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This article reviews current understanding of the anabolic effects of 
androgens, sarcopenia, frailty, and the preventative and therapeutic 
potentials of T treatment.

ANDROGEN EFFECTS ON MUSCLE
T supplementation is associated with dose dependent increases 
in muscle mass and reciprocal decreases in fat mass in young and 
older men.7,8 The increase in muscle mass is due to hypertrophy 
of type  1  (slow twitch) and type  2  (fast twitch) muscle fibers.13,14 
Correspondingly, T treatment is associated with dose–dependent 
improvements in muscle strength and power, the product of the force 
and speed of contraction.15 Androgens, however may not affect other 
aspects of muscle function including fatigability and specific tension 
or muscle quality (the ratio of muscle strength to size).15,16

The anabolic effects of androgens are achieved through action 
on multiple cellular targets.17 T increases satellite cell replication 
and activation, the number of myonuclei and effects protein 
metabolism.14,18–21 In vitro studies suggest androgens modulate the 
differentiation of pluripotent mesenchymal cells preferentially towards 
the myogenic rather than the adipogenic lineage.22 Multiple signaling 
pathways are involved in these androgen–dependent myogenic 
effects on cellular differentiation and proliferation and muscle protein 
turnover. 17 Androgen receptors, in the satellite cell as well as several 

INTRODUCTION
Worldwide populations are ageing. The number of Europeans aged 
65 years and over is predicted to almost double over the next 50 years, 
from 87 million in 2010 to 148 million in 2060.1 Similar trends are 
occurring throughout the developed and developing world. In this 
context, understanding ageing, and particularly why some older adults 
progress more quickly to disability and dependency, has become a leading 
research priority. Sarcopenia, the loss of muscle mass and function 
with advancing age, is a central event in the development of frailty, the 
vulnerable health status that precedes overt disability in older adults.2,3

The etiology of sarcopenia and frailty undoubtedly involves multiple 
mechanisms, one of which may be the age–related decline in anabolic 
hormone levels.4,5 Testosterone (T) is the primary androgenic hormone in 
men and has potent anabolic effects on skeletal muscle.6–8 The majority of 
T in the circulation is bound to albumin or sex hormone binding globulin 
(SHBG), the remaining unbound fraction is referred to as free T, this 
fraction combined with the albumin bound fraction can be described as 
bioavailable T. Total T levels decline modestly with age in men, while free 
T levels decline more steeply due to a concomitant increase in SHBG.9–11 
These changes are influenced by health status and potentially modifiable 
risk factors, most notably obesity and smoking.9,10,12

In this context, the role of T in the development of frailty and 
in ameliorating this condition has attracted considerable attention. 
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other muscle cell types, are upregulated by androgens.23 Androgens 
binding to the androgen receptor promote translocation of b–catenin to 
the cell nucleus of mesenchymal pluripotent cells, leading to myogenic 
differentiation via follistatin signaling and inhibition of transforming 
growth factor–b.24 Similar mechanisms may be involved in androgen 
effects on satellite cell proliferation.25 Several studies also indicate 
a role for notch signaling in mediating androgen effects on satellite 
cell activation and proliferation.14,26,27 Other cellular mediators may 
include stimulation of protein synthesis via the Akt/4 mammalian 
target of rapamycin (mTOR) pathway and inhibition of forkhead box 
protein (FoxO) mediated protein breakdown, as well as upregulation 
of intramuscular insulin–like growth factor–1 signaling.28–30 The 
relative importance of these different subcellular mechanisms and their 
interaction with each other are currently not well–defined.

SARCOPENIA–MUSCLE AGEING
The loss of muscle mass is one of the most striking characteristics of 
the ageing process. Longitudinal estimates from the Health Aging 
and Body Composition Study (Health ABC), a large cohort of high 
functioning men and women aged 70–79 years at baseline, suggest an 
average decline in thigh muscle cross–sectional area of 6.8% in men and 
3.2% in women over 5 years.31 The rate of decline may vary according 
to baseline fitness and body composition, as well as concurrent changes 
in body weight.31–33 The parallel loss of muscle strength greatly exceeds 
this decline in lean mass.31

The loss in lean mass is due to a reduction in the number of muscle 
fibers and a decrease in size of the remaining fibers.34 The primary 
mechanism of fiber loss is believed to be a progressive loss of limb 
motor neurons.35 Ageing is also accompanied by further changes in 
muscle morphology including an accumulation of shrunken muscle 
fibers and a clustering of fiber types, as well as an increase in muscle 
fat infiltration.36 This morphological degeneration partially explains 
the disproportionately greater loss in muscle strength with increasing 
age. However, changes in neural coordination and muscle fiber specific 
factors can also be relevant (for review see37).

