GWAS) and public knowledge
databases to search for potential pleiotropic genes associated with rheumatoid arthritis (RA) and eight other related
diseases. Here, a GWAS-based network analysis is used to recognize risk genes significantly associated with RA.
These RA risk genes are re-extracted as potential pleiotropic genes if they have been proved to be susceptible
genes for at least one of eight other diseases in the OMIM or PubMed databases.

Results: In total, we extracted 116 potential functional pleiotropic genes for RA and eight other diseases, including
five hub pleiotropic genes, BTNL2, HLA-DRA, NOTCH4, TNXB, and C6orf10, where BTNL2, NOTCH4, and C6orf10 are
novel pleiotropic genes identified by our analysis.

Conclusions: This study demonstrates that pleiotropy is a common property of genes associated with disease
traits. Our results ascertained the shared genetic risk profiles that predisposed individuals to RA and other diseases,
which could have implications for identification of molecular targets for drug development, and classification
of diseases.
Introduction
Rheumatoid arthritis (RA) is one of the most common
systemic autoimmune diseases, characterized by synovial
inflammation and hyperplasia, autoantibody production,
cartilage and bone destruction, and systemic features, in-
cluding cardiovascular, pulmonary, psychological, and
skeletal disorders [1]. Parikh-Patel et al. [2] reported that
among RA patients in California, males had significantly
higher risks of lung neoplasm, but a lower risk of
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prostate neoplasm; while females had a significantly re-
duced risk for breast neoplasm. In addition, these dis-
eases were race-specific and Hispanics had increased
risks of leukemia and lung neoplasms. It is also recog-
nized that some patients with systemic lupus erythe-
matosus (SLE) will develop a symmetrical polyarthritis
while others might not experience any arthritis at all [3].
Lewder [4] reckoned that 15–20 % of patients with psor-
iasis would develop arthropathies, which shared some
common features with reactive arthritis. Several recent
studies indicated that autoimmune disorders increase
the likelihood for prostate neoplasm [5] and lung neo-
plasm [6, 7]. Khurana et al. [8] showed a significant posi-
tive association between RA and the development of
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lung neoplasm in the veteran population. Isomäki et al.
[9] reported that the incidence of leukemia was signifi-
cantly higher in patients with rheumatoid arthritis than
in the general male population.
The chronic, debilitating, autoimmune nature of RA

affects the patient directly or indirectly in almost all
organ systems, from cardiovascular problems and in-
fections to depression and gastrointestinal ulcers. On
average, the established RA patient has two or more co-
morbid conditions [10]. Causes of death in RA patients
are cardiovascular disease in 31 %, respiratory disease in
22 %, solid tumors in 20 %, cerebrovascular disease in
10 % and other reasons in 17 % [11, 12]. Thus, studies
to examine the molecular bridge linking RA and numer-
ous related disease (for examples, breast neoplasm,
Alzheimer disease, diabetes mellitus, type 1 (T1D), prostate
neoplasm, lung neoplasm, psoriasis, SLE and leukemia,
investigated by the present study) are in high demand.
Genomic variation can influence disease susceptibility,

disease progression, the risk of specific outcomes, or the
individual’s response to therapy. Most molecular genetic
studies focus on the identification of genes involved in a
single human disease. To date, approximately 1,800
genes have been identified that are mutated in human
diseases [13]. However, there are limited attempts to
study multiple diseases together to discover the mole-
cular bridges between them. In fact, the molecular
mechanisms for complex human diseases could be more
sophisticated than what we are imaging. On the one
hand, a single disease phenotype can be the result of
mutations in many different genes, the so-called genetic
heterogeneity, and on the other hand one gene also can
affect several different phenotypes, namely genetic
pleiotropy. In definition, pleiotropy describes the genetic
effect of a single gene on multiple phenotypic traits,
which occurs when a new mutation in the gene may
have an effect on some or all traits simultaneously or
may cause different pathological effects in complex
human diseases [14–16].
Pleiotropy in diseases often occurs when an impaired

