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Abstract

Motivation: The analysis of biological samples in untargeted metabolomic studies using LC-MS

yields tens of thousands of ion signals. Annotating these features is of the utmost importance for

answering questions as fundamental as, e.g. how many metabolites are there in a given sample.

Results: Here, we introduce CliqueMS, a new algorithm for annotating in-source LC-MS1 data.

CliqueMS is based on the similarity between coelution profiles and therefore, as opposed to most

methods, allows for the annotation of a single spectrum. Furthermore, CliqueMS improves upon

the state of the art in several dimensions: (i) it uses a more discriminatory feature similarity metric;

(ii) it treats the similarities between features in a transparent way by means of a simple generative

model; (iii) it uses a well-grounded maximum likelihood inference approach to group features;

(iv) it uses empirical adduct frequencies to identify the parental mass and (v) it deals more flexibly

with the identification of the parental mass by proposing and ranking alternative annotations.

We validate our approach with simple mixtures of standards and with real complex biological

samples. CliqueMS reduces the thousands of features typically obtained in complex samples to

hundreds of metabolites, and it is able to correctly annotate more metabolites and adducts from a

single spectrum than available tools.

Availability and implementation: https://CRAN.R-project.org/package¼cliqueMS and https://

github.com/osenan/cliqueMS.

Contact: roger.guimera@urv.cat or marta.sales@urv.cat

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The analysis of biological samples in untargeted metabolomic stud-

ies using liquid chromatography coupled to electrospray mass

spectrometry results in tens of thousands of ion signals or features.

It is now well accepted that this large number of features is an over-

estimation of the real number of different compounds in the sample,

mainly because single metabolites can be detected as multiple ions of
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different mass in either positive or negative ionization mode. This re-

dundancy of features is mostly due to in-source phenomena including

cation adduction, multimerization and in-source fragmentation, plus

contaminants. However, few studies have attempted to estimate which

percentage of unique metabolites, out of the total number of detected

features, are being profiled in an untargeted metabolomic experiment.

These studies, in addition, have reported very disparate numbers

(Brown et al., 2009, 2011; Jankevics et al., 2012; Mahieu and Patti,

2017), ranging from as low as only 3% to more than 50% unique en-

dogenous metabolites. This scenario reflects that the annotation of fea-

tures, understood as their feature relationships in MS1 mode, is a

challenging task and represents a serious obstacle for the real high-

throughput analysis of metabolomics data. While computational solu-

tions for the structural identification of metabolites from MS2 data

(Aguilar-Mogas et al., 2017; Allen et al., 2014; Dührkop et al., 2015;

Heinonen et al., 2012; Ridder et al., 2014; Ruttkies et al., 2016;

Tsugawa et al., 2016) have recently demonstrated substantial progress

(Nishioka et al., 2014; Schymanski et al., 2017; Schymanski and

Neumann, 2013), automated tools aimed at the complete exploitation

of LC-MS1 data through the successful annotation of metabolite fea-

tures have not reached the same maturity level.

The two main grouping principles for detecting and annotating fea-

tures related to a metabolite are chromatographic peak-shape similarity

(i.e. coeluting features) and peak-abundance correlation, or a combin-

ation thereof. Pairwise intensity correlation analysis across multiple

samples is the basis of computational tools such as AStream (Alonso

et al., 2011), MSClust (Tikunov et al., 2012), RAMClust (Broeckling

et al., 2014), MS-FLO (DeFelice et al., 2017), compMS2Miner

(Edmands et al., 2017), xMSannotator (Uppal et al., 2017) or

findMAIN (Jaeger et al., 2017) among other similar approaches (Lee

et al., 2013; Zeng et al., 2014). On the other hand, peak-shape similar-

ity is used by CAMERA (Kuhl et al., 2012) and MZmine2 (Pluskal

et al., 2010). MetAssign (Daly et al., 2014) or xMSannotator (Uppal

et al., 2017) has also included a probabilistic score to measure the con-

fidence in particular assignments based on statistical clustering. More

recently knowledge-driven annotation tools have also been proposed

by de la Fuente and collaborators (Gil de la Fuente et al., 2018).

To aid in the automatization of LC-MS1 data processing we

have developed CliqueMS, a computational tool that annotates re-

dundant LC-MS1 features using the similarity between coelution

profiles and a calculated natural frequency of adduct formation

observed in real complex biological samples and pure compounds.

As a result, in contrast to the majority of existing tools, CliqueMS

can produce accurate annotations for a single LC-MS1 spectrum.