The term sarcopenia has been widely accepted to capture this 
ageing–related decline in muscle mass and function. Early definitions 
of sarcopenia focused on low levels of lean muscle mass relative 
to threshold levels derived from young reference populations.38,39 
Definitions often focus on the lean mass of the limbs (appendicular 
lean mass (ALM)), reasoning that this most likely reflects functional 
skeletal muscle, rather than non–muscle lean tissues.38 The amount 
of lean mass is normally scaled to body size  (height2), and some 
definitions also account for body fat.38–41 In recent years a number 
of international working groups have proposed new definitions of 
sarcopenia based not only on the presence of low muscle mass but 
also low muscle function.42–45 The European Working Group on 
Sarcopenia defined sarcopenia as low muscle mass combined with 
either slow gait speed or low grip strength.42 Similarly, consensus 
statements from the International Working Group on Sarcopenia 
and the special interest groups on ‘cachexia–anorexia in chronic 
wasting diseases’ and ‘nutrition in geriatrics’ propose definitions 
based on low muscle mass and low gait speed.43,45 Finally, the 
Society for Sarcopenia and Cachexia suggested sarcopenia with 
limited mobility should be considered a specific condition.44 A 
summary of these different definitions is shown in Table 1.38, 39, 41–49 
Unsurprisingly the different definitions capture differing groups of 
older adults, highlighting the urgent need for a wider consensus on 
sarcopenia.50,51 The recent guidelines emphasize the clinical relevance 
of low muscle strength and physical function. However, decreases in 

muscle mass in ageing have a particular etiology and only partially 
explain declines in function.36,37,52 Moreover, skeletal muscle fulfills 
other important physiological functions including maintenance of 
insulin–mediated glucose homeostasis and providing a reservoir of 
proteins for use throughout the body.52,53 In this context, others have 
argued that ‘sarcopenia’ should be reserved for the decline in muscle 
mass, alongside terms such as ‘dynapenia’ and ‘kratopenia’ to capture 
the related declines in muscle function.54,55

FRAILTY
The age–related decline in muscle mass and function is a key process 
in the development and progression of frailty.2,3 However, frailty is 
currently conceptualized as a more general vulnerability, presaging 
adverse outcomes including falls, hospitalization, disability and death 
in older adults.1,4,56–58 This vulnerability arises when functional declines 
across multiple physiological systems lead to depleted homeostatic 
reserves and impaired responses to stressors.56,58 Numerous criteria 
have been proposed to describe this condition.59–62 Amongst these, the 
most widely accepted has been the phenotypic frailty model, proposed 
by Fried and colleagues, operationalized initially for the Cardiovascular 
Health Study  (CHS).46 This model focuses on physical frailty and 
comprises five criteria drawn from a hypothetical cycle of decline: 
shrinking or sarcopenia, muscle weakness, slow gait speed, exhaustion 
and low physical activity.46 People with three or more criteria are 
considered frail and those with one to two are considered intermediate 
or prefrail. The model has been adapted for use across many ageing 
cohort studies.63–67 A pared down version incorporating weight loss, 
exhaustion and impaired chair rising has also been proposed by the 
Study of Osteoporotic Fractures (SOF) group.49,59

The second popular model proposed by Rockwood adopts a 
broader approach, grading frailty according to the number of ageing 
related health deficits summarized as a frailty index (FI).47,68 The health 
deficits may include any variable ranging from symptoms and physical 
signs to social isolation.47,68 Despite this flexibility, a remarkable degree 
of concordance has been shown between indices generated using 
many different deficits across different populations.69–71 A more recent 
approach, the Fatigue, Resistance, Ambulation, Illness and Loss of 
weight, or FRAIL Scale combines self–reported physical symptoms 
with the count of chronic conditions, and has utility where objective 
measures required for other frailty models are unavailable.48,72 It is 
self–evident that relationships with potential causal factors will be 
specific for each model of frailty studied and therefore not generalizable 
across different classifications. Table 1 summarizes the key features of 
some current frailty models.