gene generates pathological effects on some molecular-
associated diseases simultaneously. For example, the
gene PTPN22 showed pleiotropic effects in multiple
autoimmune diseases including T1D, SLE and RA [17].
Furthermore, one clear finding to emerge from the pub-
lished genetic studies of autoimmunity was that different
autoimmune diseases shared common susceptibility loci.
The HLA region was well known for being associated
with several autoimmune diseases including T1D, mul-
tiple sclerosis (MS), RA as well as others [18–20].
Recently, Chavali et al. [16] described a method for

estimating the pleiotropic effects of human disease genes
from network properties. Sivakumaran et al. [21] pre-
sented a systematic review of pleiotropy among single
nucleotide polymorphisms (SNPs) and genes and found
that pleiotropic links between common complex diseases
and traits occurred more often than expected. Goh et al.
[13] performed a comprehensive analysis of Online
Mendelian Inheritance in Man (OMIM) for human traits
and found several hundred genes of pleiotropic nature.
And this gene list was expected to grow fast with in-
creasing applications of the large-scale genome-wide as-
sociation studies (GWAS) approach [22].
The GWAS approach analyzes SNPs across the whole

genome to robustly identify key inherited genetic varia-
tions that have critical but as yet largely uncharacteristic
roles in development of human diseases. The success of
GWAS has opened a wide new horizon for exploration
and highlighted the complicated genomic architecture of
disease susceptibility. However, there are few attempts to
use the GWAS approach to explore the shared (pleiotropic)
genetic factors, which may give clues to underlying etio-
logical links between these diseases and pinpoint potential
directions and practical recommendations for future re-
search in this field.
In the present study, we provided an integrated ap-

proach to combine GWAS and public knowledge data-
bases, seeking for pleiotropic genes that link RA to eight
other complex diseases. Here, the GWAS approach was
used to obtain single risk SNPs from the Wellcome
Trust Case Control Consortium (WTCCC) dataset, and
the acquired SNPs were mapped to genes to extract risk
genes to RA. Such genes were defined as pleiotropic
genes if they had been proved to be also the susceptible
genes for at least one of eight other diseases by using
public knowledge databases PubMed or OMIM. To ex-
tract the disease-related pleiotropic functional modules
and hub genes, we further used an interactive tree-model
and logistic regression model to construct a SNP-SNP net-
work for RA. In total, we extracted 116 pleiotropic genes,
including five hub pleiotropic genes: BTNL2, HLA-DRA,
NOTCH4, TNXB and C6orf10, where BTNL2, NOTCH4,
and C6orf10 were novel ones identified by this study. This
exploratory study provided promising clues to inform ex-
perimental studies searching for pleiotropic genes.

Materials and methods
Data source
Genome-wide SNP data were provided by WTCCC,
which contains SNP genotypic data for seven common
diseases and the shared control. The present study fo-
cused on the analysis of the GWAS data for RA, which
included 1,860 cases and 2,938 controls. Prior to associ-
ation analysis, some SNPs were excluded due to signifi-
cant deviations from the Hardy-Weinberg equilibrium
(P <5 × 10−5), or having a high rate of missing data
(genotyping efficiency <95 %), or minor allele frequency
(MAF) <1 %.
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Extracting risk SNPs associated with RA
First, genome-wide single-point SNP association analysis
was performed by two methods, the interactive tree-
model analysis and conventional logistic regression.
Multiple testing corrections were performed, and the
P values were adjusted by using the false discovery rate
(FDR) method, with the family-wise error rate of
P <0.05. This analysis was implemented by using Helix-
Tree software (see [23]).

Identifying pleiotropic genes for RA and other diseases
To mine high-risk genes linked with RA, SNPs were
mapped to genes using the SNPnexus tool (see [24]). To
extract pleiotropic actions of the identified genes for RA,
we manually selected those genes that had been proved
to be associated with at least one of eight other diseases
by literature reviews of the PubMed or OMIM database.