To do so, CliqueMS implements a novel mathematical approach to

obtain the most plausible groupings of features according to a similar-

ity network. Next, CliqueMS annotates features and ranks annotations

using an estimated frequency of dominant adducts and in-source frag-

ments in complex biological samples and from all available compounds

in the National Institute of Standards and Technology 14 MS/MS li-

brary (Fig. 1 and Supplementary Material). CliqueMS correctly identi-

fies and annotates a larger number of adducts, leading to more correct

parental ion neutral masses than existing available approaches such as

CAMERA (Kuhl et al., 2012), xMSannotator (Uppal et al., 2017) and

MS-FLO (DeFelice et al., 2017).

2 Materials and methods

2.1 Description of CliqueMS
Formally, CliqueMS addresses the following problem. Our spectral

data are comprised of a set of features characterized by an m/z value

and intensity vector f½ðm=zÞi; f i�g [note that the list of features is

obtained by running the peak peaking algorithm available in XCMS

(see Supplementary Material S2)]. For each feature i, we obtain the

intensity vector discretizing the feature into K equal bins so that

f i ¼ ðfiðtkÞ; k ¼ 1; . . . ;KÞ, where fiðtkÞ is the measured intensity at

retention time tk, where tk ¼ tk�1 þ Dt and t0 ¼ 0 (in our analysis,

Dt depends on the mass detector operational parameters and the

spectral data processing program). Given this data CliqueMS aims

at providing a set of plausible annotations for complex samples

based on the assumptions that: (i) features of the same metabolite

corresponding to in-source phenomena, including adducts (e.g. Na,

K) and fragments (e.g. loss of water), display similar chromato-

graphic elution profiles and (ii) in-source phenomena (such as

adducts or fragments) occur with a probability equal to the fre-

quency with which they are observed in experiments.

To achieve this goal, we have identified three main steps for anno-

tating features (Fig. 1): (i) the construction of a similarity network,

where each node represents a feature and edges are weighted according

to the similarity between features; (ii) the identification of the most

plausible division of the similarity network into cliques (fully connected

groups of features) and (iii) the annotation of the features correspond-

ing to the same parental mass within each clique.

Step 1: construction of a similarity network between features

In order to provide meaningful annotations, first we need to

group features so that features corresponding to the same metabol-

ite are grouped together. CliqueMS is based on the expectation

that all features resulting from in-source transformations of the

same metabolite have a similar chromatographic retention pattern.

A critical step is thus to select an appropriate measure of similarity

between features that reflects our expectations and allows the con-

struction of a similarity network to obtain reliable groups of

features.

A possible choice of similarity function is the Pearson correl-

ation between intensity vectors as considered in CAMERA (Kuhl

et al., 2012). However, the caveat of the Pearson correlation coef-

ficient is that it is only suited to detect similarity of features that

are linearly growing/decreasing and therefore it is a priori not an

optimal option when features are non-linear such as the spectral

data we consider. To overcome this caveat, we propose to use the

cosine similarity, a simple measure that assesses the alignment be-

tween intensity vectors:

cos ij ¼
PK

k¼1 fiðtkÞfjðtkÞ
jjf ijjjjf jjj

(1)

where jjf ijj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

k fiðtkÞ2
q

. Note that the sum runs over all time

bins, and therefore we are not restricting the comparison between

features to a specific retention time window; we are considering the

full window of retention times.

To compare the ability of Pearson and cosine similarities to dis-

criminate between features corresponding to the same metabolite

from coeluting features corresponding to different metabolites, we

performed a validation experiment in which we manually simulate

the coelution of features (see Supplementary Fig. S2). The results

from this experiment show that the cosine similarity has a superior

discriminatory power than the Pearson correlation, therefore justify-

ing our choice for similarity metric.

We then construct a weighted undirected similarity network CO

in which each node corresponds to a feature and the weight of each

edge between nodes (i, j) corresponds to cij ¼ cos ij. Note that this is

not a fully connected network, because features that have non-

overlapping intensity vectors are not connected (cij ¼ 0).
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Step 2: principled identification of groups of features (cliques) in the

similarity network

Our next step is to identify groups of features that are similar.

Because CliqueMS assumes that all features of the same metabolite

must have cij > 0, we aim at identifying cliques of features in the net-

work, that is groups of features that are fully connected so that cij 6¼ 0

for any pair of features within a clique.

Formally, the task of finding these groups is equivalent to a label as-

signment problem in which we want to assign a group label to each fea-

ture ri with the constraint that cij > 0 for any pair of nodes with the

same label. Note that this problem is different from the problem of com-

munity detection in complex networks in which nodes with the same

group labels do not have to be necessarily connected (Guimerà and

Amaral, 2005). For this reason, we cannot use community detection

algorithms for this purpose. Instead, we follow a probabilistic approach

to identify the most plausible label assignments (groupings) of features.

To that end, we propose a generative model for node label

assignments by noting that the cosine similarity between two fea-

tures is a good proxy for how likely two features are to be adducts

of the same metabolite. A plausible assumption is thus that the prob-

ability of two features (i, j) having the same group label (i.e. belong-

ing to the same clique) given a certain similarity cij between intensity

vectors is precisely a function of that similarity:

pðri ¼ rjjcijÞ ¼ gðcijÞ: (2)

Conversely, the probability that two nodes (i, k) have different

labels given their similarity cik is pðri 6¼ rkjcikÞ ¼ 1� pðri ¼ rkjcikÞ.
To specify the precise dependency of pðri ¼ rjjcijÞ on cij, we note

that pðri ¼ rjjcijÞ needs to fulfill the following conditions: (i) it has

to be equal to zero if cij ¼ 0 (i.e. two nodes whose intensity vectors

do not overlap cannot belong to the same clique) and (ii) it has to be

equal to one if cij ¼ 1 (i.e. features with proportional intensity vec-

tors, eg. similar peak shapes, have to belong to the same clique).

Because in our sample cos ij 2 ½0;1�, any power of the cosine similar-

ity will satisfy these two conditions. Hence, we assume that

pðri ¼ rjjcijÞ / ca
ij (3)

where the proportionality is due to a necessary but irrelevant nor-

malization constant and a > 0.

Under these assumptions, we can express the probability of an

assignment of group labels r conditioned on the observed network

of similarities CO as

PðrjCOÞ ¼
Y
r2r

Y
i< j

pðri ¼ rjjcijÞdrri
drrj � ½1� pðri ¼ rjjcijÞ�ð1�drri

drrj
Þ

(4)

where drrj
is the Kronecker delta function. This conditional prob-

ability is the likelihood of the model.

Assuming that we have no prior information about how labels

are assigned to nodes, the most plausible group label assignment r?

is the one that maximizes Equation (4) or, equivalently, the log-

likelihood L ¼ log PðrjCOÞ. To obtain this label assignment, we use

the following algorithm:

i. Start from a configuration in which each node has a different

label.

ii. Propose a new label assignment.

iii. Accept the new label assignment if L increases.

iv. Return to step (ii) and iterate until no more changes are

accepted.

In step (ii), in order to propose a new label assignment we use a

combined strategy that alternates between: (i) merging existing cliques

and (ii) moving nodes from one clique to another clique. In our imple-

mentation, we alternate these two possible configuration changes with

a ratio of 10:1. To merge existing cliques, we follow the heuristic ap-

proach in Blondel et al. (2008) which is computationally fast.

Specifically, we compute the mean-similarity between nodes within

each pair of cliques. We then propose to merge the pair of cliques with

the largest mean-similarity. To move a node (i.e. to change the label of

that node to that of a different clique), we select the label assignment

that produces the largest increase in L. As a last step, when L cannot

be increased by merging any pair of cliques in the network, we use the

Kernighan–Lin algorithm (Kernighan and Lin, 1970) to propose sin-

gle-node moves between cliques. The algorithm stops when we cannot

further increase the log-likelihood with single-node switches. We set a

lower bound (by default 10�5) for the relative change in L necessary

to consider that a change in node label assignments results in a signifi-

cant increase in the log-likelihood.

Fig. 1. Schematic representation of CliqueMS. CliqueMS identifies the features belonging to the same metabolite. CliqueMS uses as input LC-MS1 data in any for-

mat that can be converted into either an ‘xcmsSet’ or an ‘XCMSnExp’ object in R such as mzML, mzXML, mzData and NetCDF. First, CliqueMS determines peak-

shape (i.e. coeluting) similarities between all pairs of features in the LC-MS1 spectrum. Then CliqueMS finds groups of features based on the network of similar-

ities. The assumption is that the more similar a pair of features, the more likely they are to belong to the same group. Following a maximum likelihood procedure,

CliqueMS finds the best division into fully connected groups of features (or cliques). Then, for each clique, CliqueMS proceeds to annotate each feature by estab-

lishing the parental ion neutral mass. Annotations are scores based on a table of empirically observed frequencies for each adduct. The final output is, for each

feature, the five annotations with the highest score specifying the adducts/in-source fragment and its corresponding parental mass. See Supplementary Figure

S1 for a detailed description of the installation process, input and output formats as well as the parameters and modules within CliqueMS
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In order to estimate the best value for the parameter a in

Equation (3), we measure the accuracy of our algorithm at

assigning group label to features that have similar retention time

patterns.

Specifically, starting from the spectral data for the mixture of

9 standards as in the validation of Step 1 (see Section 2.2 and

Supplementary Fig. S2), we simulated differences in the coelution of

metabolites by manually displacing all the features of the same metab-

olite along the retention time axis. We then simulate the coelution of

two, three and four compounds for different time shifts, and evaluate

the accuracy of our algorithm at correctly labeling features using the

adjusted mutual information (AMI) (Vinh et al., 2010). The AMI

measures the accuracy of the labeling by comparing the ‘true’ and the

proposed assignment while taking into account the number of features

associated to each metabolite. The AMI value is scaled, so that AMI ¼
0 for a random assignment of features to groups.