RELATIONSHIPS BETWEEN ANDROGENS AND FRAILTY
In recent years several studies have explored the relationships between 
T levels and defined frailty models. Alongside this, there has been an 
expansion of research on the relationships between androgens, body 
composition, muscle function and physical function. A summary of 
evidence from these studies is shown in Table 2.

Frailty
Several recent studies have assessed the relationships between T levels 
and frailty using the CHS criteria. Low bioavailable T, but not total T, 
was related to frailty in cross–sectional analyses in men aged ≥65 years 
from the Osteoporotic fractures in men study (MrOS), this relationship 
was marginally nonsignificant in prospective analyses.73 Lower free and 
total T were associated with frailty in a sample of 552 Spanish men 
aged ≥65 years from the Toledo Study for Health and Aging,74 and in 
a sample of 54 Taiwanese men recruited from clinical and community 
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Table  1: Operational definitions of sarcopenia and frailty

Authors Components Cut–points Development sample

Sarcopenia

Baumgartner et al., 
199838

Low appendicular lean mass/height2 1–2 SD below reference population aged 
18–40  years

New Mexico Elder Health Survey/New 
Mexico Aging Process Study/Rosetta Study

Janssen et al., 200239 Low skeletal lean mass/BMI×100 >2 SD below reference population aged 
18–39  years

National Health and Nutrition Examination 
Survey

Newman et al., 200341 Residuals from linear regression of 
appendicular lean mass with height 
and fat mass

Lowest 20% of residuals stratified by gender Health Aging and Body Composition Study

Cruz–Jentoft et al., 
201042

European Working 
Group

Low muscle mass with either low 
grip strength or low walking speed

Screening by gait speed <0.8  m s−1, muscle 
mass and grip strength 2 SD below young 
reference population

Consensus from earlier published data

Fielding et al., 201143

International Working 
Group

Low whole body total or 
appendicular lean mass and low 
function

Lowest 20% from young reference population. 
Current suggested cut points: Gait speed 
<0.1 m s−1 ALM Ht2<7.23  kg m−2 in 
men<5.67 kg m−2 in women

Consensus from earlier published data

Muscaritoli et al., 
201045

Special interest groups

Low muscle mass with low 
function (gait speed)

>2 SD below reference population of young 
adults from the same ethnic background. Gait 
speed <0.8 m s−1 from 4  m walk

Suggest National Health and Nutrition 
Examination Survey for reference values

Morley et al., 201144

Society for sarcopenia 
and cachexia

Low appendicular lean mass/height2 
with poor walking ability without 
other specific cause of mobility 
difficulties

>2 SD below reference population aged 
20–30  years from same ethnic group. <400 m 
distance in the 6  min walk or walking speed 
<1  m s−1

Consensus from earlier published data

Frailty

Fried et al., 200146

Frailty Phenotype
At least 3 from self–reported weight 
loss and exhaustion, low physical 
activity, low gait speed and low grip 
strength

Lowest 20% from reference population aged 
65+ years stratified by gender and height/BMI

Cardiovascular Health Study

Rockwood et al., 200747

Frailty Index
Index of health deficits, typically 
including 30–40 items across a 
range of domains

Depends on the use of binary, ordinal or 
continuous items

Canadian Study of Health and Aging

Van Kan et al., 200848

FRAIL Scale
At least three from self–reported 
weight loss, exhaustion, difficult 
with walking, and stair climbing and 
more than five chronic conditions

NA NA

Ensrud et al., 200849

SOF frailty phenotype
At least two from weight loss, self–
reported exhaustion and poor chair 
rising ability

≥5% weight loss over 2  years, inability to rise 
from a chair five times

Study of Osteoporotic Fractures

ALM: appendicular lean mass; BMI: body mass index; SD: standard deviation; LBM:  lean body mass; NA: not available

Table  2: Summary of testosterone effects on frailty

Observational studies Interventional studies

Frailty Relationships seen in most studies
Partially explained by adjustment 
for BMI and morbidities

NA

Muscle mass Moderately related in many 
studies
Discrepancies may reflect 
different LBM measures and 
accounting for body fat

Consistently 
increased by 1–2  kg
Greater increases at 
higher doses

Muscle strength Modestly related in many studies
Prospective relationships unclear

Usually little change
Improved in some 
studies, normally at 
higher doses

Physical function Inconsistent relationships
Many different tests
High functioning samples

