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Hydrodynamic Clustering of Human 
Sperm in Viscoelastic Fluids
Kenta Ishimoto1,2 & Eamonn A. Gaffney1

We have numerically investigated sperm clustering behaviours, modelling cells as superpositions of 
regularised flow singularities, coarse-grained from experimentally obtained digital microscopy of 
human sperm, both in watery medium and a highly viscous–weakly elastic, methylcellulose medium. 
We find that the cell yaw and cell pulling dynamics inhibit clustering in low viscosity media. In contrast 
clustering is readily visible in simulations modelling sperm within a methylcellulose medium, in line 
with previous observations that bovine sperm clustering is much more prominent in a rheological 
polyacrylamide medium. Furthermore, the fine-scale details of sperm flagellar movement substantially 
impact large-scale collective behaviours, further motivating the need for the digital microscopy and 
characterization of sperm to understand their dynamics.

The scale of inefficiency for the male gamete in mammalian fertilization is staggering: a fertile human ejaculate 
averages around 180 million sperm1, yet in almost all circumstances no more than one cell from this population 
fertilises an egg. With such high numbers of sperm, collective behaviours are invariably apparent, as perhaps first 
reported in terms of wave-like patterns in concentrated bull sperm suspensions during an investigation of artifi-
cial insemination by Rothschild in the 1940s2.

Consequently, collective effects occur in mammalian sperm handling and more generally are anticipated in 
the early stages of the sperm journey to the egg3, which includes propagation through the highly rheological 
mucus of the cervix. Hence collective behaviours in viscoelastic media are also highly relevant physiologically 
and it has recently been reported that viscoelasticity induces a dynamic and fluctuating bovine sperm clustering, 
in which cluster members are continuously exchanging4, as illustrated in Fig. 1(a,b). Thus our fundamental aim 
is to develop a modelling framework to explore how and why properties of the surrounding medium influences 
sperm clustering behaviour.

One should also note that the bovine collective behaviour is quite distinct from rodent sperm trains, which 
involve sperm-sperm attachments5. The absence of attachments for the fluctuating clustering of bovine sperm in 
rheological media is more suggestive of hydrodynamic interactions which, due to the low Reynolds number of the 
flow, can significantly affect collective behaviours6,7. Furthermore, it is well known that the sperm flagellum beat 
pattern is distinctively different between Newtonian media and either highly viscous–weakly elastic, or highly 
viscoelastic media8–10. Thus, the hydrodynamic interactions between sperm differ on comparing swimming in 
Newtonian and rheological fluids not only due to the different media, but also due to the different flagellum 
waveforms11.

Hence examining the collective behaviour of sperm clustering requires a multi-scale modelling framework 
that upscales the detailed flagellar waveform dynamics. However, sperm-swimming simulations have generally 
only been considered at the level of the individual cell12–14, with the notable exception of a recent large direct 
numerical simulation15, while other population studies have considered active colloidal particle populations16–18 
or bacterial flagellates19. Furthermore, these population level investigations have either directly numerically sim-
ulated the population, averaged the individual dynamics over the propulsion cycle, or considered a coarser, mean 
field, approximation15–23. For the current context of this study, a refined upscaling – in particular incorporating 
the fast timescale associated with the swimmer propulsion cycle, i.e. the flagellum beat cycle for sperm – is devel-
oped while avoiding the computational cost of direct numerical simulation for all the swimmers.

A further aspect of sperm swimming in extremely close proximity is the prospect that the hydrodynamics 
couples with the solid filament mechanics to induce flagellar synchronisation24. However, we do not resolve this 
even finer level of detail in our study. In particular, the fluid-structure interactions require elastohydrodynamic 
simulations15,25–30 together with a resolution of molecular motor contractions within the flagellum31–34, though 
the latter is currently not feasible with elastohydrodynamic predictions. Furthermore, flagellar sychronisation is 
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not observed to be necessary for clustering, as illustrated in Fig. 1(b). In turn, we therefore focus on experimental 
digital video microscopy for the flagellum waveforms, rather than attempting to predict the beat patterns ab initio.