In Supplementary Figure S3, we show the accuracy of our algo-

rithm for different values of a ¼ 1; 1:5 and 2. For reference, we also

show the results obtained with the feature grouping algorithm in

CAMERA, which is also network based [see Kuhl et al. (2012) for

details]. We find that for any choice of a, our algorithm outperforms

the feature grouping algorithm in CAMERA. This is because the

feature grouping algorithm in CAMERA tends to produce a large num-

ber of groups of features and therefore the AMI is close to zero inde-

pendently of the time shift. We also find that for our algorithm, larger

values of a result into too many cliques when the coelution is not as

accentuated, slightly decreasing the algorithm’s accuracy. Therefore,

we use a value of a ¼ 2 as a default in CliqueMS and in what follows.

Step 3: Annotation of adducts by isotope and parental mass

identification

After obtaining the maximum likelihood configuration of label

assignments to nodes r?, we use the differences in ðm=zÞ values for

all the features within a clique to identify isotopes, and putative

adducts and in-source fragments associated to the parental neutral

mass of the metabolite.
Consider we have a clique c comprising C features

c ¼ f½ðm=zÞi; f i�; i ¼ 1; . . . ;Cg. The first step is to identify features cor-

responding to isotopic variants of the same metabolite, as they can be

determined by the exact mass difference between features and their rela-

tive intensities. Whenever the mass difference between two features cor-

responds to 1.0033556 �I (Da), �I being the relative error of the isotope

search, the two features are candidates for being isotopes. If their

intensity ratios also correspond to the relative abundance of such

isotopes, then these two features are considered to be two isotopic

variants of the same metabolite Note that we take into account

other differences in m/z between isotopes with z>1 (see details in

the Supplementary Material).

For the remaining features C0 ¼ C�NI, NI being the number of

isotopes in the clique, our goal is to associate each one of the features

to an adduct or fragment, and therefore to establish the mass of the

corresponding neutral compound. In order to do that, CliqueMS con-

siders a list of possible adducts and fragments fAig� and their associ-

ated mass difference fDMig� taken from the NIST database (National

Institute of Standards and Technology, 2014) spectra with positive and

negative ionization (see Supplementary Tables S1 and S2).
First, we determine the possible annotations for each feature that

are compatible with the observed mass differences. In what follows, for

simplicity we refer to all possible annotations of features as adducts,

but bear in mind that annotations can also correspond to metabolite

in-source fragments considered in the previously mentioned list of mass

differences. Specifically, for feature ðm=zÞi, we obtain all the possible

parental masses Mk that are compatible with feature i being adduct Ak

(Ak 2 fAig
�
), i.e. those that fulfill

mi � ðMk þ DMkÞ
Mk

� tol: (5)

Note that in order to get mi, we consider zi to be the charge of

adduct Ak: In our analysis, we set tol ¼ 10ppm, but this parameter

can be tuned by the user. For the remaining features

ðm=zÞj 2 c; j 6¼ i, we establish that ðm=zÞj is compatible with being

adduct Al with parental neutral mass Mk if:

mj � ðMk þ DMlÞ
Mk

� tol: (6)

Following this procedure for all the features i 2 c, we obtain for cli-

que c all possible parental masses fMkgc that are compatible with at

least two features being annotated. For each such parental mass Mk, we

construct an adduct vector ak in which each component ak
i corresponds

to the adduct annotation of feature i compatible with parental mass Mk.

If there is no compatible annotation for feature i then ak
i ¼ NULL.

The second step is to assess the plausibility of each one of these

annotations. In order to do this, we note two facts. First, we note that

in manual annotation the observation of some adducts such as

[MþH]þ or [MþNa]þ is more frequent than that of other adducts

such as [MþH-OH]þ or [2MþNa]þ. As a result, the former couple of

adducts are more commonly sought for in manual annotations than

the latter couple of adducts. To formalize this intuition and quantify

the plausibility of a specific annotation, CliqueMS uses observed fre-

quencies of adducts and fragments from available LC-MS1 spectra for

pure compounds available in the NIST database and biological in-

house samples (see Supplementary Tables S1 and S2). Specifically, for

each Mk the log-plausibility sk of annotation ak is then:

sk ¼ log
YC0

i¼1

xðak
i Þ

0
@

1
A ¼

XC0

i¼1

log
�
xðak

i Þ
�

(7)

where xðxÞ is the frequency of observation of adduct x and,

xðNULLÞ ¼ �. In our analysis, we set � ¼ 10�6, so that the frequency

of a non-annotated feature is lower than that of the least common

adduct or fragment in our database. Note that since available LC-

MS1 spectra are likely to increase in the future, these parameters

can be changed by the user as needed.