Generally little 
effect; improvements 
in specific 
circumstances
Difficult to measure 
and dependent on 
many factors in 
addition to strength

settings.75 In a report from the Concord Health and Aging in Men 
Project (CHAMP), lower free and total T were related to higher levels 

of frailty in men aged 70–97 years, greater declines in T over 2 years 
also predicted progression of frailty at follow up in this study.76 Results 
were similar using the CHS criteria or the abbreviated SOF version.76 
Finally, reports from the Massachusetts Male Aging Study (MMAS) 
and the Nutrition and Health Examination Survey (NHANES) showed 
relationships between low free T and physical frailty, that became 
nonsignificant after multivariate adjustment.77,78 No relationship with 
total T was seen in these studies.77,78

Studies using broader frailty models have also shown relationships 
between T levels and frailty.79,80 Lower baseline free T was related to 
the FRAIL Scale in both cross–sectional and prospective analyses 
in men aged 70–88 years from the Health in Men Study.79 Similarly, 
lower free T was related to higher levels of the FI in an analysis from 
the European Male Ageing Study.80 Weaker relationships with total T 
were seen in these studies.79,80

Body composition
Studies in adult men have frequently shown moderate positive 
associations between T levels and lean body mass, alongside negative 
associations with fat mass.81–88 Total and free T were correlated to 
arm and leg lean mass in men aged 24–90 years from the Baltimore 
Longitudinal Study on Ageing.89 Total T and free T were related to 
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appendicular skeletal muscle (ASM) mass in men aged 65–97 years 
from the New Mexico Aging Process study.83 Free T indices, but 
not total T, were associated with relative ASM (RASM) in men aged 
45–85 years from the MINOS study.86 Similarly, bioavailable T was 
associated with RASM in a sample of 142 men aged 64–92 years.85 In 
another study SHBG/T ratio, but not total T or free T, was related to lean 
body mass in 403 men aged 70 years and older.87 Free T, but not total T, 
was related to total and thigh lean mass in a sample of 101 men aged 
60–70 years.90 Free T and bioavailable T were related to lean body mass 
in a sample of 335 Malaysian and Chinese men aged ≥40 years.84 Lastly, 
total and free T were related to RASM in 1489 men aged ≥65 years from 
the MrOS Hong Kong study.82

However, several recent studies did not find significant relationships 
between T levels and lean body mass: Vandenput et  al., found no 
association between total or leg lean body mass in 2014 men aged 
69–80 years from the MrOS Sweden sample.91 Similarly, Orwoll et al., 
found no difference in lean body mass index (BMI) across the range 
of bioavailable T levels in men from the American MrOS sample,92 
while Maggio et al., found no difference in calf muscle area, measured 
by peripheral quantitative computed tomography (pQCT) scanning, 
across strata of total T levels in men from the Chinati study.93 Finally, 
a mild negative relationship between T levels and lean body mass was 
seen in men aged 20–90 years from the NHANES study,94 with similar, 
but nonsignificant, trends seen in men aged 30–79 years from the 
Boston Area Community Health Bone Survey.95

This discrepancy between studies may reflect sample differences 
in T levels or the different lean body mass parameters and/or 
measurement techniques used. Another possible explanation is 
differential scaling to body size and/or adjustment for fat mass across 
studies. Higher adiposity (and therefore BMI) is positively correlated 
with lean body mass and associated with reduced T levels, it is possible 
this comparatively strong effect may obscure the more modest positive 
effects of T on lean mass.81 Interestingly, a recent study in older 
Caribbean men suggested an inverse relationship between androgens 
and calf muscle fat infiltration, as well as a positive relationship with 
muscle density.96 This suggests an effect of androgens on muscle 
composition in addition to the influence of muscle mass and further 
highlights the potential confounding role of body fat in the relationship 
between lean mass and T, particularly as most techniques, including 
dual–energy X–ray absorptiometry (DXA), are not sensitive to muscle 
composition.