Hence our scope is limited to scenarios where the sperm flagellar waveform has been digitised and we proceed 
in developing a modelling framework by exploiting previous studies, where the flagellar waveform data has been 
captured and further simplified using data analytic techniques, in particular principal component analysis (PCA). 
This has been then used to computationally determine the flow field around a sperm, a snapshot of which is illus-
trated for a water-like, low viscosity, Newtonian medium, referred to as LVM below, in Fig. 1(c) and for a highly 
viscous–weakly elastic medium of 1% methylcellulose solution, referred to as HVM below, in Fig. 1(d). These flow 
fields are complex, and hence PCA is further utilised to enable an accurate simplification incorporating near-field 
information about the swimmer. These PCA flow field representations may be further, but accurately, simplified 
in terms of a small number regularised Stokeslets. This is especially useful as regularised Stokeslet representations 
have a straightforward physical interpretation, in contrast to PCA expansions, while capturing most of the varia-
tion of the flow field35,36 and ultimately allowing a novel upscaling of individual dynamics and physics into larger 
scale, population models.

Consequently, our detailed objective is to use such PCA-derived coarse-graining representations of the sperm 
flow fields to construct a multi-scale model of sperm collective behaviour, which assimilate experimental flagellar 
waveforms, to explore dynamic sperm cell clustering. In addition to examining whether the full temporal resolu-
tion of high-speed digital microscopy is required for coarse graining, a further objective will also be to examine 
how differences at the individual cell level influence the tendency of sperm to dynamically cluster. We will also 
briefly compare our predictions with observations of bull sperm in both a low viscosity medium and viscoelastic 
polyacrylamide, though acknowledging that this study does not capture a number of the experimental details.

Results
Regularised Stokeslet representations.  The characteristic waveform in both the LVM and HVM media 
is extracted from high-speed digital microscopy images and simplified using PCA, which highlights that the 
waveform is well approximated via a limit cycle within the phase space of its first few PCA modes and thus has an 
associated limit cycle phase, denoted φ(t) below35,36. The associated flow field surrounding the sperm is calculated 
using the PCA waveform as a boundary condition of the inertialess fluid equations. These in turn are solved via 
the boundary element method, assuming the fluid flow obeys the Newtonian Stokes equations for LVM and linear 
Maxwell equations for HVM (Fig. 1(b,c) and citations35–37), with further details provided in the Methods section.

Subsequently applying the PCA method to the calculated flow field, denoted flow PCA below, has also revealed 
that the time-varying flow fields can be well approximated by the linear superposition of small numbers of regu-
larised Stokeslets38, with time-dependent weightings as reported in previous work35,36, and summarised in the 
paragraphs below. In particular, to represent the velocity fields resulting from flow PCA in terms of regularised 
Stokeslets, we firstly consider the beat period averaged flow, labelled by m = 0, together with the first M PCA flow 
modes. The velocity fields associated with these are approximated via L(m) regularised singularities, with the 
mode label m ∈ {0, …, M}, as summarised in Fig. 2 for M = 2, m ∈ {0, 1, 2}. With the singularity label l ∈ {1, 2, … 
L(m)}, where L(m) denotes the number of singularities associated with mode m, each of these singularities is 
located at x m l

0
( , ), with regularization parameter ε(m,l).

Figure 1.  (a) Dynamic clustering for bovine sperm in 1% long chain polyacrylamide, reproduced from4 with 
permission via the creative commons license, http://creativecommons.org/licenses/by/4.0/. (b) A blow up from 
(a), in turn reproduced from Tung et al.4, with permission, highlighting that sperm flagella are not necessarily 
synchronised within a cluster. The predicted fluid flow around a human sperm in a low viscosity, watery 
Newtonian medium (LVM, (c)), with dissolved components such as glucose and physiological ions for cell 
maintenance, together with albumin to prevent sperm-glass adhesion9. The analogous predicted fluid flow for 
a human sperm swimming in a highly viscous–weakly elastic 1% methylcellulose solution (HVM, (d)), which 
increased viscosity to about 140 times that of water, which is roughly the average of human female reproductive 
tract mid-cycle mucus9,48. The predicted flow field is an instantaneous snap shot, with axes labels in units of 
flagellum length, and with the sperm in red, the velocity magnitude given by the intensity of blue shading and 
the streamlines in white. The data used to generate plots (c,d) may be found in the references35,36.

http://creativecommons.org/licenses/by/4.0/
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In practice the number of PCA modes is chosen to be M = 2 throughout this study, representing a balance 
between capturing the variation of the fluid flow and keeping the flow representation simple, with the choice of 
L(m) reflecting the same tension. This tension is analysed in detail in35,36, with M = 2 modes capturing 68% of the 
variation for LVM and 90% for HVM. The number of singularities chosen to represent each mode, L(m), is such 
that on optimising for singularity location, size, direction and regularisation parameter only a further 7% of the 
variation is lost in either the LVM or the HVM cases while keeping the number of singularities small. The result-
ing singularities therefore, while manageable in number, also capture the main details of the fluid flow and are 
explicitly shown in plots 2(a,b) for the LVM case with x m l

0
( , ) located at the base of each arrow. The magnitude and 

direction of the regularised Stokeslet are given by the length and direction of the depicted arrow, while the radius 
of the circle centred at the arrow base gives the regularisation parameter. Analogous plots for the HVM case are 
given in plots 2(c,d).