Identifying hub SNPs
To understand the functional mechanisms involved in
RA pathogenesis, we further analyzed genetic factors
along with biological network information [25]. Signifi-
cant SNP-SNP interactions (nominal P <0.01) were de-
tected by using the interactive tree-based method. Then,
a logistic regression model was used to estimate their
odds ratios and 95 % CIs (confidence intervals). All the
significant SNP-SNP interaction pairs contributing to
RA were used to construct a disease-specific SNP-SNP
network for RA. In the network, the nodes represented
SNPs, and the links between SNPs suggest their syner-
gistic actions contributing to RA. As a network measure,
connectivity (the number of links) was used to measure
importance of a hub node. To obtain significant hub
nodes, we assumed that in a random network, con-
nectivity followed a Poisson distribution in a random
network [26, 27]. We used the following formula to as-
sess whether a node could be categorized as a hub node.
Suppose that p was the probability of connecting any
two nodes in a random network with n nodes, the prob-
ability of connectivity of equal or larger than t was as
follows:

p x≥tð Þ ¼ 1−p x < tð Þ ¼ 1−
Xt−1

k¼0

λke−λ

k!
; λ ¼ nP1;P1 ¼ m=C2

n

� �
;

Where m is the number of interacting SNP pairs con-
tained in the disease-specific SNP network. We consid-
ered a SNP with >5 connections (P = 0.01) in a random
network as a rare event under the null hypothesis that n
nodes (SNPs) were connected randomly. The probability
of this rare event was taken as a threshold, and a node
was considered a hub SNP when its P value was smaller
than the threshold.
Mining hub pleiotropic genes
To mine the disease-related pleiotropic functional mod-
ules, the SNP network was first turned into a gene net-
work by mapping SNPs to genes using the dbSNP
database. We used the following rule for mapping SNPs
onto genes, i.e., to see whether a SNP is located within a
gene or the untranslated regions (UTRs) of this gene.
SNPs that were mapped onto multiple genes were
assigned to a single gene according to the following
hierarchy: coding > intronic > 5′ UTR > 3′ UTR > 5′ up-
stream > 3′ upstream. This strategy can avoid issues with
a weighted inflation induced by genes having different
numbers of SNPs [28]. All the significant gene-gene
interaction was utilized to construct a gene network.
In both SNP-SNP and gene-gene interaction assays,
we chose to use a nominal level of P <0.01 as the cutoff to
identify important SNP pairs or gene pairs because no suit-
able methodologies for adjusting for multiple correlated
tests of massive SNP pairs (or gene pairs) were available,
which may have led to false positives. However, in the
following step for identifying hub pleiotropic genes,
we may alleviate this issue by using evidence from the
network analysis and literature reviews.

Results
Identifying pleiotropic genes for RA and related diseases
In single-point genome-wide association analysis of
459,236 autosomal SNP markers, 2046 SNPs were found
significantly associated with RA. These SNPs were
mapped to 502 RA risk genes (See the Table S1 in
Additional file 1 and Table S2 in Additional file 2).
To confirm their pleiotropic effects, we tried to find

evidence from OMIM or PubMed by literature reviews
to support that these genes were associated with at
least one of eight other diseases (i.e., breast neoplasm,
Alzheimer disease, T1D, prostate neoplasm, lung neo-
plasm, psoriasis, SLE and leukemia). We extracted a
total of 116 pleiotropic genes (corresponding to 205
SNPs), see Additional file 3 for details. Their pleiotropic
associations with multiple diseases were summarized in
Additional file 4.
In these 116 genes, HLA-DRB1 was discovered first

and is still by far the strongest genetic link to RA. It was
estimated that this HLA locus contributed about 30 % of
the overall familial RA risk [29]; PTPN22, a lymphocyte-
specific nonreceptor tyrosine phosphatase involved in
regulation of activation threshold of lymphocytes, was
the second most contributed genetic link to RA.
PTPN22 also represented a strong susceptibility gene,
which was shared by many autoimmune diseases such as
T1D, psoriasis, and SLE. This suggested the presence of
common genetic factors that predisposed to multiple
autoimmunity diseases. Besides, pleiotropic genes HLA-
DRB1, PTPN22, AFF3 and IL2RA were all included in a
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T cell activation pathway. In this pathway, some predis-
posing T cell repertoire selection, antigen presentation,
or alteration in peptide affinity had a role in promoting
autoreactive adaptive immune responses [1]. There were
studies indicating that intracellular machinery was af-
fected in T cells of RA patients, which might alter the
behavior of T cells during activation. Different thera-
peutic approaches may modulate the abnormal T cell
functions [30]. Protein tyrosine phosphatases (PTPN22)
were the critical regulators of T cell signal transduction.
In conjunction with protein tyrosine kinases, protein
tyrosine phosphatases regulated the reversible phosphor-
ylation of tyrosine residues and thereby played important
roles in many diverse aspects of T cell physiology. Ab-
normalities in tyrosine phosphorylation had turned out
to be involved in the pathogenesis of numerous human
diseases, from autoimmunity to cancer [31].
More recently, we occasionally found that one of the

116 genes, TNFAIP3, should be a susceptibility factor for
RA in the northern Chinese Han population [32] and its
pleiotropic association with SLE and RA in the Korean
population were also reported [33]. TNFAIP3 played a
major role in downregulating TNF-induced nuclear fac-
tor kappa B (NF-κB) activation. As is well known, acute
inflammation is a part of the defense response; chronic
inflammation can lead to cancer, diabetes, arthritis,
Alzheimer’s disease, pulmonary, and neurological dis-
eases. Regulation of NF-κB helped in explaining the link-
ages of inflammation and cancer at the molecular level.
Transcription factor NF-κB mainly regulated the expres-
sion of several proinflammatory gene products TNF and its
superfamily members [34]. NF-κB was constitutively active
in most tumors and was induced by carcinogens, tumor
Fig. 1 A pleiotropic interaction network of RA. a The pleiotropic SNP-SNP i
13 red nodes are RA-susceptible genes, and 14 yellow nodes are susceptible
polymorphism, RA rheumatoid arthritis
promoters, carcinogenic viral proteins, chemotherapeutic
agents, and γ-irradiation. Hence, anti-inflammatory agents,
which suppressed NF-κB or NF-κB-regulated products,
should have a potential in both the prevention and treat-
ment of cancer [35].

Identifying pleiotropic SNP-SNP interactions and hub
genes for RA and related diseases
These 205 pleiotropic SNPs were subject to an epistasis
analysis using the above mentioned two approaches.
First, 127 pairs of SNP interactions (P <0.01) were de-
tected by using classification tree-based analysis. Then,
logistic regression models were used to compute the
odds ratios and their 95 % CIs for these SNP-SNP inter-
actions, confirming that 46 SNP pairs were significant
interactions (P <0.01) (see Additional file 5). A SNP-SNP
interaction network was constructed as shown in Fig. 1.
By turning into a gene-gene network, 27 pleiotropic genes
were included in the network and five hub genes were ex-
tracted by using a Poisson-based test of connectivity:
C6orf10 (degree = 14, P = 1.1 × 10−11), BTNL2 and HLA-
DRA (degree = 9, P = 1.3 × 10−5), NOTCH4 (degree = 8,
P = 2.3 × 10−5),TNXB (degree = 6, P = 8.6 × 10−3).
HLA-DRA, as one of the genes contained in major

histocompatibility complex (MHC) region, had been dis-
cussed in the previous section. Involvement of the MHC
region in chromosome 6p21 was in no doubt for most
autoimmune diseases [36].
NOTCH4 encoded a receptor protein that was in-