In addition to these cross–sectional studies, a recent prospective 
study found that higher baseline total T or bioavailable T was associated 
with less loss of lean mass over 4.5 years follow–up in 1183 men from 
the MrOS cohort, with strongest effects seen in the men who lost the 
most weight.97 Another study found a relationship between low baseline 
free T and increased likelihood of low muscle mass at 10 year follow up 
in Japanese men aged 40–79 years, weaker, nonsignificant trends were 
seen for total T.98

Muscle strength
Grip strength is the most widely used strength measurement in 
epidemiological studies, and is generally considered a good proxy 
for overall muscle strength and frailty.99 Cross–sectional studies in 
middle–aged and older men have shown modest positive associations 
between T levels and grip strength in most,82–84,87,92,93,100,101 but not 
all studies.81,102 In studies using more sophisticated muscle function 
measurements, total T and free T Index levels were correlated to 
upper and lower limb muscle strength in 262 men aged 24–90 years 
from the Baltimore Longitudinal Study of Ageing,89 while total and 

bioavailable T levels correlated to measures of upper and lower limb 
muscle strength in a small sample of older African American men.100 
In a recent study, free, but not total T was weakly associated with 
knee extensor strength by isometric and isokinetic dynamometry 
in a sample of 101 men aged 60–70 years.90 Similarly, total and free 
T were modestly correlated with greater knee extensor strength in 
a sample of 403 men aged  ≥70 years,87 while lower bioavailable T 
was associated with slightly lower leg power in men from the MrOs 
study.92 In a prospective study, baseline T levels were not associated 
with 3 year change in grip or knee extensor strength in men from 
the Longitudinal Aging Study Amsterdam  (LASA) or the Health 
ABC study.103 Similarly, baseline T was not associated with 4.5 year 
change in grip strength or leg power in a report from the MrOs study, 
although there were trends towards greater losses at the lowest T 
levels among men who lost the most weight (≥2 kg) between waves.97

Physical function
Functional aspects of physical frailty are important in terms of 
determining clinical outcomes and quality of life. However, accurate 
assessment of physical function is methodologically challenging due 
to the large individual variability, effort dependence and practice 
effects. Studies on the relationships between androgens and physical 
function have shown equivocal results. In a small sample of black 
American men, total T levels were correlated with chair standing and 
door opening performance, but not with gait speed, timed up and 
go or simulated eating, while bioavailable T levels were correlated 
with gait speed, timed up and go and the doors task, but not with 
the other tasks.100 In a cross–sectional analysis from the LASA, 
bioavailable and free T, but not total T levels were correlated with 
better physical performance.101 A report from the MMAS found 
a relationship between total T and performance on the physical 
performance test  (PPT) only below a threshold level estimated at 
451 ng dl  −  1, and no relationship with chair rising performance.102 
Similar relationships with bioavailable T were seen in this study.102 
In men from the MrOS, low bioavailable T was associated with 
marginally poorer performance on tests of chair rising and walking 
ability.92 In men from the MrOS Hong Kong, higher total and free T 
were related to higher scores on a composite measure derived from 
several neuromuscular function tests; of the individual tests T levels 
were related to higher narrow walk speed and step length, but not 
to chair rising ability or gait speed.82 Higher free T, but not total T 
levels were related to faster gait speed and improved performance on 
the Short Physical Performance Battery (SPPB) in middle–aged and 
older men from the Framingham Offspring Study.104 In prospective 
analyses from this study, lower baseline free T was associated with 
self–reported mobility limitation at 6 year follow–up. 104 Prospective 
studies using objective assessments of physical performance have 
shown largely negative results. No relationship between baseline T 
levels and 3 year change in performance of a composite physical score 
including gait speed, chair rising and tandem stands, in men from the 
LASA and Health ABC studies.103 Similarly, no overall relationship 
between baseline T and declines in chair standing and gait speed tests 
in men from the MrOS, although a mild relationship between lower 
T and less decline in chair stand performance was seen in men who 
lost the most weight between follow–up. 97

Summary
In summary, a relationship between lower T levels (especially free T) 
and frailty constructs has been consistently, though not universally, 
found across studies. This relationship can be explained, at least 
partially, by confounding covariates, particularly age, BMI, morbidities 
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and smoking, suggesting that low T may be a marker for these 
risk factors underlying frailty. Nevertheless, in most studies, some 
relationship with T persists even after adjustment for these confounders 
and it is plausible that lower T may be causally linked to frailty through 
its effects on muscle mass. The broadly consistent relationships with 
lean mass, including recent prospective data, offer some support for 
this pathway. T has been modestly, but consistently, related to muscle 
strength, but less clearly related to physical function. It is likely these 
effects are mediated through effects on lean mass, however in one 
study effects on strength persisted after adjustment for ALM.82 This 
may suggest additional mechanisms for androgen effects on strength 
that are not explained by changes in lean mass. Prospective data on 
progression of frailty or functional decline have shown equivocal 
relationships, although many studies included high functioning 
men.97,103 Few studies have simultaneously measured changes in T 
levels and functional measures across two or more time points and 
this is an important area for future research.