Letting i, j ∈ {1, 2, 3} label spatial dimension, with the regularised singularity given by εx xG ( , ; )ij
m l

0
( , ) 38 the flow 

is therefore approximated by35,36

∑ ∑ ∑ ε φ= .
= = =

u x x xt G f t( , ) ( , ; ) ( ( ))
m

M

l

L m

j
ij

m l m l
j
m

0 1

( )

1

3

0
( , ) ( , ) ( )

Note that the zero mode force strengths f(0) are independent of time with a magnitude and direction given by 
the arrows of plots 2(a,c) for the LVM and HVM cases, respectively. The remaining force strengths f(m) for the 
LVM case are given by their respective magnitudes and directions, as depicted by the arrow lengths of plot 2(b), 
multiplied by a phase factor, which is a function of the limit cycle phase φ(t), obtained from the flagellar PCA. 
The phase factors are functions of time and also the mode label m, but not the singualrity label, l, with the latter 
independence following as all singualrities approximatig a flow field PCA mode inherit the temporal modulation 
of the PCA mode. These phase factors are explicitly plotted over a flagellar beat period, T, in Fig. 2(e) for m = 1, 2 
and analogous remarks apply for the HVM cases with plots 2(d,f), while additional details have been extensively 
described previously35,36.

Figure 2.  The regularised Stokeslet representation for a swimming human sperm in a low viscosity, watery 
Newtonian medium (LVM, (a,b)) and a highly-viscous, weakly elastic, 1% methylcellulose solution (HVM, 
(c,d)), with axes labels in units of flagellum length. The regularised Stokeslet representations for the time-
averaged flow field ((a,c), m = 0) and for the lowest two flow bases ((b,d), m ∈ {1, 2}) are shown. The origin, 
length and direction of the arrows give the location, magnitude and direction of the force singularities, and 
the circle radius corresponds to the regularised parameter. The dashed lines show the centreline of the model 
sperm, while the black ellipse shows the location of the sperm head for illustration. The time dependent 
weightings for modes 1, 2 for LVM are plotted for time t over a flagellum beat pattern period, T, in (e) with 
analogous plots for HVM in plot (f). Note that modes 1, 2 are out of phase so that the regularised singularities 
in plots (b,d) do not simply undergo constructive or destructive interference. The data used to generate plots 
(b,d,e,f) may be found in35,36, together with further details on the derivation of the representation.
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In both media, the time-averaged flow fields associated with m = 0 are accurately represented by a pusher-type 
swimmer, with two regularised Stokeslets (Fig. 2(a,c)). However, there are also notable and distinct differences 
with rheology (Fig. 2(b,d)). The time-dependent flow in the LVM case is characterised by large lateral forces, 
together with counter-forces at the sperm head and distal flagellum, with the force coefficients f j

m( ), m ∈ {1, 2}, 
switching on and off, with changing signs during the beat cycle. This in turn is associated with an overall flow field 
that switches between pusher- and puller-type profiles during the flagellum beat. In turn this oscillatory dynamics 
induces an extensive cell yaw, that is oscillatory lateral movement relative to the overall progressive direction of 
the cell35. In contrast, for the HVM case, large viscous resistance appears to suppress cell yaw, and the 
time-resolved flow field is well described by travelling waves of lateral forces36, with a flow profile that is always of 
pusher-type36 throughout the beat period. These regularised Stokeslet representations motivate the modelling of 
a sperm via objects composed of = ∑ =K L m( )m

M
0  regularised Stokeslets, in turn approximately representing K 

spheres, as briefly discussed in the Methods section.

