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Asthma is associated with increased deposition and altered phenotype of airway smooth

muscle (ASM) cells. However, little is known about the processes responsible for

these changes. It has been suggested that alterations of the extracellular matrix (ECM)

contribute to the remodeling of ASM cells in asthma. Three-dimensional matrices allow

the in vitro study of complex cellular responses to different stimuli in a close-to-natural

environment. Thus, we investigated the ultrastructural and genic variations of ASM

cells cultured on acellular asthmatic and control bronchial matrices. We studied

horses, as they spontaneously develop a human asthma-like condition (heaves) with

similarities to chronic pulmonary changes observed in human asthma. Primary bronchial

ASM cells from asthmatic (n = 3) and control (n = 3) horses were cultured on

decellularized bronchi from control (n = 3) and asthmatic (n = 3) horses. Each cell

lineage was used to recellularize six different bronchi for 41 days. Histomorphometry

on HEPS-stained-recellularized matrices revealed an increased ASM cell number in the

control cell/control matrix (p = 0.02) and asthmatic cell/control matrix group (p = 0.04)

compared with the asthmatic cell/asthmatic matrix group. Scan electron microscopy

revealed a cell invasion of the ECM. While ASM cells showed high adhesion and

proliferation processes on the control ECM, the presence of senescent cells and cellular

debris in the asthmatic ECM with control or asthmatic ASM cells suggested cell death.

When comparing asthmatic with control cell/matrix combinations by targeted next

generation sequencing, only AGC1 (p = 0.04), MYO10 (p = 0.009), JAM3 (p = 0.02),

and TAGLN (p = 0.001) were differentially expressed out of a 70-gene pool previously

associated with smooth muscle remodeling. To our knowledge, this is the first attempt

to evaluate the effects of asthmatic ECM on an ASM cell phenotype using a biological

bronchial matrix. Our results indicate that bronchial ECM health status contributes to

ASM cell gene expression and, possibly, its survival.
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INTRODUCTION

The asthmatic airways undergo remodeling including loss of
epithelial cell integrity, mucus gland and goblet cell hypertrophy,
extracellular matrix (ECM) fibrosis, angiogenesis, and increased
airway smooth muscle (ASM) mass (1, 2). ASM enlargement
was recognized as the main feature of airway wall thickness in
asthma as early as 1922 (3). Later studies determined its pivotal
role in asthmatic bronchial remodeling and hyperreactivity (4, 5).
However, the source of ASM remodeling remains debated and
includes epithelial to mesenchymal transition (6, 7), reduced cell
apoptosis, and ASM cells hypertrophy and hyperplasia (8–12).

Tissue engineering was developed to create substitutes for
injured tissues or organs (13, 14). Cells cultured on 3D substrates
have a different behavior than those from 2D cultures and better
mimic the in vivo environment (15–17). Therefore, protocols
using 3D substrates have been adapted for studies on cellular
phenotypes in disease and in response to drugs (18–20). It
has been reported that compared to 2D cell culture, human
umbilical artery smooth muscle cells cultured in hanging drops
have an altered gene expression pattern and reduced protein
levels of PCNA and increased levels of α-SMA when compared
to 2D standard cell culture (21). Also, 3D co-cultures influence
the phenotype of smooth muscle cells. For instance, 3D co-
culturing vascular smooth muscle cells and endothelial cells, the
vascular smooth muscle cells went from quiescence to contractile
phenotype (22). Therefore, the composition of the bronchial
scaffold and its organization could affect ASM cell development
and behavior (23).

Factors triggering ASM remodeling and hyperresponsiveness
remain understudied and, to the best of our knowledge, have
never been explored under 3D culture conditions (24–26). In
this study, we aimed to investigate the influence of bronchial
extracellular matrix on the gene expression and phenotype of
asthmatic ASM using a 3D cell culture. We studied an equine
bronchial scaffold using decellularization and recellularization
protocols previously developed (27) because of similarities
reported between human and equine asthma (28, 29).

METHODS

A diagram summarizing the experimental design is reported in
Supplementary Material 1.

Animals
Archived lung tissues and airway smooth muscle cells from
three asthmatic and three healthy control horses, aged 10–12
years, from a tissue bank (htttps://www.btre.ca) were studied. An
ante-mortem diagnosis of severe asthma was based on history
of periods of labored breathing at rest, lung function results
(pulmonary resistance RL ≥ 1 cmH2O/L/s), and bronchoalveolar
lavage fluid (BALF) cytology (neutrophils>10%). Control horses
had no history of lung diseases, and had normal lung function
and BALF cytology (30) (Supplementary Material 2). The

Abbreviations: ASM, airway smooth muscle; ECM, extracellular matrix; SEM,
scan electron microscopy.

experimental protocol was approved by the ethical committee of
the University of Montreal, with number Rech-1578.

Airway Smooth Muscle Cells: Isolation and
Culture
Airway smooth muscle cells were isolated and cultured in the
1st h after collection from bronchial first carina as previously
described (27). Briefly, ASM was digested in Dulbecco’s Modified
Eagle Medium (DMEM)/F12 Nutrient Mix Medium (Thermo
Fisher Scientific, Waltham, MA, United States) supplemented
with 0.125 U/ml Collagenase H (Sigma Aldrich, St. Louis,
MO, United States), 1 mg/ml trypsin inhibitor (Sigma Aldrich,
St. Louis, MO, United States), 1 U/ml elastase (Worthington
Biochemical, Lakewood, NJ, United States), in the presence of
penicillin-streptomycin (Wisent Inc., Saint-Jean-Baptiste, QC,
Canada) and Fungizone (Thermo Fisher Scientific, Hampton,
NH, United States) for 3 h under rotational movement in a
humidified environment at 37◦C with 5% CO2. The cells were
then seeded in ventilated cell culture flasks and cultured in a
DMEM/F-12 medium complemented with fetal bovine serum
(FBS) at 37◦C, and 5% CO2 upon passage 2 (P2). The cells
were then frozen in a solution of FBS (Wisent Inc., Saint-Jean-
Baptiste, QC, Canada) and 1% DMSO (Thermo Fisher Scientific,
Hampton, NH, United States), and kept in liquid nitrogen
until needed. The cell vials were quickly unfrozen in a 37◦C
bath, seeded in ventilated cell culture flasks, and cultured in a
DMEM/F-12 medium and passed until passages 4 to 5 (P4–P5).

Fibroblasts: Isolation and Culture
Fibroblasts isolated from the first bronchial carina and the
endoderm of the brachial triceps of control horses were cultured
to evaluate the effects of a possible contamination of ASM
cells by fibroblasts. In brief, within 90min after collection, the
cells were digested in DMEM complemented with 0.2 U/ml
Collagenase H and 10mM CaCl2 under the environmental
conditions for ASM cells described above. The fibroblasts were
then seeded in ventilated cell culture flasks and cultured in
DMEM complemented with 10% heat-inactivated FBS at 37◦C
and 5% CO2 until passage 2. The cells were then frozen
in a solution of FBS (Wisent Inc., Saint-Jean-Baptiste, QC,
Canada) and 1% DMSO (Thermo Fisher Scientific, Hampton,
NH, United States) and kept in liquid nitrogen until needed.
Primary equine fetal fibroblasts courtesy of Dr. Lawrence Smith
were also studied. Unfrozen cells were then cultured in DMEM
and passed until passages P4–P5.

Decellularization and Recellularization of
the Bronchi
The protocol used to decellularize and recellularize the bronchi
has been reported previously (27). In brief, bronchi from
second to fourth generation were manually dissected from the
surrounding lung tissues within 2 h after euthanasia of the
horses. The bronchi were then snap-frozen in liquid nitrogen
and kept at −80◦C until they were used. The bronchi were
thawed in sterile PBS 1X at room temperature, decellularized
and recellularized using protocols described previously. Briefly,
two consecutive cycles of a detergent (Triton 1X, sodium
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TABLE 1 | Decellularized biologic bronchial matrices from control (n = 3) and asthmatic horses (n = 3) were recellularized with primary bronchial airway smooth muscle

(ASM) cells from the same control (n = 3) and asthmatic horses (n = 3).

Control matrices/

control ASM cells

n Control matrices/

asthmatic ASM cells

n Asthmatic matrices/

control ASM cells

n Asthmatic matrices/

asthmatic ASM cells

n

Horse 1 matrix/

Horse 1 cells

4 Horse 1 matrix/

Horse 4 cells

4 Horse 4 matrix/

Horse 1 cells

4 Horse 4 matrix/

Horse 4 cells

4

Horse 1 matrix/

Horse 2 cells

4 Horse 1 matrix/

Horse 5 cells

4 Horse 4 matrix/

Horse 2 cells

4 Horse 4 matrix/

Horse 5 cells

4

Horse 1 matrix/

Horse 3 cells

4 Horse 1 matrix/

Horse 6 cells

4 Horse 4 matrix/

Horse 3 cells

4 Horse 4 matrix/

Horse 6 cells

4

Horse 2 matrix/

Horse 1 cells

4 Horse 2 matrix/

Horse 4 cells

4 Horse 5 matrix/

Horse 1 cells

4 Horse 5 matrix/

Horse 4 cells

4

Horse 2 matrix/

Horse 2 cells

4 Horse 2 matrix/

Horse 5 cells

4 Horse 5 matrix/

Horse 2 cells

4 Horse 5 matrix/

Horse 5 cells

4

Horse 2 matrix/

Horse 3 cells

4 Horse 2 matrix/

Horse 6 cells

4 Horse 5 matrix/

Horse 3 cells

4 Horse 5 matrix/

Horse 6 cells

4

Horse 3 matrix/

Horse 1 cells

4 Horse 3 matrix/

Horse 4 cells

4 Horse 6 matrix/

Horse 1 cells

4 Horse 6 matrix/

Horse 4 cells

4

Horse 3 matrix/

Horse 2 cells

4 Horse 3 matrix/

Horse 5 cells

4 Horse 6 matrix/

Horse 2 cells

4 Horse 6 matrix/

Horse 5 cells

4

Horse 3 matrix/

Horse 3 cells

4 Horse 3 matrix/

Horse 6 cells

4 Horse 6 matrix/

Horse 3 cells

4 Horse 6 matrix/

Horse 6 cells

4

Four replicates were produced for each recellularization combination. Horses 1, 2, and 3 are controls and 4, 5, 6 are asthmatic. n: number of replicates.

deoxycholate, and sodium chloride), and enzymatic (DNase)
treatments were followed by sterilization with paracetic acid-
ethanol under continued agitation. This protocol was shown to
remove all cell material, to maintain the general architecture
and protein content on histological staining, to have double
stranded DNA <200 bp and of a concentration <50 ng/mg of
tissue as recommended (31, 32). Decellularized bronchi were
then cut into pieces with a maximum size of 1 × 1 cm and
rinsed in sterile PBS 1X. Tissues were then placed on a 24-well
plate (Costar, Washington, DC) and seeded with ASM cells or
fibroblasts at passages 4 and 5 at a concentration of 158,000
cells/cm2 corresponding to 3-fold cell confluence rate on the
plate. Each ASM cell lineage (n = 6) and fibroblasts (n = 5)
was used to recellularize four replicates of each tissue (n = 6)
(Table 1).

The tissues were maintained in culture until day 31 and
then transferred to a 6-well plate (Celltreat, Pepperell, MA,
United States) until day 41.

Flow Cytometry: ASM Cell and Fibroblast
Evaluation
The ASM cells and fibroblasts were characterized by flow
cytometry before and at 31 days of recellularization (transfer
day), as described previously (27). Briefly, the cells were
stained for intracellular proteins with anti–α-SMA (mouse
IgG2a, 1/250; Sigma Aldrich, St. Louis, MO, United States) and
anti-desmin (rabbit polyclonal IgG, 1/200; Abcam, Cambridge,
United Kingdom,) antibodies for 1 h. The cells were then washed
three times and incubated for 30min in the dark with fluorescent
dye–conjugated anti-IgG antibodies. Isotype-matched control
antibodies (mouse IgG2a and rabbit IgG) were used as negative
control. All signals greater than those of the isotype-matched

control antibodies were considered positive, and the degree of
staining was evaluated as the mean fluorescence intensity and
mean percentage of positive cells for both α-SMA and desmin.

Histological Assessment of
Recellularization (Movat Pentachrome) and
Histomorphometry (HEPS)
Two replicates from each tissue/cell combination were studied.
The tissues were fixed in 10% formalin, paraffin-embedded, and
then sliced at 4.5µm thickness and stained using the Movat
Pentachrome histologic staining protocol as described previously
(27). The qualitative assessment of recellularization was based
on a visual examination of recellularized tissue sections under
an optical microscope at 100 and 200 magnifications using the
Panoptiq software (version 2) connected to a Prosilica GT camera
(model: GT1920C) mounted on a Leica DM4000 B microscope.

Slides for histomorphometry were stained using the
hematoxylin-eosin-phloxine-safran (HEPS) histologic
protocol. The slides were scanned at 200 magnification,
and a histomorphometry analysis for total cell number was
performed blindly using the ImageJ software (Version 1.35c).
For each slide, total cell number was determined using the point
counting technic and then corrected to the perimeter of the
tissue. A mean value was calculated for each two replicates.

Scan Electron Microscopy of
Recellularized Scaffolds
One replicate of each tissue/cell combination was used.
Recellularized bronchi were prepared as described previously
(27). Briefly, tissues were fixed in 2.5% glutaraldehyde, washed
and post-fixed in a 1% aqueous osmium tetroxide solution, and
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TABLE 2 | Composition of the Ampliseq libraries.

Control matrices/control cells Control matrices/asthmatic cells Asthmatic matrices/control cells Asthmatic matrices/asthmatic cells

C1 matrix/C1 cells Library 1 C1 matrix/A1 cells Library 4 A1 matrix/C1 cells Library 7 A1 matrix/A1 cells Library 10

C1 matrix/C2 cells C1 matrix/A2 cells A1 matrix/C2 cells A1 matrix/A2 cells

C1 matrix/C3 cells C1 matrix/A3 cells A1 matrix/C3 cells A1 matrix/A3 cells

C2 matrix/C1 cells Library 2 C2 matrix/A1 cells Library 5 A2 matrix/C1 cells Library 8 A2 matrix/A1 cells Library 11

C2 matrix/C2 cells C2 matrix/A2 cells A2 matrix/C2 cells A2 matrix/A2 cells

C2 matrix/C3 cells C2 matrix/A3 cells A2 matrix/C3 cells A2 matrix/A3 cells

C3 matrix/C1 cells Library 3 C3 matrix/A1 cells Library 6 A3 matrix/C1 cells Library 9 A3 matrix/A1 cells Library 12

C3 matrix/C2 cells C3 matrix/A2 cells A3 matrix/C2 cells A3 matrix/A2 cells

C3 matrix/C3 cells C3 matrix/A3 cells A3 matrix/C3 cells A3 matrix/A3 cells

Each group contains three libraries as replicates. C, control; A, asthmatic.

dehydrated in alcohol. The samples were blindly analyzed on
LEO 435VP Scanning Electron Microscope at the Advanced
Diagnostic Center by Image - CADI - Faculty of Veterinary
Medicine and Animal Science, University of São Paulo.

Targeted Next Generation Sequencing
(NGS) for Recellularized Bronchi
One replicate of each tissue/cell combination was used
for Ampliseq transcriptome sequencing. Three tissue/cell
combinations were used to create a total of 12 libraries that
were divided into four groups (control/control, control/asthma,
asthma/control, and asthma/asthma), see Table 2 for details. The
libraries were constructed using Ion AmpliSeq Library Kit Plus
(Life Technologies, Carlsbad, CA, United States) according to
the instructions of the manufacturer using a customized panel of
70 equine-specific probes for genes related to asthma remodeling
(Supplementary Material 3). Sequencing was performed
using Ion Torrent System (Life Technologies, Carlsbad, CA,
United States) at Virology Laboratory, Department of Pathology
and Microbiology, Faculty of Veterinary Medicine, University
of Montreal.

Statistical Analyses
The values are expressed as mean± standard error of the means.
Results were analyzed using a mixed linear model (SAS v9.4.) for
flow cytometry analysis comparing ASM cells before and during
recellularization. For histomorphometry analysis, an unpaired t-
test was performed to compare the asthmatic/asthmatic group
with the control/control group, and a paired t-test was performed
for the other group comparisons. Flow cytometry results and next
generation sequencing analysis were compared with unpaired
t-tests (GraphPad Prism 8.4.3). Values of P ≤ 0.05 were
considered significant.

RESULTS

Flow Cytometry
The protein expression of ASM cells and fibroblasts in the 2D
culture and after 31 days of culture with different biological
matrices was compared by flow cytometry. As expected for these
cell types, the co-expression of desmin and α-SMA was greater

in the ASM cells than in the fibroblasts both before (p = 0.01)
and during recellularization (p = 0.0001) (Figure 1). Also, the
phenotype of ASM cells remained stable as assessed by the means
of fluorescence and percentage of positive cells to α-SMA and
desmin. These results confirmed the maintenance of high purity
of ASM cells during the 3D recellularization process.

HEPS Staining and Histomorphometry
Histomorphometry revealed an increased number of ASM cells
in the control matrices/control cells (p = 0.02) and in the
asthmatic matrices/control cells (p = 0.04) when compared with
the asthmatic matrices/asthmatic cells (Figure 2).

Scan Electron Microscopy of
Recellularized Matrix
Ultrastructural analysis by scan electronmicroscopy (SEM) of the
recellularized scaffolds revealed four distinct groups depending
on the health status of horses providing the matrices and ASM
cells. On the ECM from healthy horses, ASM cells expressed
focal adhesions to the scaffolds and tended to cover the ECM,
forming a uniform cell mat. The latter is found but to a lesser
extent, when asthmatic ASM cells on matrices from healthy
horses are cultured. However, these asthmatic cells expressed
larger collagen deposits and small projections on their surface,
revealing a continued recellularization process around the fibers.
On matrices from asthmatic horses, the recellularization process
is unevenly distributed. On these matrices, the ASM cells from
healthy horses presented a fibroblastic aspect, and cell debris
and senescent cells were observed. These latter findings appeared
enhanced when cells from asthmatic horses were used (Figure 3).

All fibroblasts (skin, bronchi, embryos) cultured on healthy
and asthmatic matrices demonstrated a good adhesion to all
matrices and a different and more homogenous aspect than what
was observed with ASM cells (Figure 4).

Targeted Next Generation Resequencing
for Recellularized Bronchi
Six libraries with abnormal gene read distributions at
sequencing were excluded. Therefore, statistical analysis
were performed to compare control matrices/control cells and
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FIGURE 1 | α-SMA and desmin co-expression in airway smooth muscle (ASM) cells and fibroblasts by flow cytometry. Isotype control quadrant for α-SMA and

desmin co-expression, respectively, for (A) ASM cells and (D) fibroblasts (D). (G) Percentage of α-SMA and desmin co-expression is significantly higher in (B) ASM

cells than (E) fibroblasts before recellularization. (H) Significance is maintained after recellularization [(C) ASM cells and (F) fibroblasts].

asthmatic matrices/asthmatic cells groups with each of the 2
remaining libraries.

The heatmap revealed a cluster of remodeling genes
(HLAB15, HLADQB1, FGA, FGF13, HLA_B8, LYZ, IGHM,
IGKC, HNRPDL_HNRNPE, HLA-DMA, HLA-DMB,MLCK, and
HLA_EQCA-DBQ3) expressed by the native bronchi but not by
the recellularized matrices, suggesting that these genes are not
expressed by ASM cells.

From the 70 genes evaluated, AGC1 (p = 0.04), MYO10
(p = 0.009), and JAM3 (p = 0.02) were upregulated in the
control matrices/control cells compared with the asthmatic

matrices/asthmatic cells, while TAGLN was overexpressed in the
asthmatic matrices/asthmatic cells, with p= 0.001 (Figure 5).

DISCUSSION

The ECM is a complex network composed of more than
300 different multi-domain proteins that releases bioactive
fragments upon proteolysis (33). Through its composition and
architecture, it governs the fundamental behaviors of cells and
their characteristics, such as adhesion, migration, differentiation,
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FIGURE 2 | ASM cell proliferation. (A) Hematoxylin-eosin-phloxine-safran (HEPS) staining of recellularized matrices at 200 magnification for histomorphometry. (B)

Zoom on perimeter calculation on a scan section at magnification 200, the white rectangle is focused on a section containing ASM cells stained in purple with some

positive nuclei identified by red arrows. (C) Point counting zoom on a scan section at magnification 200. (D) Number of nuclei per µm in the asthmatic

matrix/asthmatic cell group was significantly decreased compared with the control matrix/control cell and asthmatic matrix/asthmatic cell groups.

apoptosis, and contractility (34, 35). It has been assessed that cells
cultured on 3Dmatrices had a different behavior which is closerto
in vivo conditions than on a 2D culture plates (36, 37). Thus, 3D
culture has been widely used in different research studies to study
the response of cells to drugs and in diseases (38, 39). Thus, we
hypothesized that ASM cells cultured on bronchial scaffolds from
asthmatic and healthy horses would display a distinct behavior.
Our results confirmed this hypothesis, as we observed that ASM
cell senescence process and gene expression varied depending
on the health status of the horses from which the matrices
originated. Also, there was a reduction in ASM cell number when
the cells were harvested from asthmatic airways and cultured

on asthmatic matrices, when compared with the control ASM
cultured on control matrices. These findings indicate that both
the asthmatic ECM and ASM cells may contribute to ASM
remodeling in asthma.

The histomorphometry results revealed that ASM cells
from healthy horses proliferated more than ASM cells from
asthmatic horses whether the matrices were from asthmatic or
healthy horses, suggesting that the main effector was health
status of the cells. However, SEM and qualitative observations
suggested that ASM cell behavior was conditioned both by
the health condition of the horse providing the homing
matrix and by the health status of the horse providing the
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FIGURE 3 | Scan electron microscopy (SEM) of matrices at 41 days of recellularization for the four groups. ASM cells are more evenly distributed and more uniform in

(A) control matrices/control ASM cells and in (B) control matrices/asthmatic ASM cells than in (C) asthmatic matrices/control ASM cells and in (D) asthmatic

matrices/asthmatic ASM cells. Large collagen deposits (yellow circles) are visible in the control matrix/asthmatic ASM cell groups and cell debris (green circle) are

present particularly in asthmatic matrices/asthmatic ASM cells. Red circles refer to examples of fibroblast shape. Magnifications are specified on each picture.

cells. However, our finding of reduced number of ASM cells
in asthma is in contrast with studies reporting ASM cell
proliferation in both human asthma (8, 9) and equine asthma
(30, 40). In horses, a dynamic equilibrium associated with
increased myocyte proliferation and apoptosis was thought to
be limiting ASM mass, preventing the occlusion of the airway
lumen (30, 40). Both the markedly reduced cell number on
histomorphometry and the presence of senescent cells on SEM
we observed when recellularizing scaffolds with ASM cells
from asthmatic horses suggest a shift in dynamic equilibrium
that is in favor of cell death rather than cell proliferation.
Asthmatic bronchial ECMs are stiffer and present altered
laminin, elastin, vitronectin, collagen and fibronectin deposition
and composition when compared with healthy ECMs (41–45).
Considering cell-matrix “inside-out” and “outside-in” cross-talk
and interdependence (23, 33), these alterations may result in
modifications in the conformation of matrix integrins (23, 46),
that in turn, may explain the lack of ASM cell proliferation
(11, 47, 48). It is important to point out that previous studies
have determined that the decellularization process we used
does not alter protein composition, including that of collagen
and fibronectin, nor the general architecture of the bronchi
(27, 49–51).

The observation of large protein deposits on matrices from
healthy horses seeded with cells from asthmatic horses and
small projections on the surface of the cells was suggestive of a
continued recellularization process. Indeed, it has been shown
that vascular smooth muscle cells were hyperplasic on stiffened
collagen fibrils (52). Increased cell deaths and senescence when
ASM cells from healthy and asthmatic horses are cultured on
matrices from asthmatic horses also indicate a contribution of the
asthmatic ECM on ASM cell behavior.

The ECM from equine bronchi decellularized using the
method implemented in this study was shown to maintain
the protein composition of the native bronchi, such as that of
fibronectin and collagens I and IV (27), known to promote ASM
cell survival and proliferation (53). However, the lack of cell
proliferation in the asthma group could be explained by the
absence of structural and immune cell types in our study model,
as they contribute to asthma remodeling. In equine asthma,
neutrophils are the predominant granulocytes present in the
airway lumen. It has been reported that ASM cell proliferation
increased dose-dependently when cells are exposed to neutrophil
elastase (54) or to exosomes from lipopolysaccharide-stimulated-
neutrophils (26). On the other hand, neutrophil elastase along
with other proteases induced ASM cell apoptosis probably
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FIGURE 4 | SEM of horse embryonic fibroblast recellularization. Fibroblasts had a good coverage of the matrices and an even distribution in both (A) control and (B)

asthmatic matrices. Red circles show example of fibroblasts. Magnifications are specified on each picture.

resulting from ECM degradation, as fibronectin degradation
products were found in the supernatant of ASM cells exposed to
neutrophil elastase (55). This may lead to a dynamic equilibrium
limiting ASM proliferation and ECM deposition in asthma.

Ampliseq is a sequencing technique that enables the
simultaneous analysis of hundreds of genes with ultra-high
multiplexed PCR. The number of reads of each gene provided
by the analysis reflects its degree of expression. It is a suitable
technic for exploratory studies, as it allows the identification of
differentially expressed genes that could be specifically targeted
in subsequent analysis. Only 4 of 70 genes related to asthmatic
remodeling were differentially expressed between the control
matrix/control ASM cell and asthmatic matrix/asthmatic ASM
cell groups. AGC1 encodes for aggrecan, a major component
of the cartilaginous extracellular matrix (56) also expressed by
vascular smooth muscle cells when cultured in vitro on calcified
elastin or hydroxyapatite (57). Most of the literature has linked
this gene to skeleton development and disease (56, 58, 59), but it

has also been associated with atopic asthma (60). MYO10 is an
actin-associated molecular motor known to serve in intracellular
movement (61). The in vivo role of MYO10 remains unclear,
but in vitro it promotes cellular filopodia formation, and cell
migration has been reported (62, 63). Therefore, MYO10 may
be promoting ASM cell migration at a higher rate on matrices
from healthy horses when compared with those of asthmatic
horses. JAM3 is encoding for junction adhesion molecule C,
a protein that regulates different cellular processes (64) and
is expressed by smooth muscle cells among other cells (65–
68). Using a wild-type murine model of IL-33-induced airway
inflammation, downregulation of the expression of JAM3 and 60
other tight junction-coding genes was observed (69). Similarly,
JAM3 expression was downregulated in the asthmatic/asthmatic
group compared with control/control one, further supporting a
role in asthma. TAGLN is coding for transglin-2, an actin binding
protein that causes its gelation. It is highly expressed in smooth
muscles (70), and its expression is upregulated in asthmatic
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FIGURE 5 | Differentially expressed genes in the control cell/control matrix group vs. the asthmatic cell/asthmatic matrix group. (A) Heatmap of all the analyzed

groups with CC representing the control matrix/control cell group; CA is the control matrix/asthmatic cell group; AC is the asthmatic matrix/control cell group; AA is

the asthmatic matrix/ asthmatic cell group. (B) AGC1, (C) MYO10, and (D) JAM3 were significantly upregulated in the control/control group, while (E) TAGLN was

overexpressed in the asthmatic /asthmatic group.

bronchial biopsies inmild asthmatics (71). In agreement with this
finding, TAGLN was also overexpressed in ASM from asthmatic
horses cultured on asthmatic bronchial matrices when compared
with ASM and ECM from healthy animals. Of note, other
genes may have been found differently expressed with larger
sample sizes.

Flow cytometry results, comparing between ASM cells and
fibroblasts, confirmed the cell purity over the recellularization
process, as the high co-expression of α-SMA and desmin is only
displayed by the ASM cells (72, 73). Furthermore, desmin is
expressed by mature muscle cells but not by fibroblasts (73).
This ensured that the results obtained in this study reflect
the interaction outcomes between ASM cells and bronchial
extracellular matrices, as our model did not consider ASM cell
interaction with other cell types.

To the best of our knowledge, this is the first attempt to
evaluate the effects of asthmatic ECM on ASM cell phenotype
using a biological bronchial matrix. Our results support that

bronchial ECM health status determines the gene expression
and behaviors of ASM cells, such as adhesion, migration, and,
possibly, survival. Asthmatic ASM cells are more receptive to
the influence of ECM from asthmatic origins, suggesting that
the health status of both cells and matrices is the determinant of
the outcome of ECM/ASM interactions in asthma. However, the
model we used had limitations, namely, it did not consider the
interactions of ASM cells with other structural and inflammatory
cell types. Further studies including more cell types (epithelial
cells, neutrophils, fibroblasts) in this 3D model would be of
interest to assess the effect of ASM cell interactions with other
cells implicated in the pathogenesis of asthma.
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