EFFECTS OF ANDROGEN TREATMENT ON FRAILTY
This section reviews studies on the effects of T treatment on components 
of frailty in healthy and frail older men. Particular attention is given 
to body composition, muscle strength and physical function. Table 2 
gives an overview of the results from these interventional studies.

Body composition
T treatment at near physiological dosages for 3–36  months has been 
reliably found to increase lean body mass and reduce fat mass in both 
healthy and frail older men with low to low normal T levels.8,18,105–118 
The magnitude of improvements in lean mass has been in the region 
of 1–2  kg in most trials depending on the dose and type of preparation 
used.105–108,110,113,114,116,117 Larger gains of around 4 kg have been seen in trials 
using injected T preparations.18,111 The minority of studies not to show 
an effect were limited by short treatment duration (1  month), use of the 
relatively insensitive bioelectrical impedance technique to assess lean mass 
changes, and inclusion of men with normal T levels.119–121 An increase in 
lean body mass in sarcopenic older men may lead to improvements in 
glucose metabolism, drug tolerance and whole body protein reserves.52 
However, the important question is whether this gain in muscle mass 
translates to increases in strength and so functional ability.

Muscle strength
Studies in young and older men have suggested dose–dependent effects 
of T on muscle strength and power, without clear effects on muscle 
fatigability.15,122 While power maybe more closely related to physical 
function in older adults,123 it is more difficult to measure than strength,124 
and the effects of T on muscle power are probably explained by the effects 
on strength. Due to the wider range of strength assessments available, 
most studies in older men have focused on this parameter, with varying 
improvements seen. Grip strength, the most widely used strength 
assessment, has been found to increase in some trials,62,111,125,126 but not 
others.106,113–117,120 Similarly, some studies have reported improvements 
in lower limb strength,18,114,127,128 while others have failed to show any 
effect of treatment.107,109,111,113,117 There are several reasons why gains in 
lean mass may not reliably lead to improvements in muscle strength. 
Firstly, it is a possible that lean mass gains may not reflect increases in 
myofibrillar protein content. Early gains (8  weeks treatment) in lean mass 
may reflect water retention or accumulation of noncontractile proteins.129 
However, most studies have used longer treatment durations, and as 
discussed above, a variety of studies demonstrate effects of androgens 
on muscle protein synthesis, fiber size, myonuclear number and satellite 

cell activation.13,18,20,22 Another possibility is that gains in lean mass may 
be too small to lead to increases in strength: a recent study using several 
combinations of T and growth hormone treatments estimated that gains 
in lean mass of at least 1.6  kg were required to improve leg or chest press 
strength in a sample of healthy older men.130 This may explain the lack 
of effect in some studies,106,110 but in many others increases in lean mass 
were in or above this range.

Improvements in strength have most frequently been seen using 
1 repetition maximum (1–RM) techniques and relatively high doses of 
T. A small study in healthy men (n = 12) showed an increase of 15  kg 
in leg press strength with treatment alongside a gain in lean mass of 
4  kg.18 Larger studies have also shown improvements in 1–RM leg press 
strength alongside smaller (<2  kg) gains in lean mass following doses 
of 10  mg day − 1 transdermal T in healthy and mobility limited older 
men.116,127 Improvements at lower doses (2.5–5  mg day – 1) have been 
less clear.107,108,112 Studies using isokinetic dynamometry in healthy or 
frail older men have shown very limited to no improvement in lower 
limb strength compared to placebo, despite gains in lean mass of 1–4 kg 
and treatment for up to 3  years.107,113,114,117,128 In one of these studies, 
improvements in knee extension strength of 6% have been shown in 
frail men using isometric dynamometry.114

1–RM protocols define maximum strength as the terminal weight 
lifted in a series of incrementally higher loads, while dynamometry 
protocols typically define strength as the highest torque generated 
during a muscle contraction. Isokinetic dynamometry involves a 
contraction at a set speed over a defined range of motioned; whereas, 
isometric protocols involve static contractions at a fixed joint angle. 
Contraction velocity in 1–RM contractions is quite slow; it has been 
suggested that this may be more similar to that seen during isometric 
contractions.131 In older men, both the contraction velocity and rate of 
force development are reduced,132,133 it is therefore likely that older men 
find it difficult to perform the faster contraction speeds used in many 
isokinetic dynamometry protocols. Consequentially, it is possible that 
isokinetic dynamometry may not capture improvements in strength 
even when there are large gains in lean mass and improvements in other 
muscle function measures.111 While differences in strength assessments 
may partially account for small differences between studies, overall the 
effects of near physiological T treatments on strength can be said to be 
modest, with trends towards greater improvements at higher doses.