Modelling collective behaviour.  To consider collective behaviour, we firstly use the above regularised 
Stokeslet superposition as a representation for the flow induced by each sperm, with all sperm swimming in a 
2D-plane, noting that sperm cells accumulate adjacent to a flat surface39. The flow is still well approximated even 
in the presence of the wall, given the typically observed scale of ≈15μm for the sperm-substrate separation9,35, s 
explicitly considered in the supplementary material of Ishimoto et al.35. This may also be further understood from 
the fact the dominant feature of the model dynamics is sperm-sperm interaction, which is characterised by a cell 
separation which is much less than 15 μm.

Hence the next step is to consider sperm-sperm interactions in detail – these are mediated by hydrodynamics 
and, possibly, steric effects, with the latter involving electrostatic repulsion and receptor-ligand adhesions40. As 
detailed in Supplementary Information, the mammalian flagellum diameter is much smaller than the variation in 
height of boundary accumulated sperm above a surface39. Hence, flagella are generally expected to pass over each 
other without steric influences, as further indicated by observations that flagella smoothly cross in the microscopy 
of multiple swimming sperm41. The prospective impact of steric interactions involving sperm heads is assessed 
in Supplementary Information. and shown to be negligible to an excellent approximation. Consequently, steric 
interactions are also neglected below and we focus on hydrodynamics.

With the number of cells denoted by N, we proceed by taking the equations of motion for the nth cell, with 
n ∈ {1, 2, …, N}, to be given by

= = +
X U U Ud
dt

: (1)

n
n n single n others

( )
( ) ( ), ( ),

and

θ
= Ω = Ω

d
dt (2)

n
n n others

( )
( ) ( ),

for the two-dimensional positions X(n) and the angles θ(n).
Thus, an isolated sperm is modelled as moving in a straight line at the experimentally obtained, and hence 

known a priori, swimming velocity U(n),single, which is observed to very good approximation9. However, in the 
presence of other cells, the velocity of the cell is modified by U(1),others for cell 1 and analogously for the remaining 
cells. These modifier velocities are a priori unknown two-dimensional vectors and thus constitute a total of 2N 
scalar unknowns. In addition, the rate of rotation of cell 1 in the plane of swimming is modified by Ω(1),others, and 
similarly for the other cells. Hence, there is a total of 3N scalar unknowns a priori, namely

…U U{ , , },others N others(1), ( ),

and

Ω … Ω .{ , , }others N others(1), ( ),

These modifier velocities and angular velocities may be determined using the background flows resulting from 
the other cells that induce sperm-sperm interactions, as we proceed to discuss.

Let the triplet (n, m, l) refer to the lth singularity in the approximation of the mth PCA mode for the nth cell, 
with εx ,n m l n m l

0
( , , ) ( , , ) referring to location and regularization parameter. Then, exploiting the linearity of the 

Stokes equations governing the fluid dynamics, the flow generated at x n m l
0
( , , ) due to the other cells, denoted 

′ xu t( , )t
n m l

0
( , , ) , is given by a superposition of the flows generated by the singularities associated with regularised 

Stokeslets representations of the other cells. Hence
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where = ∑ =K L m( ),m
M

0  we further define the residual velocity

= ′ − − Ω ×u u x U e xt: ( , ) ,res
n m l n m l n others n others

z rel
n m l( , , )

0
( , , ) ( ), ( ), ( , , )

with ez the unit vector into the fluid perpendicular to the surface, and the relative location defined by

= − .x x X: (4)rel
n m l n m l

c
n( , , )

0
( , , ) ( )

Then U(i),others, Ω(i),others for i ∈ {1, …, N} are determined by the N velocity closure equations
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which are motivated and detailed in the Methods section.
Note that equation (5) constitutes 2N scalar equations as the velocities are two-dimensional vectors, whereas 

equation (6) is N scalar equations since the cross product of the two vectors, both of which lie in the swimming 
plane, is perpendicular to the swimming plane. Hence, the closure equations give 3N scalar constraints for the 
above 3N a priori unknowns; the latter can thus be determined given the location, velocity and angular velocity of 
each sperm, as explicitly demonstrated in the Methods section. Furthermore, the location, velocity and angular 
velocity of each sperm at initial time is known from the initial conditions and hence the modifier velocities and 
the modifier angular velocities can be determined at the initial time, allowing a numerical timestep of equations 
(1) and (2). Iterating thus generates the dynamics of the population, incorporating the information contained 
within the regularised singularity representation of each sperm. Further details, such as the specification of the 
initial conditions, the numerical timestepping scheme and how to solve the closure conditions are given in the 
Methods section.

Hereafter, we non-dimensionalise the system, setting the flagellar length, the beat period and the fluid viscos-
ity to unity for both the LVM and HVM cases. The sperm collective dynamics has subsequently been simulated, 
using the above equations and assuming the cells swim in a doubly-periodic square box of length L = 5. Note that, 
sperm clustering is a relatively local phenomenon4 and we have illustrated that once L = 5 or larger, simulation 
predictions are insensitive to further increases in domain size, as detailed in the Supplementary Information.

Collective dynamics with temporal fluctuations.  We first consider a temporally varying velocity pro-
file around a sperm, with no averaging of the trajectories over the flagellum beat period, conducting simulations 
with the velocity profile associated with the mean and M = 2 flow PCA modes. In Fig. 3(a,b), snapshots of the 
sperm configurations are shown. For the LVM case, the sperm cells regularly cross each other and are relatively 
uniform in their spatial distribution, whereas clustering can be observed in HVM, as highlighted by the red cir-
cles of Fig. 3b. Movies are available in the Supplementary Information and clearly show that the sperm clusters 
are transient, with the individual sperm in a given cluster changing over time, and also with clusters repeatedly 
emerging and disappearing.

To proceed, let the distance and angle between cells n and n′ be denoted by = | − |′
′X Xr :nn

n n( ) ( )  and let 
θ θ θ= −′

′:nn
n n( ) ( ). The frequency histogram for (rnn′, θnn′) is used to generate p(rnn′, θnn′), the probability distribu-

tion function, which is plotted in the inset of Fig. 3(c) and exhibits significant peaks at rnn′ ≈ 0 and θnn′ ≈ 0. The 
relative suppression of the histogram peak in LVM contrasts the HVM case, where the localization for small rnn′ 
highlights clustering as the cells are close to each other, while the localization for small θnn′ shows alignment, as 
cells are essentially pointing in the same direction. This observation of simultaneous clustering and alignment has 
also been previously reported11,16.

We further characterise cell alignment, cell clustering and angular auto-correlation, with technical details 
concerning the plotting of these features reserved for the Methods section below. In particular, for cell alignment 
we define C = 〈cos θnn′〉nn′, where the bracket 〈⋅〉 ′nn  denotes both pairwise and temporal averaging. This ordering 
function depends on the relative cell separation, r, and is plotted in Fig. 3(c), with N = 250 sperm, for both LVM 
and HVM cases, with the bars denoting the standard error. These plots demonstrate substantially more alignment 
between two cells that are close in HVM. We similarly consider the cluster ordering function given by 

= −⁎C r q r q( ): ( )/ 1c , where ∫ θ θ=
πq r p r( ): d ( , )

0

2 , with qc given by replacing the predicted probability density 
function, p, plotted in Fig. 3(c, inset) with the constant one for the same geometry and cell numbers. Hence ⁎C r( ) 
is high when there are more cells per unit area and Fig. 3(d) demonstrates substantially more close range cluster-
ing in HVM.

Furthermore, both clustering and alignment measures are higher in HVM across different cell densities, as 
summarised by Fig. 4(a,b) where, respectively, the alignment and clustering order parameters, =C C: (0)0  and 

=⁎
⁎C C: (0)0 , are plotted. We proceed to consider angular auto-correlation via 〈cos (θnn′(t) − θnn′(t − T))〉nn′, which 

can be fitted to the exponential exp(−T/τ), with the parameter τ defining the angular diffusive timescale of cor-
relation decay. A plot of τ in Fig. 4c highlights inversely proportionality to the cell density, suggesting angular 
diffusion arises mainly from pairwise interactions16.
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The impact of temporal averaging.  Given the observed simultaneous clustering and alignment, both 
features can be further quantified by one of the ordering functions and we consider C(r), the alignment function, 
below. In particular, we proceed to classify the collective motion of the cells with the flow profile and trajectory 
averaged over the flagellum beat period, i.e. M = 0 (flow averaging), and Usingle = 〈Usingle〉traj (trajectory averaging), 
with the bracket denoting time-averaging over the flagellum beat period. Such simplifying averaging is frequently 
considered11,16 and thus its impact is explored.

Firstly, note that yawing in the LVM case is subdued on temporally averaging the cell trajectories over the 
beat cycle, while the LVM oscillation between puller and pusher dynamics is subdued by averaging the fluid 
velocity over the flagellum beat cycle. Hence we consider the alignment order parameter and clustering surro-
gate, C0, with all combinations of whether the sperm fluid flow is averaged over the flagellum beat cycle or not, 
whether the sperm trajectory is averaged over the beat cycle or not and the choice of LVM or HVM; see Fig. 4(d). 
With full temporal resolution this highlights extensively more clustering in HVM (C0 = 0.45) compared to LVM 
(C0 = 0.21), a 114% increase. One can also observe that trajectory averaging essentially has no effect in HVM, 
with C0 = 0.47 after this averaging, as expected since there is minimal yawing in HVM.

To consider the impact of yaw, we thus review the LVM case, where applying trajectory averaging in the 
absence of flow averaging – which removes yaw – induces significantly more clustering, with C0 increasing from 
0.21 to 0.54. Flow averaging also enhances the clustering surrogate C0 from 0.21 to 0.65. Hence both the cell yaw 
and the flows associated with the transient, fast timescale, pulling swimmer dynamics inhibit the clustering for 
sperm swimming within LVM.

With full temporal averaging, as often used in past studies11,16, one has C0 = 0.71 for LVM and C0 = 0.84 for 
LVM. This is a subtle, 18%, difference and even the LVM dynamics exhibits much more clustering than HVM 
collective behaviour in the absence of temporal averaging. Thus, with temporal averaging extensive alignment 
and clustering is always predicted, with much less difference between LVM and HVM collective behaviours, 
compared to modelling predictions with full temporal resolution, while only the results of the latter are reflected 
in observation4. This not only emphasises the significant impact of the finer-scale temporal dynamics on the pop-
ulations, but also the need to incorporate such resolution within coarse-grained approaches.

Discussion
Motivated by observations from bovine studies4 we have numerically investigated sperm clustering, modelling 
sperm as superpositions of flow singularities, coarse-grained from experimentally obtained human sperm dig-
ital microscopy, in both a low viscosity medium and a highly viscous–weakly elastic medium by the application 
of principal component analysis. In particular, this has provided coarse-grained data accommodating highly 

Figure 3.  Snapshots of cell configurations for the simulation of N = 250 sperm cells with a domain length of 
L = 5, no averaging and the temporally varying velocity profile associated with the mean and the first M = 2 flow 
PCA modes. (a) The LVM case. The dots and the rods illustrate the position of each cell head and the associated 
cell orientation. (b) The HVM case, analogous to (a), with clustering cells highlighted by red circles. (Also see 
SM Movies). (c) The alignment ordering function, C(r), and (d) the clustering order function, ⁎C r( ), for the 
same simulations as (a,b), with bars denoting the standard error. ((c), inset) The predicted probability density 
functions for these simulations; the horizontal plane of the plots consists of the polar coordinates, rnn′, θnn′.
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resolved spatio-temporal information for studying collective behaviour, which also allows us to consider whether 
temporal averaging over the flagellum beat cycle is an accurate simplification.

Firstly, including fine-scale temporal dynamics, one finds simulations for LVM predict extensively less cluster-
ing than for HVM, with the latter simulations exhibiting a dynamic clustering, as reflected in Tung et al.’s study4. 
However, one must be cautious about relating our predictions to these experimental studies given the difference 
in sperm species and that the polyacrylamide medium in their study is beyond our assumption of linear viscoe-
lasticity. Hence, detailed comparison is however outside our scope, though we note that nonlinear viscoelasticity 
could further enhance the clustering11.

Nonetheless, a fundamental and general feature of our results arises on analysing the impact of averaging 
over the velocity field and the sperm-swimming trajectory. In particular, this emphasises that the presence of 
both cell yaw and swimmer pulling due to the fast dynamics are the core reasons why the virtual sperm cells do 
not dynamically cluster more extensively in the LVM case. Furthermore, the results emphasise in general that the 
detailed flagellar waveform is important in determining differences in sperm behaviour within different rheolog-
ical media42 for the population dynamics as well as at the level of an individual cell.

A further result is that the temporal averaging of either the flow or the trajectories induces an overestimation 
of clustering. This in turn generically demonstrates that coarse-grained studies with a temporal averaging over the 
fine details of the flagellum beat period are too coarse and can be misleading. Hence one cannot neglect the com-
plication that the fast timescale details of the flagellum beat significantly influence larger scale sperm behaviour, 
whether in modelling or considering the impact of cell level observations on population dynamics. More gener-
ally, such observations not only justify developing numerically efficient coarse-graining methods that incorporate 
fast dynamics, but also motivate the need for further high-speed microscopy of the sperm flagellum, together with 
analogous studies for other microswimmers.

Methods
Images and flow.  We have used the human digital video microscopy of reference9, which imaged sperm that 
had penetrated approximately 2 cm into a capillary tube and were in the region of cell boundary accumulation, 
about 10–20 μm from the capillary tube surface. Two cases were considered: (i) sperm motility in a watery in-
vitro fertilization medium and (ii) Earle’s balanced salt solution with the addition of 1% methylcellulose. We treat 
the latter medium as a linear Maxwell fluid since it exhibits storage and loss moduli consistent with a Maxwell 
fluid possessing an elastic relaxation time of τ = 0.006 s, an effective viscosity of 0.14 Pa · s and a weakly viscoelas-
tic Deborah number of De = 0.29. Throughout, we distinguish these cases via the label of low-viscosity medium 

Figure 4.  With a domain length of L = 5, the cell-number dependence for (a) the alignment order parameter 
C0, (b) the clustering order parameter ⁎C0  and (c) the angular diffusion timescale. In these plots we have the end 
time, Tend, is given by 6000 for N/L2 = 2, by 4000 for N/L2 = 4, by 2000 for N/L2 ∈ [6, 14], by 1000 for 
N/L2 ∈ [16, 20] and by 600 for N/L2 ∈ [22, 24]. (d) The order parameter, C0, with all combinations of flow and 
trajectory averaging with L = 5, N = 250 cells and Tend = 2000. The bars in plots (a,b,d) correspond to the 95% 
fitting confidence interval, as detailed in the Methods section.
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(LVM) and high-viscosity medium (HVM) for brevity. The digitised flagellum images have previously been 
reconstructed as a limit cycle trajectory in a low-dimensional PCA phase space to give a simple but accurate rep-
resentation of the flagellar waveform35,36. Applying this PCA waveform in the two types of medium as a boundary 
condition of the inertialess fluid equations, the flow field around the human sperm has previously been computed 
via the boundary element method, using the Newtonian Stokes equations for LVM and the linear Maxwell equa-
tions for HVM (Fig. 1(b,c) 35–37), as we summarise below.

Microswimming in a linear Maxwell fluid.  Given the fluid flows induced by sperm swimming possess 
only negligible Reynolds number we have by momentum balance that σ∇ ⋅ = 0, where σ is the stress tensor. 
These equations are coupled with the constraint of fluid incompressibility, that is ∇ ⋅ =u 0 for the velocity field 
u, as well as no-slip conditions on the sperm and zero flow boundary conditions at spatial infinity, so that

= ∈ → | | → ∞u x u x x u xt t S( , ) ( , ), , 0 as ,S

where uS(x, t) is the velocity on the surface of the sperm cell, S. In particular, uS(x, t) can be written in terms of 
the flagellar beat pattern, as extracted from video microscopy and principal component analysis, together with 
the velocity U and angular velocity Ω of the cell fixed reference frame. These latter two vectors are not imposed a 
priori, but simultaneously determined with the calculation of the velocity vector field.

Such calculations also require the specification of a constitutive relation. For a Newtonian fluid this is

σ δ τ= − + ∈p i j, , {1, 2, 3},ij ij ij

where p denotes the pressure field p and τ denotes the deviatoric stress, and is defined by

τ μ= =





∂
∂

+
∂

∂






D D u

x
u
x

2 , where 1
2ij

i

j

j

i

with μ denoting the viscosity of the fluid. For a linear Maxwell fluid the constitutive relation is altered in terms of 
the deviatoric stress, which is instead given by

τ τλ μ∂
∂

+ = D
t

2 ,

for an elastic relaxation time, λ. In this case, an explicit time derivative entails that an initial condition for the 
velocity field must also be specified.

Sufficiently far in the past, at initial time t0, no flow and constant pressure are assumed with

Ω= =U t t 0( ) ( )0 0

and the flagellar waveform is taken to be of zero velocity, and evolved to the observed waveform on a short times-
cale, though not so short that inertia is important. Since the memory of the initial conditions decays on a times-
cale of λ, we have that once λ− t t0  these initial conditions have negligible effect on the solution and thus they 
may be used without loss of generality.

Below we summarise why the velocity flow field and sperm trajectory are predicted to be the same for both a 
linear Maxwell fluid and a Newtonian fluid given the flagellar beat pattern of the cell. