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Abstract

The phyllosphere microbiome is increasingly recognised as an influential component of

plant physiology, yet it remains unclear whether stable host-microbe associations generally

exist in the phyllosphere. Leptospermum scoparium (mānuka) is a tea tree indigenous to

New Zealand, and honey derived from mānuka is widely known to possess unique antimi-

crobial properties. However, the host physiological traits associated with these antimicrobial

properties vary widely, and the specific cause of such variation has eluded scientists despite

decades of research. Notably, the mānuka phyllosphere microbiome remains uncharac-

terised, and its potential role in mediating host physiology has not been considered. Working

within the prevailing core microbiome conceptual framework, we hypothesise that the phyl-

losphere microbiome of mānuka exhibits specific host association patterns congruent with

those of a microbial community under host selective pressure (null hypothesis: the mānuka

phyllosphere microbiome is recruited stochastically from the surrounding environment). To

examine our hypothesis, we characterised the phyllosphere and associated soil micro-

biomes of five distinct and geographically distant mānuka populations across the North

Island of New Zealand. We identified a habitat-specific and relatively abundant core micro-

biome in the mānuka phyllosphere, which was persistent across all samples. In contrast,

non-core phyllosphere microorganisms exhibited significant variation across individual host

trees and populations that was strongly driven by environmental and spatial factors. Our

results demonstrate the existence of a dominant and ubiquitous core microbiome in the

phyllosphere of mānuka, supporting our hypothesis that phyllosphere microorganisms of

mānuka exhibit specific host association and potentially mediate physiological traits of this

nationally and culturally treasured indigenous plant. In addition, our results illustrate bio-

geographical patterns in mānuka phyllosphere microbiomes and offer insight into factors

contributing to phyllosphere microbiome assembly.

Introduction

Plants harbour distinct and dynamic microhabitats colonised by complex microbial communi-

ties known as plant microbiomes [1]. Evidence has shown that interactions between plants and
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their associated microorganisms in many of these microbiomes play a pivotal role in host

plant health, function, and evolution [2]. The leaf surface, or phyllosphere, harbours a micro-

biome comprising diverse communities of bacteria, fungi, algae, archaea, and viruses [3, 4].

Interactions between the host plant and phyllosphere bacteria have the potential to drive vari-

ous aspects of host plant physiology [5–7]. However, our knowledge of these bacterial associa-

tions in the phyllosphere remains relatively modest, and there is a need to advance

fundamental knowledge of phyllosphere microbiome dynamics [8].

The assembly of the phyllosphere microbiome, herein strictly defined as epiphytic bacterial

communities on the leaf surface, can be shaped by the microbial communities present in the

surrounding environment (i.e., stochastic colonisation) and the host plant (i.e., biotic selec-

tion) [3, 9]. However, although the leaf surface is generally considered a discrete microbial

habitat [10, 11], there is no consensus on the dominant driver of community assembly across

phyllosphere microbiomes. For example, host-specific bacterial communities have been

reported in the phyllosphere of co-occurring plant species, suggesting a dominant role of host

selection [11–13]. Conversely, microbiomes of the surrounding environment have also been

reported to be the primary determinant of phyllosphere community composition [10, 14–16].

As a result, the processes that drive phyllosphere community assembly are not well understood

but unlikely to be universal across plant species. However, the existing evidence does indicate

that phyllosphere microbiomes exhibiting host-specific associations are more likely to interact

with the host than those primarily recruited from the surrounding environment [5, 17–19].

The search for a core microbiome in host-associated microbial communities is a useful first

step in trying to understand the interactions that may be occurring between a host and its

microbiome [20, 21]. The prevailing core microbiome concept is built on the notion that the

persistence of a taxon across the spatiotemporal boundaries of an ecological niche is directly

reflective of its functional importance within the niche it occupies; it therefore provides a

framework for identifying functionally critical microorganisms that consistently associate with

a host species [20, 22, 23]. However, divergent definitions of “core microbiome” have arisen

across scientific literature with researchers variably identifying “core taxa” as those persistent

across distinct host microhabitats [24, 25] and even different species [13, 17]. Here we assert

that, given the functional divergence of microorganisms across different host species [13] and

microhabitats [26], defining core taxa sensu stricto as those persistent across broad geographic

distances within tissue- and species-specific host microbiomes, represents the most biologi-

cally and ecologically appropriate application of this conceptual framework [27]. To our

knowledge, tissue- and species-specific core microbiomes across host populations separated by

broad geographical distances have not been widely reported for the phyllosphere using the

stringent definition established by Ruinen (4).

Leptospermum scoparium var. scoparium (Myrtaceae), commonly known as “mānuka”, is a

flowering tea tree indigenous to New Zealand [28]. Mānuka honey, produced from the nectar

of mānuka flowers, is globally renowned for its unique non-peroxide antibacterial properties

[29, 30]. These non-peroxide antibacterial properties have been principally linked to the accu-

mulation of the three-carbon sugar dihydroxyacetone (DHA) in the nectar of the mānuka

flower, which undergoes a chemical conversion to methylglyoxal (MGO) in mature honey

[31–33]. However, the concentration of DHA in the nectar of mānuka flowers is notoriously

variable, and the antimicrobial efficacy of mānuka honey consequently varies from region to

region and from year to year [34–36]. Despite extensive research efforts, no reliable correlation

has been identified between DHA production and climatic [37], edaphic [38], or host genetic

factors [39]. Microorganisms have been studied in the mānuka rhizosphere and endosphere

[40–42]. Although previous studies have primarily focussed on fungi, a recent study provided

the first investigation of endophytic bacterial communities from three geographically and
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environmentally distinct mānuka populations using fingerprinting techniques and revealed

tissue-specific core endomicrobiomes [43]. However, a similar characterisation of the mānuka

phyllosphere microbiome has not been conducted.

Inspired by the intriguing physiological characteristics of the mānuka tree and the increas-

ingly recognised role of phyllosphere bacteria in plant physiology, we provide the first charac-

terisation of the bacterial communities comprising the mānuka phyllosphere microbiome.

Working within the prevailing core microbiome conceptual framework, we hypothesise that

phyllosphere microorganisms of mānuka exhibit specific host association patterns congruent

with those of a microbial community under host selective pressure. Correspondingly, our

null hypothesis is that the mānuka phyllosphere microbiome is recruited stochastically from

the surrounding environment. To test this hypothesis, we characterised the phyllosphere and

associated soil bacterial communities of five distinct and geographically distant mānuka popu-

lations across the North Island of New Zealand using 16S rRNA gene PCR amplicon sequenc-

ing. Our findings revealed a dominant and ubiquitous core microbiome, providing strong

evidence for a specific host association. This knowledge may be useful for designing future

studies that will enhance our understanding of plant-microbe associations in the phyllosphere

and address significant and longstanding questions such as the factors driving spatiotemporal

variability in mānuka DHA production.

Material and methods

Selection of Leptospermum scoparium (mānuka) populations

Five indigenous mānuka populations across the North Island of New Zealand were selected

for study: Mohaka, Hawkes Bay (39˚01 S; 177˚08 E), Serpentine Lake, Waikato (37˚56 S, 175˚

19 E), Mangatarere Valley, Wellington (40˚57 S; 175˚26 E), Mamaku, Bay of Plenty (38˚02 S;

176˚03 E), and North-eastern Kaimanawas, Taupo (39˚06 S; 176˚21 E) (S1 Fig). Steens Honey

provided access to the sites in Mohaka and Mangatarere Valley. The East Taupō Lands Trust

provided access to the north-eastern Kaimanawa site, Timberlands Ltd provided access to the

Mamaku site. The Waipa District Council provided access to the site at Serpentine Lake.

Straight-line distances between sites range from 65 km (Serpentine Lake and Mamaku) to 333

km (Serpentine Lake and Mangatarere Valley). Monthly climate data for each site was

retrieved from the National Climate Database (NIWA) (https://cliflo.niwa.co.nz/).

Sample collection

Each site was sampled once during the November 2016 –January 2017 mānuka flowering sea-

son. Sampling times were staggered in correspondence with flower opening in each region

[37]. Per site, three branches with approximately 100–200 leaves were chosen from each of six

seemingly healthy mānuka trees that displayed no visible signs of disease or damage. Each

branch was cut with clippers sterilised on site using 70% v/v ethanol/water, placed in an indi-

vidual sterile zip lock bag, and immediately put on ice. Surface soil (1–2 mm) from multiple

positions around the base of each sample tree was also collected into sterile 50 mL Falcon

tubes using a spatula sterilised on site using 70% v/v ethanol/water and immediately placed on

ice. Upon return to the Thermophile Research Unit at the University of Waikato, branch and

soil samples were frozen at -20˚C and -80˚C, respectively, until further analysis.

Environmental and host tree metadata

At each site, a datalogger (CR10X, Campbell Scientific, Utah) and sensors was used to record

air temperature, relative humidity (Humitter 50Y, Vaisala, Finland), and photosynthetically
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active radiation (PPFD) (LI-190, Licor, Utah) every 15 minutes over 24 h prior to sample col-

lection. Metadata was also collected for each sample tree, these included: GPS coordinates

(WGS84 (G1762); degree minutes), elevation, tree height, and the basal diameter of the tree

base at 10 cm off the ground. For each of the three branches collected per tree, height of the

branch above ground and aspect (0–360˚) were also recorded.

Bacterial community collection

Per branch, 1 g of predominantly healthy, undamaged green leaves were aseptically excised

and pooled. Leaves were submerged in 10 mL of wash buffer (phosphate buffer solution [PBS,

100mM NaH2PO4], 1% tween 20) and sonicated for 20 min (60 Hz) in an ultrasonic cleaning

bath. Sonication was used to remove bacteria from the leaf surface in order to minimise unde-

sirable amplification of chloroplast rRNA genes and contamination by endophytic bacteria,

which are typically recovered via methods that inflict damage to leaves such as maceration and

coring [44, 45]. After sonication, the wash buffer was decanted, syringe filtered through 90 μm

nylon mesh to remove finer plant debris, and centrifuged (3,200 x g for 30 minutes). The

supernatant was discarded, and the bacterial cell pellet was resuspended in 270 μl of PBS,

transferred to a 1.5–2.0 mL screw-capped conical bottomed polypropylene tube containing 0.5

g each of 0.1 mm and 2.5 mm silica-zirconia beads, and frozen at -80˚C until further process-

ing. Total genomic DNA was extracted from the microbial cell suspension of each leaf sample

using a modified version of a cetyl trimethylammonium bromide (CTAB) bead beating proto-

col, which has been shown to be highly effective for low biomass samples [46]. The Power Soil

DNA Extraction kit (MoBio) was used to extract DNA from 0.5 g of each soil sample collected

from the base of each mānuka tree. Extracted DNA was quantified using the QuBit-IT dsDNA

HS Assay Kit (Life Technologies, Auckland) and stored at -20˚C until further analysis.

DNA library preparation and sequencing

Total community DNA extracted from the phyllosphere and surface soil was used for amplifi-

cation and sequencing of the V4 region of the 16 rRNA gene using the universal primer set

F515 (5’GTGCCAGCMGCCGCGGTAA-3’) and R926 (5’-CCACTACGCCTCCGCTTTCCTC
TCTATGGGCAGTCGGTGATCCGYCAATTYMTTTRAGTTT-3’). Sample cross-contamination

via aerosolised PCR products is a major limitation of two-step protocols widely used in prepar-

ing 16S rRNA gene PCR amplicons for Illumina MiSeq sequencing [47–51]. To avoid cross-

contamination of aerosolised PCR products, we used fusion primers to prepare 16S rRNA

gene PCR amplicons in a one-step protocol. Unlike previous studies, chloroplast-excluding

primers were avoided in order to prevent taxonomic bias and permit identification of Cyano-

bacteria in the mānuka phyllosphere [52–54]. The fusion primers used in the current study

generated an amplicon of approximately 500 bps with adapters suited for Ion Torrent sequenc-

ing. PCR amplification was performed in 20-μl reactions consisting of 0.8 μL bovine serum

albumin (BSA) (Promega Corporation, USA), 2.4 μL dNTPs (2mM each) (Invitrogen Ltd,

New Zealand), 2.4 μL 10x PCR buffer (Invitrogen), 2.4 μL MgCl2 (50 mM) (Invitrogen),

0.4 μL each primer (10 mM) (Integrated DNA Technologies, Inc), 0.096 μL Taq DNA poly-

merase (Invitrogen), 2 μL of genomic DNA (2.5 ng/μl), and 9.104 μL molecular-grade water.

Reactions were performed in triplicate for each sample with the following thermocycler condi-

tions: 3-min initial denaturation at 94˚C, followed by 30 cycles of 45 s at 94˚C, 1-min at 50˚C,

and 1.5-min at 72˚C, with a final 10-min elongation at 72˚C. For each run, a positive and a

negative control was included. The PCR products were cleaned and normalized using a

SequelPrep Normalization Kit, (Life Technologies, Auckland) according to the manufacturer’s

instructions.
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DNA sequencing was undertaken at the Waikato DNA Sequencing Facility at the Univer-

sity of Waikato using an Ion Torrent PGM DNA sequencer with an Ion 318v2 chip (Life Tech-

nologies). Raw sequences in FASTQ format were first filtered in Mothur to remove short

reads, long reads, and reads with excessive homopolymers [55]. Thereafter, sequences were

quality filtered using USEARCH (ver 9) [56]. A total of 1,890,959 high quality reads were

obtained and clustered into OTUs at a percent sequence similarity threshold of 97%. After fil-

tering for chloroplast OTUs, a total 928,317 reads and an average 10,430 (mean) reads per

mānuka sample remained (n = 89). These reads mapped to 1384 bacterial OTUs (97%). Mean-

while, a total 736,849 reads and an average 25,409 (mean) reads per soil sample remained

(n = 29). These reads mapped to 6905 bacterial OTUs (97%). From this initial processing, a

BIOM file, FASTA file and OTU table were generated. The raw FASTA file was run through

the Michigan State University Ribosomal Database Project (RDP) Classifier whereby taxon-

omy was assigned to the 16S rRNA sequences [57]. Taxonomic assignments with estimated

confidence less than 80% were classified as ‘unknown’. Taxonomy data was merged with

the BIOM file using the ‘biom add-metadata command’ in The BIOM file format (ver 2.1). A

rarefied dataset was generated by rarefying reads on a per-sample basis to the 5th percentile of

per-sample sequence reads (3,979) using rarefy_even_depth implemented in the phyloseq

package [58]. Five samples were excluded from rarefaction due to low numbers of sequence

reads.

Statistics and data analysis

Data analyses and visualisation were performed in R version 3.4.3 [59], with the packages

DESeq2 [60], ggplot2 [61], phyloseq [58], and vegan [62]. Observed OTU richness in combina-

tion with the Shannon diversity index and the Chao1 index were used as measures of alpha

diversity, and beta diversity was computed using the Bray-Curtis dissimilarity index [63]. The

Euclidean index was used to compute distances between spatial and environmental parameters

[64]. Differences in alpha diversity between regions were compared using analysis of variance

(ANOVA) and correlations between alpha diversity and explanatory variables was analysed

using the Pearson correlation coefficient. A significance level of 0.05 was used in all analyses.

The beta diversity between different sites, trees, and sample type was compared using permuta-

tional multivariate analysis of variance (PERMANOVA) (Adonis from the package vegan with

999 permutations) [62, 65]. Partial Mantel tests using the Pearson product-moment correla-

tion coefficient were used to test the correlation between total, core, and non-core community

(Bray-Curtis) and environmental (Euclidean) distance matrices [66]. Canonical redundancy

analysis (RDA) and variance partitioning were used to describe and partition variation in bac-

terial community structure among three groups of explanatory variables: ‘Spatial’, ‘Environ-

mental’, and ‘Host’. The group of environmental variables included the night-day temperature

differential, night temperature, monthly precipitation, and monthly cloud cover. The spatial

explanatory variable corresponded to the straight-line distance between sample coordinates

(UTM). Host variables included tree height and tree diameter. These variables were chosen

as they represented the largest correlations with community composition and diversity in

Partial Mantel analysis. The nucleotide Basic Local Alignment Search Tool (BLASTn) algo-

rithm was used to identify isolates with the closest sequence identity to core taxa. Core and

BLASTn sequences with the highest nucleotide identity (%) were aligned with ClustalW. A

phylogenetic tree was constructed in MEGA X [67] using Maximum Likelihood method and

Tamura-Nei model [68]. The R package ‘DESeq2’ was used to identify OTUs that are differen-

tially abundant across phyllosphere and soil communities and obtain estimates of log-fold

changes [60].
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The core microbiome

The core mānuka phyllosphere microbiome, was identified by plotting OTU abundance and

occupancy. An OTU presence in all 89 phyllosphere samples (100% occupancy) was chosen as

a highly conservative representation of the core microbiome. In selecting 100% occupancy as

the stringent core microbiome criteria, we minimised the likelihood of these taxa representing

transient taxa [69]. The core phyllosphere microbiome at 100% occupancy was annotated in

both rarefied and non-rarefied datasets.

Results

Sample sites

Leaf and soil samples were collected from five native mānuka populations across the North

Island of New Zealand (S1 Fig). These sampling sites were geographically distinct, separated

by linear distances ranging from 65 to 333 km, and situated at elevations of 66 to 634 m above

sea level (ASL). Measurements of air temperature, relative humidity, and photosynthetically

active radiation fluctuated across the 24 hours preceding sampling and were variable between

populations (S2 Fig and S1 Table). Across all sampling sites, 29 healthy Leptospermum scopar-
ium trees of differing heights (1.8 to 4.1 m) and basal diameters (1.5 to 24.8 cm) were selected.

In total, 89 mānuka branches were collected from the lower canopy (0.6 to 2.8m) (S2 Table).

Structure of the mānuka phyllosphere microbiome

Sequencing of bacterial 16S rRNA gene PCR amplicons yielded 10,430±5,165 reads per branch

after removing chloroplast reads (on average 11.9% of the quality-assured reads). Across all

samples, 1,384 operational taxonomic units (OTUs) were identified at an average of 256±63

OTUs per branch (S3 Table). Alpha diversity was calculated using richness, Shannon, and

Chao1 indices (S4 Table). Phyllosphere communities of different sites exhibited statistically

significant differences in richness (ANOVA, P = 2.99 x 10−6, F = 9.264) and Chao1 (ANOVA,

P = 0.00231, F = 4.532) (S3 Fig and S5 Table). Alpha-diversity indices exhibited a significant

and positive linear relationship with variables indicative of tree age such as tree height and

diameter (S6 Table). The spatial characteristics of sampled branches relative to the trees, such

as branch height and aspect, exhibited weak but significant correlations with observed OTU

richness and Chao1 (S6 Table). Meanwhile, monthly average temperature and monthly sun

hours were the only environmental variables to exhibit a significant correlation with alpha

diversity, both demonstrating negative and weak relationships (S6 Table).

In total, 21 phyla were identified in the collective mānuka phyllosphere. Taxa belonging to

the phyla Proteobacteria, Acidobacteria, Bacteriodetes, Firmicutes, and Verrucomicrobia con-

sistently represented the largest proportion of reads in all samples, of which Proteobacteria

consistently showed the greatest relative abundance (S4 Fig). Within Proteobacteria, Alpha-

proteobacteria was the most dominant, representing 46.5% of all reads, followed by Gamma-

proteobacteria (3.2%), Betaproteobacteria (0.75%) and Deltaproteobacteria (0.34%).

Mānuka phyllosphere core microbiome

Of the 1,384 bacterial OTUs identified in the total phyllosphere community, 10 OTUs were

identified in all phyllosphere samples (100% occupancy) and therefore defined as members of

the core phyllosphere microbiome (Fig 1D). These 10 core taxa were affiliated with four phyla

and five classes: Alphaproteobacteria (Rhizobiales [29.3% of all reads], Sphingomonadales

[4.9%]), Bacteroidetes (Cytophagia [2.5%]), Verrucomicrobia (Spartobacteria [2.4%]), and

Acidobacteria (Acidobacteriia [1.0%]) (Fig 1A–1C). All 10 core OTUs were relatively
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abundant and collectively represented 40.7% of all reads (S7 Table). The most abundant of

these 10 core taxa was an unclassified member of the Alphaproteobacteria class in the order

Rhizobiales (OTU2), which accounted for 11.6±6.8% of reads in all phyllosphere samples. At

the genus level, the core taxa are affiliated with Hymenobacter, Sphingomonas, Terriglobus,
Spartobacteria genera incertae sedis, and unclassified genus within the Rhizobiales order.

BLASTn analysis of the 10 core OTUs revealed the closest relatives were isolates from diverse

environments such as freshwater, soil, and plant material (S10 Fig).

Habitat specificity of the mānuka phyllosphere microbiome

To ascertain the habitat-specificity of core taxa in the mānuka phyllosphere, the microbial

communities in the surface soil surrounding each sample tree were similarly characterised.

Across the 29 soil samples, 6,905 OTUs were detected at an average 1820±314 OTUs per sam-

ple (S3 Table). In total, 27 bacterial phyla and four archaeal phyla were identified. Taxa belong-

ing to nine bacterial phyla represented the largest proportion of reads: Proteobacteria (29.6%)

Acidobacteria (19.7%), Bacteriodetes (13.1%), Verrucomicrobia (9.6%), Actinobacteria (5.5%),

Planctomycetes (4.6%), Chloroflexi (2.3%) and Bacteria candidate division WPS2 (1.6%) (S5

Fig).

At the OTU level, phyllosphere and soil community compositions were significantly differ-

ent, with habitat explaining 41% of the variation in Bray-Curtis dissimilarities (Fig 2A & PER-

MANOVA on Bray-Curtis dissimilarities, P< 0.001). Notably, a soil core microbiome was not

detected. Overall, 599 OTUs were shared by at least one soil and leaf sample, rendering 783

and 6,306 OTUs habitat-specific to the leaf surface and surrounding soil environment, respec-

tively. Of the 599 OTUs shared by soil and phyllosphere communities, 256 exhibited signifi-

cant differential abundances between habitat types; 152 and 104 were significantly more

abundant in soil and phyllosphere samples, respectively (Fig 2B & S8 Table). Nine core phyllo-

sphere taxa were detected in at least one soil sample (S7 Table). However, these nine core taxa

were present in soil at very low relative abundances and were significantly enriched in the

phyllosphere (Fig 1B and S11 Fig).

Variation in the mānuka phyllosphere microbiome

Spatial variation in bacterial community structure of the mānuka phyllosphere was explored at

the OTU level in a hierarchical manner: at levels of branches, trees, and sites. Phyllosphere

communities sampled from the same host tree tended to cluster together and were generally

more similar compared to communities sampled from different trees within any given site (S6

and S7 Figs). The effect of host tree explained 25% of variation in the phyllosphere community

structure (PERMANOVA on Bray-Curtis dissimilarities, P = 0.001). Phyllosphere communi-

ties at different sampling locations formed distinct clusters, and sampling locations explained

the largest proportion (50%) of the variation in phyllosphere community structures (Fig 3 &

PERMANOVA on Bray-Curtis dissimilarities, P = 0.001). Site-specific community differences

were observable even at the phylum level, with increased relative abundances of Firmicutes

and Proteobacteria at sites HT and SL respectively (S4 Fig). In comparison, sample site

explained only 39% of variation in soil bacterial community structure, and 60% of the variation

Fig 1. Relative abundance of core phyllosphere taxa in the mānuka phyllosphere (A, C) and associated soil communities (B). Relative

abundance is averaged per tree (A) and site (C). An abundance-occupancy distribution was used to identify core phyllosphere taxa in

non-rarefied (green) and rarefied (purple) datasets (D). Each point represents a taxon plotted by its mean log10 relative abundance and

occupancy. Taxa (pink) with an occupancy of 1 (i.e., detected in all 89 phyllosphere samples) were considered members of the core

microbiome. Panels A–C are colour-coded by OTU.

https://doi.org/10.1371/journal.pone.0237079.g001
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was attributable to the individual host tree (PERMANOVA on Bray-Curtis dissimilarities,

P = 0.001).

Biogeography

To disentangle the relative effects of sampling location, environmental variables, and host

traits on the mānuka phyllosphere microbiome, Mantel and partial Mantel analyses were per-

formed on total, non-core, and core taxa.

Sampling locations were separated by linear distances ranging from 65 to 333 km. On aver-

age, samples collected from within the same site were 34% dissimilar, whereas those collected

from different sites located 50–150 km and 150–200 km apart were 55% and 72% dissimilar,

respectively (Fig 4). Mantel analyses revealed a significant, albeit weak, correlation between

total community dissimilarity and geographic distance (rM = 0.15, P = 0.01). This distance-

decay relationship was increased in non-core taxa (rM = 0.27, P = 0.002), and diminished in

core taxa (P = 0.69) (S9 Table). The mānuka populations selected for sampling spanned a

range of elevations from 66 m to 634 m ASL. On average, samples that differed in elevation by

less than 100 m exhibited 38% dissimilarity. Samples that differed in elevation by 200–400 m

Fig 2. Differential abundance of taxa in phyllosphere and associated soil communities. (A) Heatmap depicts the differential relative abundance of OTUs in each

environment. Only OTUs with mean relative abundance greater than 1 x 10−3 are included. (B) OTUs present in both phyllosphere and soil communities that exhibit

significant differential abundances. Positive log2 fold change values represent OTUs with increased abundance in the phyllosphere relative to soil (n = 104) and those

with negative log2 fold change values represent OTUs with increased abundance in soil relative to the phyllosphere (n = 152). A full list of OTUs with significant

differential abundances, defined by DeSeq2 log-fold difference with an adjusted p value of� 0.01, is presented in S8 Table.

https://doi.org/10.1371/journal.pone.0237079.g002
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were on average 55% dissimilar. Meanwhile, samples that differed in elevation by more than

500 m were on average 75% dissimilar (Fig 4). Partial Mantel analysis, controlling for spatial

autocorrelation, detected a significant relationship between total community dissimilarity and

elevation (rM = 0.58, P = 0.001) (S9 Table). Moreover, significant correlations were identified

between elevation and both non-core (rM = 0.60, P = 0.001) and core taxa (rM = 0.43,

P = 0.001) (S9 Table). Community dissimilarity of total, non-core, and core taxa also exhibited

significant correlations with latitudinal and longitudinal distances (S9 Table).

Of the 14 environmental variables explored, partial Mantel analyses found that average

night temperature (rM = 0.78, P = 0.001), day-night temperature differential (rM = 0.65,

P = 0.001), monthly precipitation (rM = 0.58, P = 0.001), monthly cloud cover (rM = 0.60,

P = 0.001), and monthly sun hours (rM = 0.61, P = 0.001 were most strongly correlated with

community dissimilarity (S8 Fig and S10 Table). Average day temperature, relative humidity,

monthly pressure, and monthly humidity also demonstrated a significant, albeit weaker, corre-

lation with community dissimilarity (S10 Table). Community dissimilarity of non-core taxa

showed strong correlations (rM > 0.5) with average night temperature (rM = 0.80, P = 0.001),

day-night temperature differential (rM = 0.62, P = 0.001), monthly precipitation (rM = 0.62,

P = 0.001), monthly cloud cover (rM = 0.60, P = 0.001), and monthly sun hours (rM = 0.61,

P = 0.001) (S9 Fig). In contrast, community dissimilarities of core taxa were strongly correlated

with average night temperature (rM = 0.63, P = 0.001) and exhibited weaker associations with

other environmental parameters (S9 Fig and S10 Table).

A significant correlation was found between total community dissimilarity and tree height,

whereby trees of different heights tended to host different communities compared to trees of

Fig 3. Nonmetric multidimensional scaling (NMDS) showing the community structure of the mānuka

phyllosphere microbiome across sites. Distance based on Bray-Curtis dissimilarity. The stress value of the NMDS

plot is 0.15.

https://doi.org/10.1371/journal.pone.0237079.g003
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similar heights (rM = 0.19, P = 0.022). No significant correlation was detected between total

community dissimilarity and tree diameter, branch aspect, or branch height (S11 Table). Non-

core taxa also exhibited a significant correlation with tree height (rM = 0.23, P = 0.004), which

was not observed in core taxa (S11 Table). No correlation was found between the community

dissimilarity of either non-core or core taxa and tree diameter, branch aspect, and branch

height (S11 Table).

Relative importance of spatial, climatic and host tree factors

Variation partitioning was used to further resolve the relative contributions of environmental

variables, spatial factors, and host traits on the total phyllosphere community structure. In

total, 42% of the phyllosphere community variation was explained by these three groups of

explanatory variables (Fig 5). Environmental variables had the greatest impact on the observed

heterogeneity in phyllosphere community structure, independently explaining 9% of the vari-

ability. Geographical space also had a significant and independent impact on the variability of

community structure, corroborating correlational analyses described above. Together, the

combined effect of both environmental and spatial explanatory variables accounted for 21% of

Fig 4. Mānuka phyllosphere community dissimilarity increases with increasing geographic distance and elevation between sample

regions. Community dissimilarity is based on the Bray-Curtis dissimilarity index averaged between sample regions.

https://doi.org/10.1371/journal.pone.0237079.g004
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the total variation in phyllosphere community structure. However, the independent effect of

geographical space was relatively small, explaining only 3% of the variability in bacterial com-

munity structure independent of other explanatory variables. The relative effects of measured

host traits, both independently and in combination with climatic variables, were very small,

explaining only a further 1% of observed variation. Collectively, host tree-related traits, envi-

ronment, and spatial explanatory factors accounted for 8% of the total variation.

Discussion

The phyllosphere microbiome is increasingly recognised as an influential component of host

plant biology [5–7]. However, the strength and stability of specific bacterial associations in the

phyllosphere remains unclear. Here, we provide the first characterisation of the bacterial com-

munities in the phyllosphere microbiome of Leptospermum scoparium (mānuka) across five

distinct and distant populations in the North Island of New Zealand. Across replicate samples

and with the most stringent criterion (presence in all samples), we identified a core micro-

biome in the collective mānuka phyllosphere. This finding is significant, given the geographi-

cal separation and environmental heterogeneity of the sampled populations, and provides

ENV HOST

DIST

9 1

2

1

21
8

Residuals = 58

Fig 5. The proportion (%) of mānuka phyllosphere microbiome variation explained by environmental, spatial,

and host tree variables. Results of partial regression analysis show the proportion of variation attributable to each

individual and combination of explanatory variables. Environmental variables (ENV) represent the night-day

temperature differential, night temperature, monthly precipitation, and monthly cloud cover. Spatial variable (DIST)

represents the straight-line distance between sample coordinates. Host tree variables (HOST) represent tree height and

tree diameter.

https://doi.org/10.1371/journal.pone.0237079.g005
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evidence in support of our hypothesis that the mānuka phyllosphere microbiome exhibits spe-

cific host association.

The mānuka phyllosphere core microbiome

The core phyllosphere microbiome (10 OTUs) represented a large proportion of the total phyl-

losphere community yet was either rare or entirely absent in surrounding surface soil, suggest-

ing specialisation of these microbial taxa to the habitat or strong selection by the host plant. At

the phylum level, the core microbiome comprised major lineages of bacteria also identified in

the phyllosphere of other plant species [10, 11, 13]. Four of the most abundant core OTUs

were affiliated with the Rhizobiales order (Alphaproteobacteria). OTUs related to order Rhizo-

biales have frequently been identified in the phyllosphere of temperate forest tree species [70,

71]. Other core OTUs were assigned to genera not commonly reported in the phyllosphere,

such as Terriglobus, which are generally considered well adapted to survive oligotrophic envi-

ronments [72]. Many core OTUs also represented previously undescribed microorganisms,

indicating a diversity within these phyllosphere bacterial lineages that may be unique to

mānuka. The apparent host-specific association in the mānuka phyllosphere microbiome sup-

ports previous studies that identified species-specific communities in the phyllosphere of co-

occurring plant species [13]. Genotype-dependent characteristics of leaf chemistry and mor-

phology have been suggested to drive such host-specific patterns [17]. Notably, medicinal

plants have previously been reported to harbour highly specialised microbial communities due

to their unique and structurally divergent secondary metabolites [73]. The unique components

of mānuka’s antimicrobial essential oils may therefore play a role in the selection and mainte-

nance of specific bacterial lineages in its phyllosphere across large geographical ranges and var-

iable environments [74].

In accordance with the prevailing core microbiome concept, a stable association between

the mānuka host and a habitat-specific group of microorganisms suggests these taxa may be

functionally important for the integrity of the phyllosphere microbiome and host plant [20,

22]. Consistent with this notion, multiple members affiliated with the core bacterial genera

identified here are known to associate closely with plants. For example, Sphingomonas has

been shown to enhance the host plant immune response towards pathogenic strains of Pseudo-
monas [18]. Rhizobiales also contains many genera of methylotrophic bacteria that metabolise

methanol and enhance plant growth by producing phytohormones, such as indole-3-acetic

acid [75, 76]. However, given the large strain-level functional diversity of microorganisms and

that 16S rRNA gene sequence-based inference of potential functions are highly problematic,

the functional roles of these core taxa remain an open question [77].

Biogeographic patterns differ between core and non-core members of the

mānuka phyllosphere

Besides harbouring a core microbiome, the mānuka phyllosphere exhibited biogeographical

patterns that appeared to be shaped by both deterministic and neutral processes [78, 79]. Bio-

geographical patterns have been identified in the phyllosphere of other tree species [15, 80].

However, few studies have examined the biogeographical patterns of different microbial popu-

lations in the phyllosphere (e.g., rare versus abundant and core versus non-core taxa) as in

other environments [16, 45, 81]. Our results revealed that biogeographical patterns were stron-

gest in non-core taxa, exhibiting a non-random distribution across space and environmental

gradients that contrasted with the cosmopolitan distribution of the relatively dominant core

microbiome. By virtue of their definition, non-core taxa do not consistently associate with a

host species, and their presence and abundance are therefore hypothesised to be
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predominantly structured by environmental selection and/or stochastic processes [20, 82].

The partial Mantel test revealed that environmental conditions, such as night temperature and

precipitation, and spatial factors, such as elevation, played significant roles in shaping the com-

position of non-core taxa in the mānuka phyllosphere. Interestingly, a distance-decay relation-

ship was also identified exclusively in non-core taxa, illustrating a potential role of dispersal in

the assembly of the non-core community [83, 84]. Consistent with this finding, a distance-

decay relationship has been previously identified in rare taxa of the Tamarix phyllosphere

[16]. Together, these results illustrate the potential of the mānuka phyllosphere microbiome to

exhibit both environmental segregation and biogeographic provincialism in the non-core

community.

The mānuka phyllosphere microbiome is not stochastically recruited from

soil

Significant differences in community composition were observed between the host micro-

biome in the phyllosphere and free-living communities in the surrounding soil. As expected,

soil bacterial communities were more diverse than those in the phyllosphere. Given the envi-

ronmental heterogeneity of the surrounding environments in which we sampled, the collec-

tion of neutral and deterministic forces shaping the soil communities were likely very diverse.

Notably, taxa that were abundant in the phyllosphere, including the core microbiome, were

essentially absent in surrounding soil. This finding contrasts with previous studies that report

a large proportion of abundant phyllosphere taxa are also present in soil [14, 85]. Although the

major reservoir of the mānuka phyllosphere microbiome cannot be directly inferred from our

analysis, if phyllosphere bacterial communities were assembled stochastically from the sur-

rounding environment, the diversity of the surrounding soils would have been expected to

drive large regional differences as observed in other plant species, such as the grape vine [14].

Instead, the convergence consistently observed in the phyllosphere microbiome independent

of the surrounding environment suggests that soil has limited influence on the community

structure of the mānuka phyllosphere microbiome.

Future directions

Our study was strengthened by aspects of our methodological design that allowed us to essen-

tially exclude cross-contamination as an alternative explanation for the presence of a ubiqui-

tous core microbiome. Specifically, soil samples were processed simultaneously with leaf

samples to mitigate the risk of cross-contamination during sample collection or processing,

and fusion primers were used to prepare 16S rRNA gene PCR amplicons in a one-step proto-

col to eliminate the risk of cross-contamination by aerosolised PCR products [47–51]. The

immediate next step should be to investigate the functional potential and role of the core phyl-

losphere microbiome in potentially mediating the physiological properties of mānuka using a

combination of shotgun metagenomic sequencing and cultivation approaches. Metagenomics

will also reveal the diversity and abundance of micro-eukaryotes such as fungi and protists,

which are increasingly recognised as potential determinants of plant-microbe interactions and

host fitness [8]. Incorporating host genetic analyses and co-occurring plant species into future

analyses will also shed light on the relationship between the mānuka phyllosphere microbiome

and host genetics as well as the role of recruitment in community assembly.

Conclusion

Our findings demonstrate that Leptospermum scoparium (mānuka) possesses a dominant core

phyllosphere microbiome that is persistent across geographically distant populations. Core
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phyllosphere taxa represented a large proportion of the total phyllosphere community yet were

rare or entirely absent in surrounding soils, providing support for hypothesised specific host

association and potentiating the role of host selection of functionally important microorgan-

isms. Strong biogeographical patterns were also identified in the mānuka phyllosphere, indi-

cating that spatially structured environmental gradients may play a role in shaping the

composition of non-core microbiota. Together, these findings illustrate that the mānuka phyl-

losphere microbiome exhibits complex biogeography that likely resulted from divergent pro-

cesses driving the assembly of core and non-core microorganisms. Understanding potential

roles of the mānuka phyllosphere microbiome in the physiology of the nationally and cultur-

ally treasured indigenous plant will be of wide scientific and general interest. Our findings also

illustrate the usefulness of the mānuka phyllosphere microbiome for expanding our knowledge

of specific host-microbe associations in the phyllosphere and support the notion that investiga-

tion of phyllosphere microbiomes should be conducted as per our senso stricto definitions of

the phyllosphere and core microbiome to ensure relevance and generalisability of findings.
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