Physical function
T–induced improvements in physical function have been limited 
across many studies to date, with most failing to show any clear 
effects. Studies in healthy men have failed to show improvements in 
functional tasks including tests of balance, gait speed, chair rising, 
step height and functional reaching.106,109,113,120,128 One study did show 
an improvement on a composite physical performance test including 
rising from a chair, a fast walk, a step height test, a door task and a 
stair ascent and descent over 12–36  months treatment.111 Two studies 
in frailer men did not show any overall improvements in gait speed, 
mobility or activities of daily living tests following treatment for 6–24  
months.107,114 Although in one of these studies improvements on some 
scales were seen in older (≥75 years) and frailer (≥2 of Fried’s criteria) 
men.114 Finally, in the TOM trial, loaded stair climbing improved with 
treatment compared to placebo in mobility limited men (P = 0.05), 
there were also trends towards greater improvements in loaded gait 
speed, but not in unloaded tasks.127

It is possible that increases in strength were too small to lead to 
measureable improvements in function in some studies, particularly 
as relatively large improvements on functional tasks often occurred 
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in both groups, consistent with learning effects.109,128 Another factor 
is likely to be the nonlinear relationship between muscle strength and 
physical function: at a certain level, dependent on the difficulty of 
the task used, the relationship plateaus, such that further increases in 
strength will not result in improvements in physical function.134–136 It 
is likely that in the majority of studies participants were functioning 
above the most sensitive strength ranges for the assessments used. 
Indeed, while improvements in strength and power are dose dependent, 
even supraphysiological doses of T may not improve performance on 
functional tasks in healthy older men.122 Finally, physical function is 
dependent upon a number of factors in addition to muscle function,137 
with strength making a varying contribution to the performance of 
different tasks.123 T therapy might be expected to preferentially affect 
more strength–dependent tasks, in agreement improvements in loaded 
stair climbing and gait speed were correlated with increases in T and leg 
press strength in the TOM trial, but improvements in unloaded tasks 
were not.116 It is also likely that T alone may be relatively ineffective and 
may need to be combined with exercise or other functional training 
in order to engender broad spectrum functional improvements.138

Summary
In summary, T treatment reliably improves body composition and may 
be associated with modest increases in muscle strength, especially at 
higher (near supraphysiological) doses. Response in physical function 
may preferentially improve for strength dependent tasks, but such 
improvements will only be detectable using tasks appropriate to the 
baseline ability of participants.

TIME COURSE AND DURABILITY
Improvements in lean body mass and strength in response to T 
treatment are reached within 6 months and can be maintained without 
further increment for the duration of treatment (longest study to date 
is 3 years).111,113,117 Studies in healthy and frail older men suggest most 
of this benefit is lost within 3–6  months of discontinuing treatment, 
although in men experiencing the largest gains some residual benefits 
may remain at 3  months.139,140

SAFETY OF T THERAPY IN OLDER MEN
The use of T therapies in older men has been limited by concerns over 
adverse cardiovascular and prostatic effects. Several meta–analyses 
suggest T has been well–tolerated in the majority of studies in healthy 
older men.141–143 The most frequent adverse effect seen is increased 
hematocrit, which may lead to clinically significant erthrocytosis.141–143 
T has also been shown to be well–tolerated in frailer older men, 
with only mild effects on hematocrit, prostate specific antigen (PSA) 
and blood lipids.114 In contrast to these findings, the TOM trial of T 
therapy in men with limited mobility was discontinued following an 
imbalance in cardiovascular events in T treated men compared to 
placebo.127 This discrepancy may be explained by the relatively high 
dose used in a comparatively high risk population: the strongest risk 
factor for cardiovascular events in this trial was the increase in free 
T.144 This is consistent with previous findings of greater frequencies of 
adverse events associated with higher T doses in healthy older men.8 
Men included in the trial had a high mean BMI, as well as a very 
high frequency of hypertension, diabetes and hyperlipidemia.127 This 
experience sounds a salutary note of caution regarding the safety of 
treating frail elderly men with relatively high doses of T, highlighting 
the importance of careful patient or trial subject selection.

The effects of T on serious prostate events are currently unclear 
due to the relatively small size of the studies and short duration of 

exposure. A  2005 meta–analysis suggested that men treated with 
T experienced approximately double the rate of all prostate events 
including biopsies, cancers, increased symptoms, increments in PSA 
and urinary retention.141 However, this may be explained by monitoring 
bias.141 The effects of T on prostate and cardiovascular events will only 
be clearly established by larger scale, longer duration, appropriately 
powered clinical trials.

FUTURE DIRECTIONS IN ANDROGEN THERAPIES
As described, physiological androgen therapies have shown limited 
improvements in muscle function and concerns remain over the safety 
of higher doses of T in older men. Several new approaches with the 
potential to address these limitations have started to emerge.
Selective androgen receptor modulators (SARMs) have been developed, 
aimed at maximizing anabolic effects on muscle and bone without 
androgenic effects on other tissues, especially the prostate and hair 
follicles.145,146 The first trials of these compounds as function promoting 
therapies have recently been reported.147–149 Treatment with GTx–
024 (Enobosarm) has been associated with increases in lean body mass and 
stair climbing ability, without virilizing effects, in healthy older men and 
women and in patients with cancer cachexia.147,148 In another trial, 6 months 
treatment with MK–0773 was well–tolerated and associated with increases 
in lean body mass, but not muscle strength or physical performance in 
older women with sarcopenia and mobility limitations.149 Finally, in a recent 
dose finding study another SARM, LGD–4033, increased lean body mass 
without effecting PSA levels in healthy young men.150 As demonstrated 
by these early studies, these agents will permit the use of androgen–based 
anabolic therapies in older women and raise the possibility of safely using 
more potent pharmacological doses to more reliably improve muscle 
strength not only in older adults but also in the broader context of cancer 
cachexia and posttraumatic and postoperative rehabilitation. In these latter 
indications, the shorter duration of treatment and the consistent positive 
effects on muscle mass (as opposed to strength and function) may well be 
the important primary therapeutic outcome.

Androgen therapy consistently increases lean body mass, but may 
not improve muscle function, while progressive resistance training may 
improve muscle function in older adults in the absence of gains in lean 
mass.151 Two recent studies have explored the potential of combining 
these interventions.152,153 The combination of 12 months progressive 
resistance training and T lead to greater improvements in body 
composition than either intervention alone in healthy older men, but 
did not provide additional improvements in muscle strength or physical 
function.152 Similarly, in the second study the addition of T therapy for 
the latter 12 weeks of a 24 week resistance training program increased 
muscle mass, but not muscle function over men engaged in training 
alone.153 Although this study may have lacked statistical power; the 
combined T and training group included only six men.153 Despite the lack 
of evidence of synergy between the two therapies, these studies confirm 
their differential effects on muscle mass and function. Combining novel 
androgen therapies with different exercise training programs will be an 
essential key area for future research in combating frailty.

CONCLUSIONS
The consistent effects on lean mass in interventional studies 
combined with the relationships seen in observational studies and the 
increasingly well–characterized mechanistic pathways all suggest T is 
an important promoter of muscle mass gain in older men. As such, 
falling T levels may contribute to the development of frailty, although 
the decline in strength with ageing involves many more mechanisms. 
Correspondingly, the functional effects of T are less clear. Much of 
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the current research has involved high functioning older men; there 
is a need for more observational studies as well as interventional 
trials in frailer populations. The present confusion over the purported 
syndromes of sarcopenia and frailty presents a limitation for study 
design. A consensus on the most meaningful features of physical decline 
will assist in determining etiologies and future trial design. Focus 
on particular domains, such as mobility decline, may be preferable 
to the current syndromic definitions. More sophisticated analysis of 
parallel changes in hormone levels, body composition and functional 
outcomes over time will help to unravel the directionality of these 
relationships and so the true role of androgens in functional decline. 
The development of SARMs has the potential to limit the adverse effects 
of T, allow more potent functional promotion and extend the use of 
androgen therapies to broader populations. Deeper understanding 
of the molecular mechanisms underlying androgens’ anabolic effects 
will facilitate the development of further nonsteroidal agents. The 
application of these agents in combination with well–designed exercise 
training protocols represents an exciting new direction in this field.
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