volved in multiple cellular processes, such as cell differ-
entiation, proliferation and apoptosis. OMIM recorded
that NOTCH4 was highly related to schizophrenia. How-
ever, we also found its association with RA, breast
nteraction network; b the derived gene-gene interaction network. In b,
genes for one or more of eight other diseases. SNP single nucleotide
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neoplasm, and Alzheimer disease in PubMed. AlFadhli
[37] was the first one reporting a statistically significant
association between NOTCH4 and RA. Furthermore,
SNP hla58, located in the intron of NOTCH4 gene was
observed to be in strong linkage disequilibrium with
HLA-DRB1 allele in RA [38]. Also, NOTCH4 was a po-
tential new therapeutic target for triple-negative breast
neoplasm [39]. An mRNA transcript encoding the intra-
cellular domain of NOTCH4 was detected in two human
breast neoplasm lines [40]. Furthermore, NOTCH4 may
play important roles in the pathogenesis of Alzheimer
disease in the Japanese population and in the United
Kingdom population [41, 42].
Published reports for TNXB gene were relatively lim-

ited. TNXB gene, located near the MHC class III region
(6p21.3), had anti-adhesive effects, and functions in
matrix maturation in connective tissues [43]. TNXB gene
encoded an extracellular matrix protein, tenascin XB,
which regulated collagen synthesis and deposition [44, 45].
In OMIM, TNXB was a pleiotropic gene of Ehlers-Danlos
syndrome and Vesicoureteral reflux diseases. Furthermore,
Rupert et al. [46] reported an unequal crossover between
RCCX modules of human MHC leading to the presence of
a CYP21B gene and a tenascin TNXB/TNXA-RP2 recom-
binant in patients with juvenile RA. In other research,
BTNL2, C6orf10, NOTCH4, TAP2, and TNXB were all
identified as the novel RA-associated genes [47]. Not only
that, a study by Kamatani and colleagues [45] identified
rs3130342 in the 50 flanking region of the TNXB as a pos-
sible candidate gene susceptible to SLE in the Japanese
population.
BTNL2 gene in OMIM was labeled as a sarcoidosis

disease susceptibility gene. However, BTNL2 (rs3817963)
was reported as a new susceptibility locus of lung adeno-
carcinoma as well, the most common histologic type of
lung neoplasm in the Japanese population [48]. As re-
ported, patients with RA more often had lymphomas
and lung tumors with the standardized incidence ratios
of 2.1 and 1.6 respectively [49]. Functional variant
rs2076530 of the BTNL2 gene was identified conferring
susceptibility to the autoimmune diseases T1D, RA, and
SLE (G allele was linked to T1D and RA, and the A
allele associated with SLE) [50]. Furthermore, there were
new results implicating BTNL2 as a novel prostate
neoplasm-related gene [51].
C6orf10 gene had not yet been included in OMIM.

C6orf10 lies between NOTCH4 and BTNL2. However,
C6orf10 was a completely new pleiotropic gene that had
not been reported before. In our analysis, 12 SNPs
located within C6orf10 (rs9268402, rs9268403, rs574710,
rs4959093, rs3129932, rs3132959, rs9368716, rs2894249,
rs3129934, rs3129933, rs910050, rs9268208) were signifi-
cantly related to RA. C6orf10 was one of five hub disease
genes in our constructed pleiotropic genetic network.
There were 14 genes interacting with C6orf10, indicating
its strong risk for multiple diseases. We provided the as-
sociated diseases with 14 genes (see Additional file 6)
and exhibited a corresponding gene-disease network to
predict the pleiotropic function of C6orf10 (see Fig. 2).
We manually searched for literature in PubMed for

C6orf10 to explore its function. Table 1 summarizes the
related diseases of C6orf10 reported to date.
Formerly, C6orf10 was only known as testis-specific

basic protein, and for which no transcripts had been
assigned to date. It had been known that expression of
this gene in keratinocytes was induced by exposure to
tumor necrosis factor alpha (TNF-α). TNF-α-directed
therapy had turned out to be valuable in the treatment
of patients with refractory RA [52]. TNF-α inhibitors
had been a cornerstone in the treatment of several
chronic inflammatory diseases. Among patients with RA
and a history of breast neoplasm, those who started a
TNF-α-inhibitor treatment did not experience more
breast neoplasm recurrences than patients with RA
treated otherwise. TNF-α inhibitors might impact the
risk of cancer development, or modify the risk of recur-
rence of previous cancers [53].
As non-HLA genes, we hypothesized that NOTCH4,

TNXB, BTNL2, and C6orf10 all would be good candi-
dates for further clinical and laboratory studies. We
postulated that to achieve success in the study of RA
(as well as other diseases), it was necessary to take into
account the multivariate nature of these diseases.

Discussion
GWAS analysis, by searching the entire human genome
for association, is a promising approach to unravel the
genetic basis of complex genetic diseases. Analysis of
omic SNPs permitted determining relationships between
genotypes and phenotypes, identification of risk SNPs
and genes related to disease [54]. In this study, we pre-
sented an integrative approach to combine network ana-
lysis of GWAS data with literature reviews in order to
recognize pleiotropic genes linked to RA and related dis-
eases. In total, we found 116 genes harboring variants
associated with RA and eight other diseases. In order to
verify these findings, we sought supportive evidence by
reviewing two additional databases for disease genes
(MalaCards and HuGENavigator).
MalaCards [55] is an integrated web database of hu-

man maladies and their annotations, which included 64
data sources. In MalaCards, using GeneCards Suite
and keywords of eight other diseases (breast neoplasm,
Alzheimer disease, T1D, prostate neoplasm, lung neo-
plasm, psoriasis, SLE and leukemia), we compared 116
pleiotropic genes identified in this study with the disease
genes related to the diseases. In total, 87 of the 116
pleiotropic genes were found to be related to the eight



Fig. 2 The gene-disease network of C6orf10 and its interaction genes
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diseases. However, we found that some disease-related
genes confirmed in the OMIM database, such as T1D-
associated genes (FOXP3, HNF1A, OAS1, ITPR3, PTPN22)
and SLE-associated genes (BANK1) were not included in
MalaCards database. Thus, this verification using only
MalaCards was incomplete and inadequate. So, we chose
another database, HuGENavigator, for further comparison.
HuGENavigator [56] is an integrated, searchable know-

ledge base of genetic associations and human genome epi-
demiology. In HuGENavigator, we performed a similar
analysis, and found that a total of 89 pleiotropic genes
Table 1 The list of gene C6orf10 related diseases, as a novel RA plei

SNPs Population

rs1265777, rs574710, rs539703, rs2894249 British

rs6910071, rs9391858, rs10484560, rs6910071 North American

rs2395148 Canadian, U.S.

rs2073048, rs28732201 European, Chinese Han

rs926070, rs2073044 Cleveland

rs3130320

rs3117103, rs7746019 European

rs7775397

rs7758128 European

rs485774 U.S., Canada

rs498422 Chinese Han

rs2050190 Utah

DG6S398, D6S2889 Caucasians

rs9391858 British

rs3129934 European

GWAS genome-wide association study, RA rheumatoid arthritis, PBC primary biliary
lupus erythematosus, NL neonatal lupus, Vitiligo generalized vitiligo, LOAD late-onse
disease, T1D diabetes mellitus, type 1, MS multiple sclerosis
were replicated by HuGENavigator (i.e., also related with
the eight diseases). The list of genes replicated in
MalaCards and HuGENavigator is provided in Additional
file 7. Moreover, we found that C6orf10 was also proved a
pleiotropic risk gene for SLE, T1D, psoriasis and lung neo-
plasm in HuGENavigator. For comprehensive results of
this additional analysis, see Fig. 3.
Among these 116 pleiotropic genes, most of our ex-

tracted pleiotropic genes were found to link with mul-
tiple diseases, while others are novel, requiring further
studies (either experimental or computational) to verify
otropic gene identified by GWAS analysis

Disease relevance PubMed ID

RA 20018019

RA 20018025, 20018077, 20018006, 21592391

PBC 19458352

Psoriasis 19680446, 20692714

Leukemia 20460636

SLE 21408207

SLE 19851445

NL 22031281

Vitiligo 21326295

LOAD 22245343

NOA 22541561

CAD 22703881

T1D 19143811

T1D 20549515

MS 19010793

cirrhosis, Leukemia T cell large granular lymphocyte leukemia, SLE systemic
t Alzheimer disease, NOA nonobstructive azoospermia, CAD coronary artery



Fig. 3 RA pleiotropic genes replicated in MalaCards and HuGENavigator databases. a Pleiotropic genes of RA in MalaCards. b Pleiotropic genes of
RA in HuGENavigator. RA rheumatoid arthritis
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them prior to applying these findings to more practical
settings.
We believed that examples of pleiotropy would accu-

mulate over time, for it was already clear that pleiotropy
was a common property of genes and SNPs associated
with disease traits [21]. The clustering of autoimmune
disorders within families and/or individuals also pro-
vided supportive evidence for these shared genetic fac-
tors [29].
Pleiotropic genes built up a bridge between RA and

eight other diseases; they also would shed light on some
studies of the inflammation-cancer link. Clinical studies
suggested that persistent inflammation functions as a
driving force in the journey to cancer. The possible
mechanisms by which inflammation could contribute to
carcinogenesis include induction of genomic instability,
alterations in epigenetic events and subsequent inappro-
priate gene expression, enhanced proliferation of initi-
ated cells and resistance to apoptosis [57]. Pleiotropic
genes and their products should play an important role
in this process. Also there was a study that clearly
pointed to the importance of anti-inflammatory drugs in
preventing the initiation and progression of both gastro-
intestinal and other solid organ cancers (including lung
and prostate), and suggested that inflammation might be
an underlying cause of cancer even in tumor types that
had not been traditionally considered to originate within
chronically inflamed tissues [58].
Despite that this study provided a pioneering approach
to analyze large-scale SNP omic data and to fusing data
from rich knowledge databases, we should recognize the
limitations of this study in exploring pleiotropic mecha-
nisms between complex diseases. First, because a single
GWAS dataset was used for analyzing RA, we believe
that only a small proportion of pleiotropic genes were
identified, and perhaps a long list of genes with modest
effects remains to be found in further independent stud-
ies. The omic SNP data, provided by WTCCC, are for
Caucasians, whether these findings could be extended to
other nationalities remains unclear. Furthermore, due to
lack of information, this study did not model several
important epidemiological covariates like gender, age
and so on, which may have an impact on this pleiotropic
analysis. Second, currently accumulated knowledge
about genes involved in complex diseases, especially of
their pleiotropic effects, was incomplete and fragmented,
and part of this analysis that relied on knowledge mining
suffers from this limitation. Finally, although we tried
our best to control Type I errors in various steps toward
identification of pleiotropic genes, whether the overall
Type I error was well controlled remains unclear. In this
sense, we view our analysis exploratory in nature.
In spite of the encouraging successes in finding pleio-

tropic genes for RA achieved by this study, further dee-
per studies of their detailed molecular etiology or links
for these correlated diseases are certainly required. We
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deeply believe that the pleiotropic genes identified by
this study only represent a tip of the iceberg in the gen-
etic architectures for complex diseases. Further studies,
with more sophisticated designs and more involved
multivariate analysis, are called for to directly test the
hypothesis that a pleiotropic gene has a duplicated gen-
etic effect on multiple disease phenotypes, followed by
experimental or clinical validation.

Conclusions
Identification of pleiotropic genes is fundamental to re-
veal the underlying genetic links that connect multiple
related diseases at the molecular level. In this study, we
provided an integrative approach to combine network
analysis of GWAS data with literature reviews in order
to identify pleiotropic genes for complex diseases. Appli-
cation to a GWAS dataset for RA identified a list of
potential pleiotropic genes, which may be valuable clues
for experimental studies to decipher the molecular me-
chanisms underlying these pleiotropisms.
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