Second, we note that, in the clique identification procedure, fea-

tures corresponding to different metabolites that coelute sometimes are

assigned to the same clique. Taking this into consideration, CliqueMS

allows for the annotation of adducts corresponding to more than one

parental neutral mass in the same clique. Therefore, given the set of

parental masses fMkgc and their associated annotations fakgc we can

in principle obtain complex annotations fugc with multiple compatible

parental masses, so that ui ¼ ak
i and uj ¼ ak0

i with Mk not necessarily

equal to M0
k. These annotations are also subject to the constraint that

we have at least two annotated features for each parental mass.

Nonetheless, because we expect the number of metabolites in coelution

to be low, we assume the plausibility of annotations with a large num-

ber of parental masses NM to be low. To formalize this idea, the log-

plausibility of such complex annotations sc is then:

scð/Þ ¼ log
YC0

i¼1

xðuiÞ � exp ½�aðNM � 1Þ�

0
@

1
A (8)

where we have introduced an exponential penalty if the number of

parental masses is larger than one and a ¼ 10 in our analysis. While
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this may seem a rather large penalty, we note that the most common

adducts have xðxÞ � Oð10�3Þ and rarest adducts have

xðxÞ � Oð10�5Þ. Therefore, because our priority is to annotate large

amounts of adducts or fragments (including rare ones) associated to

the same parental mass rather than annotating the same features

with two different parental masses and more common adducts, we

need to introduce exponentially large penalties. On the other hand,

the penalty has to be low enough to enable the use of more than one

parental mass when no other annotations are possible. Using a value

of a ¼ 10 strikes the balance between both undesirable situations.

Unfortunately, the number of possible annotations grows very fast

with the number of features in a clique, so that even for moderately

small cliques (30 features) it is unfeasible to produce and score all anno-

tations exhaustively. Because of this CliqueMS focuses on producing

only a few annotations with the largest plausibilities. To that end, we

follow a greedy procedure to produce complex annotations. Specifically,

we limit the list of parental masses fMkgc to include: (i) those masses

that have the largest overall plausibilities sk and (ii) consider the top scor-

ing masses for annotating each feature i 2 c. In our analysis, we use Mks

with the 15 top overall sks and the most plausible Mk for each feature;

these parameter choices show a good compromise between speed of the

calculations for large cliques and the retrieval of the most plausible

annotations obtained from exhaustive annotation searches.

Finally, we rank annotations fugc according to their plausibility

fscgc and produce for each clique the five most plausible annota-

tions. In this way, unlike other methods which produce a unique an-

notation, CliqueMS allows researchers to compare alternative

annotations. Note that annotation scores depend on the size of the

clique/group of features, therefore annotation scores for different

groups of features are not comparable.

2.2 Spectral data acquisition
Mixture of standards: LC-MS1 spectrum of a mixture of the following

standards in solution: (-)riboflavin, 1, 2-distearoyl-sn-glycero-3-phospho-

choline, biotin, cholic acid, deoxycholic acid, L-methionine sulfoxide,

thymine and uracil (see Supplementary Material for details on prepar-

ation and acquisition of LC-MS1 spectra). The mzXML file is available

at Zenodo with id 1480659, doi: 10.5281/zenodo.1480659.

Complex sample 1: IRS2 KO—LC-MS1 spectra for retina samples

from Irs-2-deficient mice [see Hennige et al. (2003), Withers et al.

(1998) and Supplementary Materials for preparation, metabolite ex-

traction and LC-MS1 spectra acquisition]. The mzXML file is available

at Zenodo with id 1480659, doi: 10.5281/zenodo.1480659.

Complex sample 2: MTBLS103—LC-MS1 spectra of a subset of serum

samples of young females within the control group in the study by

Samino et al. (2015), which are available at https://www.ebi.ac.uk/

metabolights/MTBLS103. We consider a subset of samples of both

positive ionization C18 (18 samples) and HILIC (13 samples) found in

MBTLS103 dataset; all samples belong to the control group.

3 Results and discussion

To validate the accuracy of CliqueMS we perform three kinds of

experiments. First, we look at the accuracy at annotating a relatively

simple sample corresponding to mixture of standards for which we

have a manual MS1 annotation and the identity of the eluting stand-

ards was confirmed via MS2 fragmentation patterns. Second, we use

CliqueMS to annotate a complex sample for which we also have

manual MS1 annotations for metabolites confirmed via MS2 frag-

mentation (for the retina samples we provide the manual annotation

of metabolites whose concentrations were significantly different

from that of wild type animals). We look at the accuracy of

CliqueMS at correctly annotating the identified compounds in the

sample for LC-MS1 spectra obtained in positive and negative ioniza-

tion modes separately. In these two cases, because we have a single

LC-MS1 spectrum, we compare the accuracy of CliqueMS to anno-

tate metabolites with that of CAMERA (Kuhl et al., 2012), which is

the only available tool that can annotate single LC-MS1 spectra. As

a general result, we find that Clique MS groups feature in a smaller

number of groups (cliques) than CAMERA (see Table 1); this makes

CliqueMS able to annotate a larger number of adducts than

CAMERA.

Third, because other available methods need more than one

spectrum to produce annotations, we also consider another two

datasets with 13 and 18 LC-MS1 spectra from Samino et al. (2015).

We compare the performance of CliqueMS with that of CAMERA,

xMSannotator (Uppal et al., 2017) and MS-FLO (DeFelice et al.,

2017) (all other tools mentioned in the abstract were not in working

condition at the time of our analysis). We find that CliqueMs is able

to consistently provide better, more complete annotations than the

other methods for the identified metabolites in the samples.

Mixture of standards: Table 1 and Figure 2 show that overall

CliqueMS produces better annotations than CAMERA. CliqueMS is

able to correctly identify more manually annotated metabolites, and

correctly annotate more features associated to these metabolites by

both correctly identifying adducts/in-source fragments and their iso-

topes. The reason for this superior performance is that CliqueMS

identifies a smaller number of feature groups so that features associ-

ated to the same metabolite are in the same group (Fig. 2a–b). By

contrast, CAMERA generates a larger number of groups which

results in assigning features corresponding to the same metabolite to

different groups, usually annotating them as different metabolites or

as non-annotated (Fig. 2c).

Overall CliqueMS is able to correctly annotate all nine metabo-

lites within the two most plausible annotations for each clique (since

for each metabolite, CliqueMS provides the correct annotation for

at least one adduct/in-source fragment and its corresponding iso-

topes within the two highest ranked annotations). The total number

of annotated features corresponding to the standard compounds is

42 (of which 29 correspond to adducts/in-source fragments and 13

to isotopes). Instead CAMERA annotates correctly 5 metabolites

and a total of 27 features. Note that even if we only considered the

highest ranked annotation provided by CliqueMS, the number of

correctly annotated metabolites (8) would be higher than for

CAMERA (5).

Note that overall CliqueMS identifies a number of unique paren-

tal neutral masses that is substantially larger than 9 (48 if we con-

sider the best ranked annotation—see Table 1). The main reason for

this is that during the process to obtain the LC-MS1 data, metabo-

lites can break down into smaller fragments that can also become

ionized. Because the fragments that one might expect are different

for each metabolite in the annotation step, CliqueMS is not consid-

ering these effects in the annotation step, therefore these fragments

are assigned different parental neutral masses. Despite this issue, the

difference in the percentage of features for which a parental neutral

mass is reported—64% (or 55% if we consider exclusively the anno-

tation with the largest score) versus 32%—is substantial and is a dir-

ect effect of the aforementioned high quality feature grouping which

leads to a more accurate adduct annotation.

Single spectrum from complex samples: To evaluate the capacity of

CliqueMS to identify adducts in complex LC-MS1 data from a sin-

gle spectrum, we analyze real retina samples from a mouse model in

which the gene irs2 has been knocked out (see Supplementary
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Table 1. Summary of the full set of annotations for each sample

Sample Tool Features Number of cliques/

groups/clusters

Annotated unique

parental masses

Annotated

features (%)

Standards CliqueMS 275 69 49 (48) 64 (55)

CAMERA 164 25 32

Retina IRS2 KO(þ ionization) CliqueMS 8489 606 1231 (1512) 70 (57)

CAMERA 2836 1303 43

Retina IRS2 KO (� ionization) CliqueMS 3893 349 334 (494) 44 (36)

CAMERA 1083 552 32

MTBLS103 HILIC CliqueMS 16 160a 387a 3186 (3703)a 84 (68)a

CAMERA 13 048 488 2947 62

xMSannotator 230 5314 46

MS-FLO NA 2875 57

MTBLS103 C18 CliqueMS 24 620a 927a 3980 (4769)a 74 (61)a

CAMERA 19 871 1332 13131 58

xMSannotator 540 6226 48

MS-FLO NA 3283 41

Note: For single spectrum datasets, we show the total number of features in the LC-MS1 spectrum. For MTBLS103 datasets, we report the number of features

after sample alignment with XCMS. For single spectrum datasets, we report results for CliqueMS and CAMERA. For multiple spectrum datasets, we report the

results for CliqueMS, CAMERA, xMSannotator and MS-FLO. We report the total number of groups identified by the algorithm, the number of unique parental

neutral masses identified and the percentage of features each algorithm associated to a parental neutral mass. For single spectrum datasets, we consider the five

annotations with the highest scores produces by CliqueMS and report: (i) the average number of unique parental masses over annotations, and, in parenthesis, the

number of unique parental masses in the annotation with the best score; (ii) the percentage of features with at least one annotation within the five annotations

with best scores, and, in parenthesis, the percentage of features annotated within the best ranked annotation.
aFor MTBLS103 datasets, we run CliqueMS for each individual sample. For each dataset, we report the the average number of features and the average number

of cliques obtained across samples. We also report: (i) the average number of unique parental neutral masses and, in parenthesis, the average number of unique

parental masses in the top annotation and (ii) the average of the percentage of features with at least one annotation within the five top annotations and only con-

sidering the top annotation (in parenthesis).
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Metabolite CliqueMS CAMERA

Annotation Isotopes Rank Annotation Isotopes

Riboflavin

(M+Na)+ 3 1 (M+Na)+ 2
(M+K)+ 2 1 (M+K)+ 2
(M+H)+ 1 1

(M-H+2Na)+ 1 1 (M-H+2Na)+ 1
(2M+Na)+ 1 1

DSPC
(M+Na)+ 2 1 (M+Na)+ 2
(M+K)+ 1 1
(M+H)+ 2 1 (M+H)+ 2

Biotin

(M+Na)+ 2 1 *(M+Na)+ 2
(M+K)+ 2 1 (M+K)+ 2

(2M + Na)+ 3 1 (2M + Na)+ 3
(M-H+2Na)+ 1 1 (M-H+2Na)+ 1

(2M + K)+ 1 1 *(2M + K)+ 1

Cholic acid
(M+Na)+ 1 1 (M+Na)+ 1
(M+K)+ 1 1 (M+K)+ 1

(M-H+2Na)+ 1 1 (M-H+2Na)+ 1

Deoxycholic acid

(M+Na)+ 2 1 (M+Na)+ 2
(M+K)+ 1 1 (M+K)+ 1

(M-H+2Na)+ 2 1 (M-H+2Na)+ 1
(2M+Na)+ 2 1 (2M+Na)+ 2
(M+Na)+ 1 1
(M+K)+ 1 1

Thymine
(M+H-NH3)+ 1 1 1
(M+NH4)+ 1 1

(M+H)+ 2 1

Uracil
(M+H)+ 1 2

(M+NH4)+ 1 2

Fructose
(2M+Na)+ 1 1

(M+K)+ 1 1

L-Methionine 
sulfoxide

(Mx+H)+

(a)

(b)

(c)

Fig. 2. Feature annotation for a mixture of standards. (a) Extracted ion chromatogram. The nine ionized metabolites were annotated with CliqueMS. We show fea-

tures that are adducts of each metabolite in different colors (shades of grey), as annotated by CliqueMS in (c). (b) Cliques identified by CliqueMS in the same ex-

periment, after computing cosine correlation and maximizing clique likelihood. The intensity of the link is proportional to the correlation, and the area of each

node is proportional to feature intensity. The colors are the same as in (a). For each feature, we show the annotation given by CliqueMs as shown in (c). We de-

note isotopes by adding a subindex to M, so that M0 corresponds to the monoisotopic mass and M1 to the first isotope. (c) Feature annotation by CliqueMS and

CAMERA. For each metabolite, we show the different adducts annotated and the total number of isotopic variants of that particular adduct. Correctly annotated

features are shown in green; incorrectly annotated features are shown in red (darker shade of grey), with Mx indicating that the associated parental neutral mass

was incorrect; non-annotated features are shown in white. For CliqueMS, we also show the ranking of the feature annotation that matches manual annotation.

For CAMERA the * indicates those features for which the algorithm returned two possible annotations. DSPC stands for 1, 2-distearoyl-sn-glycero-3-phosphocho-

line. See Supplementary Material for CliqueMS annotations
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Material). We analyze spectral data with both positive and negative

ionizations. The positive ionization spectrum contained 8489 fea-

tures reduced to 606 cliques by CliqueMS, whereas the negative ion-

ization spectrum comprised 3893 features reduced to 349 cliques.

Instead, as for the previously studied sample, CAMERA identifies a

much larger number of groups: 2836 for positive ionization spectra,

and 1083 for the negative ionization spectra.

CliqueMS groups the features into a smaller number of groups

than CAMERA does. However, in contrast to the results for the

mixture of standards, each clique is not necessarily associated to a

single metabolite. In fact, because metabolite coelution is so fre-

quent in samples with a large number of features, CliqueMS can

group features corresponding to different metabolites within the

same clique (see Supplementary Fig. S3).

In Tables 2 and 3 and in Supplementary Figure S4, we show

that, overall, CliqueMS provides a better annotation than

CAMERA; specifically, CliqueMS is able to annotate a larger num-

ber of the identified (via MS/MS) metabolites than CAMERA.

Furthermore, CliqueMS is able to correctly annotate a larger num-

ber of features, including adducts, in-source fragments and isotopes.

The differences in number of metabolites and features annotated

are specially remarkable for the positive ionization mode spectrum, in

which the number of adducts is larger mainly due to the influence of

mobile phase additives and organic solvents (Kruve and Kaupmees,

2017), and therefore more features can coelute. In this case CliqueMS

is able to assign a parental neutral mass to 70% of the features overall

(and 57% if we only consider the top-ranked annotation), whereas

CAMERA only assigns a parental mass to 43% of the features. In the

negative ionization mode, the number adducts is much smaller and

therefore the differences between both algorithms are not as stark.

Multiple spectra from complex samples: In contrast to CAMERA,

xMSannotator and MS-FLO, CliqueMS only produces annotations

for each individual spectrum. Our results show that there is in fact an

advantage to analyze individual spectra, since overall the performance

of CliqueMS is consistently better than that of the other methods.

CliqueMS is able to correctly annotate more metabolites than

the other methods (see Table 2 and Supplementary Material). The

only exception is xMSannotator, which annotates correctly more

metabolites for the C18 dataset because it annotates single features

as (MþH)þ by default without having another adduct for the same

parental neutral mass (DeFelice et al., 2017). Remarkably,

CliqueMS is consistently able to correctly annotate substantially

more adducts and identify more isotopic variants than the other

methods. As an illustration (see Table 2), CliqueMS correctly anno-

tates 17 adducts in the majority of samples of the HILIC dataset (29

if we consider all correct unique annotations across samples), where-

as CAMERA, xMSAnnotator and MS-FLO identify 13, 10 and 2

different adducts/in-source fragments, respectively.

4 Conclusions

Annotating features in LC-MS1 metabolomic experiments is of the

utmost importance. Without reliable annotation, however, ques-

tions as fundamental as, e.g. how many metabolites are there in a

given sample or what is the best adduct for MS/MS experiments can-

not be properly addressed. Here, we have shown that CliqueMS pro-

vides high quality annotations for biological samples from LC-MS1

single spectra. With simple and synthetic datasets we have provided

evidence that explains the performance of CliqueMS: (i) it uses a

highly discriminatory feature similarity metric; (ii) it treats the simi-

larities between peaks in a transparent way by means of a simple

generative model; (iii) it uses a well-grounded maximum likelihood

inference approach to group features; (iv) it uses empirical adduct

frequencies to identify the parental neutral mass and (v) it deals flex-

ibly with the identification of the parental neutral mass by proposing

and ranking alternative annotations. With real complex biological

samples, we have demonstrated that annotating single spectra pro-

duces correct annotations for a larger number of features and

metabolites than currently available tools for annotating both single

and aligned spectra.

Table 2. Summary of the performance of different algorithms for complex samples

Sample Identified and

annotated metabolites

Tool Annotated metabolites Adducts/mass

fragments

Annotated

features
Multiple adducts Single adduct

Retina IRS2 KO (þ ionization) 20 CliqueMS 15 — 50 95

CAMERA 8 — 25 45

Retina IRS2 KO (� ionization) 18 CliqueMS 6 — 16 35

CAMERA 5 — 14 33

MTBLS103 HILIC 6 (78)a CliqueMS 5/6/56b — 18/26/213b 44/72/318b

6 CAMERA 3 — 13 21

xMSannotator 1 4 10 10

MS-FLO 1 — 2 3

MTBLS103 C18 9 (162)a CliqueMS 6/8/104b — 17/29/304b 46/66/524b

9 CAMERA 3 — 11 20

xMSannotator 3 6 13 13

MS-FLO 0 — 0 0

Note: For single spectrum samples (Retina IRS2 KO in positive and negative ionization mode), we report results for CAMERA and CliqueMS. For the datasets

in MTBLS103 (Samino et al., 2015), we report results for the chromatographic column operating in two different conditions: RP-C18 and HILIC. For the

MTBLS103 datasets, we show results for CliqueMS, CAMERA, xMSAnnotator and MS-FLO. The multiple adduct and single adduct columns indicate the num-

ber of correctly annotated metabolites through the identification of at least two adducts with the same parental neutral mass, and the number of metabolites anno-

tated through the annotation of a single adduct [annotated single adducts are assigned to (MþH)þ by xMSannotator].
aCliqueMS analyzes individual samples, therefore in parenthesis we show the total number of annotated metabolites in all samples.
bBecause CliqueMS produces an individual annotation for each sample (13 for HILIC and 18 for RP-C18), we report three results r1=r2=r3: r1 shows the num-

ber of unique metabolites/adducts/features that are correctly annotated in � 50% of the samples; r2 shows the number of unique metabolites/adducts/features

which are correctly annotated in at least one sample and r3 shows the aggregate numbers over samples.
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