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Abstract

Dynamic global vegetation model (DGVM) projections are often put forth to aid resource

managers in climate change-related decision making. However, interpreting model results

and understanding their uncertainty can be difficult. Sources of uncertainty include embed-

ded assumptions about atmospheric CO2 levels, uncertain climate projections driving

DGVMs, and DGVM algorithm selection. For western Oregon and Washington, we imple-

mented an Environmental Evaluation Modeling System (EEMS) decision support model

using MC2 DGVM results to characterize biomass loss risk. MC2 results were driven by cli-

mate projections from 20 General Circulation Models (GCMs) and Earth System Models

(ESMs), under Representative Concentration Pathways (RCPs) 4.5 and 8.5, with and with-

out assumed fire suppression, for three different time periods. We produced maps of mean,

minimum, and maximum biomass loss risk and uncertainty for each RCP / +/- fire suppres-

sion / time period. We characterized the uncertainty due to RCP, fire suppression, and cli-

mate projection choice. Finally, we evaluated whether fire or climate maladaptation mortality

was the dominant driver of risk for each model run. The risk of biomass loss generally

increases in current high biomass areas within the study region through time. The pattern of

increased risk is generally south to north and upslope into the Coast and Cascade mountain

ranges and along the coast. Uncertainty from climate future choice is greater than that attrib-

utable to RCP or +/- fire suppression. Fire dominates as the driving factor for biomass loss

risk in more model runs than mortality. This method of interpreting DGVM results and the

associated uncertainty provides managers with data in a form directly applicable to their

concerns and should prove helpful in adaptive management planning.

Introduction

Anthropogenic emissions have caused oceanic and atmospheric warming, diminished snow

and ice, and rising sea level [1]. The effects of climate change vary regionally [1] and have

already affected crop yields [2–5]), biodiversity [6–7], and wildfire risk [8–10]. In the Pacific
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Northwest of the conterminous United States (PNW), anthropogenic influences are the lead-

ing contributor to observed warming [11–12], with impacts including lower winter snowpack

and increased wildfire risk [11]. Expected future warming in the PNW is projected to cause

continued snowpack loss, increased risk of insect infestations [13], increased risk of wildfires,

and changes in vegetation [11, 14].

Numerous studies within or including the PNW have projected climate-driven changes in

vegetation, fire regime, pests, and forest productivity [14–25]. These studies have used a variety

of methods and models, including Dynamic Global Vegetation Models (DGVMs) [14, 20, 25],

statistical models [15–19], reconstruction of relationships between past climate, fire, and vege-

tation [23], observation and imputation [24], hybrid process and statistical models [21], and

hybrid state and transition models [22]. While these studies present both spatial and regional

model results, and in many cases, uncertainty associated with those results, the implications

for higher level management decisions require interpretation.

Climate impacts have been a steadily growing research topic for over thirty years, and the

focus on climate adaptation has seen a marked increase over the last decade [26] Uncertainty

in future climate includes the unknown trend of CO2 concentrations, which in turn depend

on political and economic decisions, and the wide range of future projections from GCMs and

ESMs [1, 27–28]. The uncertainty in vegetation modeling results is due to the range of climate

futures driving them [27–28], soil representation [29], parameter values based on 20th century

records [27–28], and model choice [28].

A common solution for resource managers faced with uncertainty is adaptive management

[30–31], the “flexible decision making that can be adjusted in the face of uncertainties as out-

comes from management actions and other events become better understood ([32] in [30]).”

Accounting for and characterizing uncertainty are important aspects of adaptive management

[28, 30–31].

In this study we report on a fuzzy logic model for assessing the risk of biomass loss due to

climate change in western Oregon and Washington (Fig 1). We created a decision support

model (DSM) to evaluate the risk of losing biomass under climate change projections. In the

DSM we included results from 80 runs of the MC2 Dynamic Global Vegetation Model

(DGVM) [33] as well as carbon stocks from [34]. We characterized uncertainty due to the

diverse climate futures driving MC2 runs, and we tested our assumptions about fire

suppression.

We evaluate the ability of our model to: 1) interpret vegetation modeling results and express

risk over time in a useable way for managers and decision makers; 2) provide upper and lower

bounds of that risk; 3) quantify uncertainty in a straightforward manner; 4) attribute uncer-

tainty to its source; 5) attribute risk to its underlying drivers.

Methods

Study area

The study area (Fig 1) consists of the region of Oregon and Washington west of the Cascade

Mountain Range crest that includes Coast Range, Klamath Mountains/California High North

Coast Range, Willamette Valley, Puget Lowlands, Cascades, and North Cascades Level III

Ecoregions [35]. This region is subject to strong coastal influence with mild, wet winters and

warm dry summers.

MC2 results used in this study

The protocol used to generate the MC2 results presented here was designed for an earlier proj-

ect [14]. In this case, MC2 did not account for historical or future land use, nor past
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disturbances (pest outbreaks, diseases, or windthrow). Historical results (1895–2010) were

obtained using PRISM [36] data and observed atmospheric CO2 concentrations as drivers.

Our baseline period was 1971–2000. The vegetation model was run twice, once with fire sup-

pression (FS) and once without (NFS—no fire suppression).

Our future scenarios included either FS or NFS, with either Representative Concentration

Pathway (RCP) 4.5 or 8.5 CO2 concentrations. For each of those scenarios, MC2 was run with

20 different climate futures from different Climate Model Intercomparison Project Phase 5

(CMIP5) [37] General Circulation Models (GCMs) or Earth System Models (ESMs; Fig 2).

MC2 results were summarized over three time periods: early 21st c. (2011–2030), mid 21st c.

Fig 1. Study area. Portions of Oregon and Washington west of the Cascade Mountain Range crest.

https://doi.org/10.1371/journal.pone.0222051.g001

Fig 2. Model scenarios. Schematic of scenario and GCM/ESM climate driver combinations used to produce MC2 results used in this study.

https://doi.org/10.1371/journal.pone.0222051.g002
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(2036–2065), and late 21st c. (2071–2099). We refer to one set of 20 MC2 results for one sce-

nario and one future time period as an ensemble of results.

EEMS fuzzy logic modeling

The Environmental Evaluation Modeling System (EEMS) [38] is a fuzzy logic [39–40] model-

ing platform designed to inform answers to management questions. A model is represented by

a logic tree, with each node corresponding to a displayable spatial layer or map (e.g. Fig 3). The

bottom-most nodes in the tree represent input data layers. Each input layer is first normalized

(0 to 1 for this study) to produce a node representing its level of agreement with a user-defined

statement. For example, a fuel load metric might be mapped to the statement Simulated Live
Biomass is High using user-defined thresholds to characterize High. Normalized values are

combined into higher level nodes using fuzzy logic operators that evaluate the relationship

between two or more datasets to another statement. For example, data for Simulated Live

Fig 3. Logic tree for Biomass Loss Risk (formally Risk of Biomass Loss is High) EEMS model. Each model node (box) represents a spatial data layer (map).

Unshaded nodes represent input data layers. Shaded nodes represent data layers with normalized variable values. Labels are formal fuzzy logic statements with

informal index labels in parentheses.

https://doi.org/10.1371/journal.pone.0222051.g003
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Biomass is Highmight be combined with data for Vegetation Stress is High to create a resulting

node forMortality Risk is High. In a complete model, nodes are repeatedly combined to pro-

duce a final, top-level node that informs the original management question.

Formally, each node in a fuzzy logic model corresponds to a factual statement, and the val-

ues for the node (the normalized values described above) are the values for the statement’s

fuzzy truth. Fuzzy truths range from 0 for fully false to 1 for fully true. Values between 0.0 and

0.5 are considered partially false, 0.5 is neither true nor false, and values between 0.5 and 1.0

are partially true. Informally, values in the nodes are considered as indices for the attribute

associated with the factual statement. For example, a fuzzy value for Vegetation Stress is High
might be referred to simply as the level of Vegetation Stress from low (0) to high (1). We use

the informal node labels hereafter.

The spatial datasets used in an EEMS model must share the same extent, projection, and

reporting units (normally either polygons, or grid cells as in this study). Operations are performed

using corresponding reporting units from different data layers (Fig 4A). Reporting units within

layers are treated independently of one another and do not influence each other’s values.

The EEMS fuzzy logic operators used in this project are And (minimum value of the

inputs), Or (maximum value of the inputs), and Union (mean value of the inputs). With the

Fig 4. Operations in EEMS. A) Reporting units (grid cells in this example) in all data layers must correspond to one another. Fuzzy logic operators use the content of

matching reporting units in different layers, but not between reporting units within the same layer. B) Two methods of applying fuzzy logic operations in the extended

version of EEMS. Three-dimensional variables 1 and 2 are combined by operator 1 to produce the three-dimensional variable 3. Operator 2 uses values across the Z

dimension of variable 3 to produce two-dimensional variable 4. In this study, the Z dimension corresponds to the 20 members of an ensemble.

https://doi.org/10.1371/journal.pone.0222051.g004
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And and Or operators a reporting unit’s result value comes from only of the input values

(unless multiple input values yield the same minimum value (for And) or maximum value (for

Or)). For example, if corresponding cells from nodes A and B have values of 0.3 and 0.5, and

these nodes are inputs to the And operator to produce node C, C’s value for the corresponding

cell would be 0.3 and would come from only the cell in node A. A result of this is that the val-

ues in cells of a node produced by And or Or can be attributed to their source node.

Decision support modeling

We created an EEMS decision support model (Fig 3) to evaluate the combined Biomass Loss
Risk (formally, Risk of Biomass Loss is High) from fire and climate maladaptation using MC2

ensemble results and aboveground biomass simulated by [34] (hereafter, Hudiburg). For mod-

eled risk to be considered high, the threat to a cell’s biomass–either from fire or modeled vege-

tation type departure from baseline vegetation type–must be high, and the biomass in the cell

must also be high. High modeled biomass is insured by input variables in the MC2 Biomass
Loss Risk branch of the model. Hudiburg’s biomass values are based on observed biomass mea-

surements and their inclusion in the EEMS model serves to adjust Biomass Loss Risk down due

to the legacy effects of disturbance and harvest.

Normalization of the datasets to obtain fuzzy values was done by establishing minimum

(fully false) and maximum (fully true) thresholds and applying linear interpolation between

thresholds, such that

fuzzyval ¼ 0 ð1Þ

where inputval<minthresh

fuzzyval ¼
ðinputval � minthreshÞ
ðmaxthresh � minthreshÞ

ð2Þ

where minthresh< = inputval< = maxthresh

fuzzyval ¼ 1 ð3Þ

where inputval>maxthreshwhere fuzzyval is the normalized fuzzy value, inputval is the input

(raw) data value, minthresh is the minimum threshold corresponding to the formal node state-

ment, and maxthresh is the maximum threshold.

To normalize MC2 biomass and fire frequency values, we used the distribution of each vari-

able over the study area during the baseline period. The 10th percentile value for each variable

was used as the minimum threshold and the 90th percentile was used for the maximum thresh-

old (Table 1). Similarly, we normalized Hudiburg’s biomass values and used the 10th and 90th

percentile values from that data set. We calculated MC2 vegetation departure (a shift from the

original modeled vegetation type to a new type) by comparing the cell’s modal vegetation type

for a future period to its vegetation type for the baseline period. A departure value quantifying

the level of disparity between past and future vegetation types was obtained from a lookup

table based on expert opinion (S1 Table). To normalize the departure values and produce a

data layer representing the overall vegetation stress level (MC2 Vegetation Stress) we used

departure values of 0 and 3 for minimum and maximum thresholds respectively.

Uncertainty Analysis

We characterized uncertainty by first calculating the variability of Biomass Loss Risk values

spatially across each ensemble of results. Results from each ensemble of 20 MC2 runs were

combined into 3-dimensional datasets with ensemble members comprising the third
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dimension (Fig 4B). Biomass Loss Risk was calculated independently for each ensemble mem-

ber. An extended version of EEMS was used to produce a data layer for each of the minimum,

maximum, and mean fuzzy values (Fig 4B), bracketing the variability. The fuzzy valueHigh Var-
iability (formally, Variability is High) was calculated for each cell in each ensemble by convert-

ing standard deviations into fuzzy space using the minimum possible standard deviation (0) as

the false threshold and the maximum possible standard deviation (0.5) as the true threshold.

We characterized the non-spatial uncertainty between members of each ensemble using

box and whisker plots of their area-weighted means for Biomass Loss Risk. Plots for all scenar-

ios within a time period are displayed together for inter-scenario comparison.

To determine whether climate futures’ annual temperature and/or precipitation are tightly

coupled with MC2 biomass loss risk, we evaluated the relationships between those 3 variables.

First, we compared each ensemble member’s area-weighted mean change in temperature from

the baseline period against its change in precipitation. Secondly, we compared each ensemble

member’s contribution to an ensemble’s fraction of area matching the maximum MC2 Bio-
mass Loss Risk vs its fraction of area matching the minimum. A visual comparison of an

ensemble member’s position in the first graph to its position in the second graph illustrates the

strength of relationship between these two measures.

Drivers of biomass loss risk

The Or operator in the model nodeMC2 Biomass Loss Risk (Fig 3) takes the maximum values

of the two inputs, one corresponding to the simulated biomass lost by fire from the MC2

model, the other corresponding to the risk of mortality due to vegetation shift (not due to fire)

as simulated by MC2. For each ensemble, we took the ensemble mean for each of MC2 Fire
Loss Risk, MC2Mortality Risk, and MC2 Fire Loss Riskminus MC2Mortality Risk to show

which factor most strongly drives MC2 Biomass Loss Risk. Absolute difference values are great-

est where one factor produces a high risk and the other produces a low risk. These results

reflect the contribution to Biomass Loss Risk from MC2 results without the contribution from

Hudiburg Biomass.
We characterized the influence of fire versus that of vegetation shift over the study area. For

each ensemble member, we compared the fraction of the area for which mortality due to vege-

tation shift was the dominant driver of the risk to lose biomass vs the fraction of area where

fire was the main driver of risk. Grid cells with a zero risk value were not considered.

Table 1. EEMS conversion thresholds. Conversion thresholds used in the EEMS model to evaluate Biomass Loss Risk. Threshold values are based on the distribution of

each variable except for vegetation type departures.

Variable Fully false or minimum

threshold

Fully true or maximum

threshold

Comments

MC2 Biomass

Burned

0 (g C m-2) 110 (g C m-2) Threshold values from historical period distribution. False threshold 10th percentile,

True threshold 90th percentile.

MC2 Fire

Frequency

0.0 (decimal fraction) 1.0 (decimal fraction) Fraction of years with fire. False threshold 10th percentile, True threshold 90th

percentile.

MC2 Biomass 31572 (g C m-2) 73148 (g C m-2) Threshold values from historical period distribution. False threshold 10th percentile,

True threshold 90th percentile.

MC2 Live Biomass 5839 (g C m-2) 29387 (g C m-2) Threshold values from historical period distribution. False threshold 10th percentile,

True threshold 90th percentile.

Hudiburg Biomass 4053 (g C m-2) 21844 (g C m-2) False threshold 10th percentile, True threshold 90th percentile.

MC2 Vegetation

Stress

0 (departure value) 3 (departure value) Level of vegetation departure from historical based on expert opinion (S1 Table).

(g: gram; C: carbon; m: meter)

https://doi.org/10.1371/journal.pone.0222051.t001
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Results

In this manuscript, we present detailed results for the RCP 8.5 / NFS / 2071–2099 time period

ensemble and summary results from other ensembles. Detailed results from other ensembles

are in supplemental materials.

Decision support modeling

We used normalized biomass values from Hudiburg (Fig 5) for all our EEMS model runs. Bio-

mass is highest in the Cascade Mountains and in the Olympic Peninsula, and lowest around

Puget Sound, on the east side of the Northern Cascades, throughout the Willamette Valley,

and in southern Oregon around the cities of Roseburg, Medford, and Ashland. Eleven percent

of the study area is assumed to have zero biomass.

Biomass Loss Risk is low in areas where Hudiburg Biomass is low (Figs 5–6 and S1–S3 Figs).

For RCP 8.5 with or without fire suppression, mean and minimum values of Biomass Loss Risk
are highest during the mid 21st c. in the southern portion of the study area (Fig 6 and S3A,

S3B, S3E, S3F, S3I, S3J Fig). For RCP 4.5, the trend is similar, but less pronounced (S1–S2 Figs

A, B, E, F, I, J), and less apparent or absent for maximum values across all scenarios (Fig 6 and

S1–S3 Figs C, E, K). Overall, the risk of biomass loss is higher in the southern portion of the

study area and the Coast Range than in the Cascade Range (Fig 6 and S1–S3 Figs A, B, C, E, F,

G, I, J, K).

The area weighted mean of Biomass Loss Risk increases with time, is lower for RCP 4.5 than

for RCP 8.5, and is slightly higher for NFS scenarios than for FS (Fig 7, Table 2). The range of

values increases for all scenarios through time (Fig 7, Table 2).

Fig 5. Hudiburg Biomass. 11% of the area has a value of 0.

https://doi.org/10.1371/journal.pone.0222051.g005
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Uncertainty

Uncertainty is 0 where Hudiburg Biomass is 0, and is generally lower or higher corresponding

to lower and higher values for Biomass Loss Risk (Fig 6 and S1–S3 Figs D, H, L). In the Olym-

pic Peninsula, uncertainty is generally higher overall except near the end of the century for the

RCP 8.5 scenarios. In the southeastern portion of the study area, uncertainty is low across all

scenarios. Area weighted mean uncertainty is similar overall and increases with time (Table 2).

Between RCP 4.5 and RCP 8.5, uncertainty ranges from 0.01 to 0.09, increasing through

time (Table 3). Between FS and NFS, uncertainty ranges from 0.00 to 0.03, with the lowest val-

ues for the early 21st c. (Table 3).

Fig 6. Maps of Biomass Loss Risk from EEMS model for the RCP 8.5 NFS scenario. Figure rows include the mean, minimum, maximum, and uncertainty

representation for one time period. (min: minimum; max: maximum; uncert: uncertainty).

https://doi.org/10.1371/journal.pone.0222051.g006
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Fig 7. Distribution of area weighted mean values Biomass Loss Risk from EEMS model. Each point represents the area weighted mean of one ensemble

member.

https://doi.org/10.1371/journal.pone.0222051.g007

Table 2. Regional values for Biomass Loss Risk. Mean, minimum, maximum, and uncertainty for area weighted mean of Biomass Loss Risk EEMS model.

2011–2030 2036–2065 2071–2099

Mean Range

(min-max)

Uncertainty Mean Range

(min-max)

Uncertainty Mean Range

(min-max)

Uncertainty

RCP 4.5, FS 0.13 0.05–0.22 0.11 0.21 0.07–0.36 0.19 0.26 0.09–0.43 0.21

RCP 4.5, NFS 0.13 0.05–0.23 0.11 0.23 0.07–0.38 0.20 0.28 0.09–0.45 0.22

RCP 8.5, FS 0.14 0.05–0.24 0.12 0.23 0.08–0.39 0.19 0.32 0.12–0.51 0.22

RCP 8.5 NFS 0.15 0.06–0.27 0.14 0.27 0.09–0.42 0.20 0.34 0.14–0.53 0.23

(min: minimum; max: maximum)

https://doi.org/10.1371/journal.pone.0222051.t002
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Drivers of Results

MC2 Fire Loss Risk (Fig 8 and S4–S6 Figs A, D, F) is greatest in the southern portion of the

study region and generally expands through time north through the Willamette Valley and

Puget Trough in the center of the region, east and west from the center into the foothills of the

Coast and Cascade mountain ranges, and also on the northeast edge of the study region. The

expansion into the Coast and Cascade ranges is greater under NFS than FS and markedly

greater under RCP 8.5 than under RCP 4.5, with expansion towards the Cascade crest in the

late 21st c. (Fig 8 and S6 Fig. G). MC2 Fire Loss Risk falls in the southern and eastern portions

of the study area under RCP 8.5 in the late 21st c. (Fig 8 and S6 Fig. G).

MC2Mortality Risk (Fig 8 and S4–S6 Figs B, E, H) is greatest along the coast, somewhat

high in the Olympic Peninsula of northwestern Washington, and expands into the foothills of

the Cascades and the central portion of the study region through time. It is greater under RCP

8.5 than RCP 4.5, and is virtually unaffected by +/- fire suppression.

The general spatial separation of high MC2 Fire Loss Risk from high MC2Mortality Risk
(Fig 8 and S4–S6 Figs A, B, D, E, G, H) is reflected in the driver difference maps (Fig 8 and S4–

S6 Figs C, F, I). The southern portion and northeastern corner of the study area are driven by

fire whereas the coast and Olympic Peninsula are driven by mortality. Under RCP 4.5, mortal-

ity drives MC2 Biomass Loss Riskmore strongly in the Cascades (S4–S5 Figs C, F, I). However,

under RCP 8.5, the stronger driver shifts from mortality to fire in the Cascades in the late 21st c

(Fig 8 and S6 Fig. C, F, I).

The fraction of area with 0MC2 Biomass Loss Risk is somewhat greater for RCP 4.5 scenar-

ios than for RCP 8.5, and declines through time, with a minimum of 11% for any ensemble

member (Table 4). Fire (MC2 Fire Loss Risk) contributes more to the risk of losing biomass

(Biomass Loss Risk) than does vegetation shift (Mortality Risk) for all ensembles with the

exception of RCP 8.5, FS, 2071–2099 (Table 5, Fig 9). The difference is generally smaller for FS

scenarios than for NFS scenarios.

Ensemble members with the greatest (or least) change in annual temperature generally do

not correspond to climate futures responsible for the largest area of maximum (minimum)

risk of biomass loss (Fig 10 and S7 Fig.). One exception is under HadGEM2-ES365 (model 9)

which drives the greatest change in temperature for 2071–2099 under both RCP 4.5 and RCP

8.5 and causes the greatest simulated area at risk in the node Maximum Biomass Loss Risk.

Over time, the ratio of the number of climate models causing the largest vs the smallest areas

at risk of losing biomass (Biomass Loss Risk) increases substantially (2-5/x models for 2011–

2030 to 17-19/x for 2071–2099).

Discussion

Context

We compared our method of presenting uncertainty with those from seven studies covering

our study area using inputs from climate models. Climate-based uncertainty was handled in a

Table 3. Area weighted mean of uncertainty for RCP 4.5 vs RCP 8.5 and FS vs NFS.

2011–2030 2036–2065 2071–2099

RCP 4.5 vs RCP 8.5, FS 0.02 0.04 0.09

RCP 4.5 vs RCP 8.5, NFS 0.02 0.05 0.10

FS vs NFS, RCP 4.5 0.00 0.02 0.02

FS vs NFS, RCP 8.5 0.01 0.03 0.03

https://doi.org/10.1371/journal.pone.0222051.t003
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variety of ways. [15] used the average results from two GCMs, predicating their results on the

correctness of those GCMs and the CO2 projections driving them. [16] used an ensemble

mean of results from 17 GCMs as a means of defining a consensus future climate before using

that climate in their model. Many studies presented graphs and/or tables of region-summa-

rized values of selected drivers and results [14, 19–20, 22, 25, 33]. Several presented sets of

maps allowing visual comparisons of result variation [14, 19–20, 25, 33], but only two pre-

sented spatial uncertainty. [19] classified risk to Douglas fir in terms of the percentage of mod-

els agreeing or disagreeing on its occurrence, and [20] mapped the number of models agreeing

on the direction of change in ecosystem carbon, burn area, and vegetation type. To our

Fig 8. Drivers of MC2Mortality Risk. Maps ofMC2 Fire Loss Risk (A, D, G),MC2Mortality Risk (B, E, H), andMC2 Fire Loss RiskminusMC2Mortality Risk (C, F, I)

from the EEMS model for the RCP 8.5 NFS scenario. Figure rows represent time periods.

https://doi.org/10.1371/journal.pone.0222051.g008
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knowledge, ours is the first study in this region to provide a detailed, quantified, spatial mea-

sure of climate-based uncertainty for modeled future vegetation.

Limitations

An ensemble mean provides a single measure of risk for the ensemble, however climate models

driving the results may not be completely independent of one another [41]. Weighting results

based on the similarities of the underlying climate models could adjust for this but under-

standing the provenance of many climate models can be onerous.

We did not account for the uncertainty resulting from assumed ignitions or the built-in

CO2 fertilization effect in MC2. The consequences of these assumptions on MC2 fire and car-

bon dynamics results were found to be substantial [25], but including those uncertainties was

beyond the goal of this study. Likewise, we did not incorporate the uncertainty in Hudiburg’s

[34] data due to the study’s limited scope.

General implications

Our results show the risk of biomass loss generally increasing with time in current high bio-

mass areas within the study region. The pattern of increased fire-driven risk through time is

generally south to north and upslope as fires become more frequent due to increasing tempera-

tures. Mortality-driven risk increases along the coast where vegetation becomes maladapted to

warming and where coastal climate influences reduce fire risk.

Changes in biomass are directly related to ecosystem services such as timber production,

carbon sequestration, wildlife habitat provision, recreational opportunities, and fresh water

Table 4. Area-weighted summary of MC2 Biomass Loss Risk drivers. Fraction of area with no risk of losing biomass, risk driven by either fire (MC2 Fire Loss Risk) or

vegetation shift (MC2Mortality Risk) in the EEMSMC2 Biomass Loss Riskmodel node.

2011–2030 2036–2065 2071–2099

Zero risk

(min-max

(mean))

Fire-

dominated

(min-max

(mean))

Mortality-

dominated

(min-max

(mean))

Zero risk

(min-max

(mean))

Fire-

dominated

(min-max

(mean))

Mortality-

dominated

(min-max

(mean))

Zero risk

(min-max

(mean))

Fire-

dominated

(min-max

(mean))

Mortality-

dominated

(min-max

(mean))

RCP 4.5

FS

0.43–0.69

(0.58)

0.15–0.40

(0.24)

0.15–0.24

(0.18)

0.13–0.57

(0.30)

0.19–0.47

(0.36)

0.24–0.47

(0.34)

0.11–0.42

(0.20)

0.27–0.57

(0.43)

0.28–0.49

(0.37)

RCP 4.5

NFS

0.42–0.69

(0.58)

0.15–0.40

(0.24)

0.15–0.23

(0.18)

0.13–0.57

(0.29)

0.19–0.52

(0.38)

0.23–0.45

(0.32)

0.11–0.42

(0.20)

0.28–0.58

(0.46)

0.27–0.46

(0.34)

RCP 8.5

FS

0.40–0.67

(0.54)

0.14–0.38

(0.25)

0.16–0.27

(0.20)

0.11–0.45

(0.21)

0.22–0.64

(0.42)

0.21–0.48

(0.36)

0.10–0.18

(0.12)

0.28–0.63

(0.45)

0.26–0.62

(0.43)

RCP 8.5

NFS

0.40–0.67

(0.54)

0.15–0.38

(0.26)

0.16–0.26

(0.20)

0.11–0.45

(0.21)

0.24–0.65

(0.47)

0.21–0.41

(0.32)

0.10–0.18

(0.12)

0.31–0.67

(0.50)

0.23–0.58

(0.39)

(min: minimum; max: maximum)

https://doi.org/10.1371/journal.pone.0222051.t004

Table 5. Per ensemble drivers of MC2 Biomass Loss Risk. Driving factor of the risk of losing biomass illustrated by the number of ensemble members for which either

fire (MC2 Fire Loss Risk) or simulated vegetation shifts (MC2Mortality Risk) drive the risk of biomass loss forMC2 Biomass Loss Risk.

2011–2030 2036–2065 2071–2099

Fire dominated (count) Mortality dominated

(count)

Fire dominated (count) Mortality dominated

(count)

Fire dominated (count) Mortality dominated

(count)

RCP 4.5 FS 16 4 11 9 13 7

RCP 4.5 NFS 17 3 13 7 15 5

RCP 8.5 FS 13 7 11 9 9 11

RCP 8.5 NFS 13 7 17 3 13 7

https://doi.org/10.1371/journal.pone.0222051.t005
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quality [42]. Thinning, prescribed fire, and suppression can mitigate fire risk, however each of

these actions has associated economic and other costs [43–44]. Thinning may increase forest

resistance and resilience to drought, however, it may make forests less resistant and resilient as

forests age [45]. When physiological processes cannot be buffered against environmental vari-

ability, maladaptation leads to mortality [18]. Maintaining biomass in forested areas under cli-

mate change-induced maladaptation may depend on management strategies such as sourcing

seeds and species from better climatically suited sources (i.e. assisted migration) [46–47].

Tools to help mangers implement such strategies have been developed (e.g. Seedlot Selection

Tool, https://seedlotselectiontool.org/sst/).

Fig 9. Drivers of MC2 Biomass Loss Risk. Fraction of the study area at risk driven by vegetation shifts (MC2Mortality Risk) versus driven by fire (MC2 Fire
Loss Risk) in the EEMS nodeMC2 Biomass Loss Risk.

https://doi.org/10.1371/journal.pone.0222051.g009
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Management and planning

Our results provide managers with spatial datasets representing three aspects of the Biomass
Loss Risk metric. The mean value of biomass lost across all climate futures provides an overall

idea of potential magnitude of loss while minimum and maximum values bracket the range,

suggesting limits for management alternatives. Uncertainty quantifies the variability of the

Fig 10. Relationship between climate change summary and MC2 Biomass Loss Risk. Change (1971–2000 vs future time period) in

average maximum temperature vs change in average annual precipitation for each of the 20 RCP 8.5 climate futures (A-C), and

fraction of the simulated area with maximum and minimum valuesMC2 Biomass Loss Risk for the RCP 8.5 FS scenario (D-F) and the

NFS scenario (G-I). In graphs D-I, a point above the 45˚ line indicates that the results of the MC2 run driven by that climate future

showed a greater number of high vs low values ofMC2 Biomass Loss Risk over more of the study area. Points below the 45˚ line

indicate that MC2 results showed a greater number of low vs high values over more of the area. (mm: millimeters).

https://doi.org/10.1371/journal.pone.0222051.g010
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model results. Land management takes place at multiple scales, with planning and assessment

at the national or regional level and implementation at more local levels [48]. Using terminol-

ogy appropriate for managers such as risk and uncertainty, as well as using a spatial scale

appropriate for local information makes our results appropriate for local planning.

Environmental models are often found to be insufficiently accurate to use as forecasts [31].

However, they provide insights and scenarios useful for scenario planning [31] and are useful

for decreasing uncertainty rather than making predictions [28]. Our work is intended to be

viewed within this context, providing one set of results with as much clarity as possible regard-

ing uncertainty, sources of uncertainty, and drivers of risk.

Process-based models, such as MC2, are considered more limited than empirical models in

quantifying uncertainty [28], thus limiting their usefulness in management planning. Our

method alleviates this limitation, making it easier for managers to use process-based models in

their decision making.

It has been suggested that when a range of future possibilities is needed for planning, selecting

the most extreme climate projections (e.g. warmest, coolest, wettest, driest) as inputs to ecological

models provides brackets for the needed answers [28]. The lack of correspondence we found

between the most extreme climate futures and their influence on minimum or maximum risk indi-

cate that simple metrics for climate extremes are not sufficient for bracketing our model results. In a

process-based model such as MC2, seasonal patterns and extreme events that are not reflected in

annual values or averages over multi-year time periods have the potential to strongly affect fire and

vegetation trajectories. Finding climate metrics that predict the most extreme results would be chal-

lenging, if not impossible, due to complex interactions within the model. While culling input data-

sets from GCMs and ESMs that perform poorly in the region may be required to reduce uncertainty

[49], culling less extreme climate futures may inadvertently reduce the desired range of results.

Conclusions

Fuzzy logic modeling has been used in a variety of ecological modeling applications [50],

including species distribution (e.g. [51]), habitat mapping (e.g. [52]), water quality (e.g. [53]),

wildfire risk (e.g. [54]), and the human valuation of natural elements (e.g. [55]). Managing for-

ests in light of climate change requires understanding climate’s potential effects on not only

forests, but also industries and communities [26].

Our model may prove useful to managers by itself, but it has the potential to provide greater

utility when combined with other metrics reflecting landscape condition, status, and value. The

modular nature of the EEMS framework would allow our model to be easily combined into

new models. Ignition probabilities, fire spread probabilities, and fire refugia data [56–58] could

be added to provide greater detail for fire risk. Submodels of climate refugia related to microcli-

mate and enduring landscape features [59–60] could provide more realism for mortality-based

risk. Combining our risk model with submodels for current habitat quality (e.g. [61]), connec-

tivity corridors [62], and species presence or absence could help guide management conserva-

tion decisions. Similarly, incorporating risk with submodels for economic, social, and cultural

values could help managers with biocultural approaches to conservation [63]. Stakeholder input

and expert opinion can be used to parameterize these models so that they precisely reflect man-

agement concerns. It is our hope that this model and this methodology can contribute to sound

decision making for a wide variety of purposes in our study region and beyond.
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S1 Fig. Maps of Biomass Loss Risk from EEMS model for the RCP 4.5 FS scenario.

Figure rows include the mean, minimum, maximum, and uncertainty representation for one

time period. (min: minimum; max: maximum; uncert: uncertainty).

(TIF)

S2 Fig. Maps of Biomass Loss Risk from EEMS model for the RCP 4.5 NFS scenario.

Figure rows include the mean, minimum, maximum, and uncertainty representation for one

time period. (min: minimum; max: maximum; uncert: uncertainty).

(TIF)

S3 Fig. Maps of Biomass Loss Risk from EEMS model for the RCP 8.5 FS scenario.

Figure rows include the mean, minimum, maximum, and uncertainty representation for one

time period. (min: minimum; max: maximum; uncert: uncertainty).

(TIF)

S4 Fig. Drivers of MC2Mortality Risk. Maps of MC2 Fire Loss Risk (A, D, G),MC2Mortality
Risk (B, E, H), and MC2 Fire Loss Riskminus MC2Mortality Risk (C, F, I) from EEMS model

for the RCP 4.5 FS scenario. Figure rows represent time periods.

(TIF)

S5 Fig. Drivers of MC2Mortality Risk. Maps of MC2 Fire Loss Risk (A, D, G),MC2Mortality
Risk (B, E, H), and MC2 Fire Loss Riskminus MC2Mortality Risk (C, F, I) from EEMS model

for the RCP 4.5 NFS scenario. Figure rows represent time periods.

(TIF)

S6 Fig. Drivers of MC2Mortality Risk. Maps of MC2 Fire Loss Risk (A, D, G),MC2Mortality
Risk (B, E, H), and MC2 Fire Loss Riskminus MC2Mortality Risk (C, F, I) from EEMS model

for the RCP 8.5 FS scenario. Figure rows represent time periods.

(TIF)

S7 Fig. Relationship between climate change summary and MC2 Biomass Loss Risk.

Change (1971–2000 vs future period) in average maximum temperature vs change in average

annual precipitation for each of the 20 RCP 4.5 climate futures (A-C), and fraction of the simu-

lated area with maximum and minimum values MC2 Biomass Loss Risk for the RCP 4.5 FS sce-

nario (D-F) and the NFS scenario (G-I). In graphs D-I, a point above the 45˚ line indicates

that the results of the MC2 run driven by that climate future showed a greater number of high

vs low values of biomass loss over more of the study area. Points below the 45˚ line indicate

that MC2 results showed a greater number of low vs high values over more of the area. (mm:

millimeters).
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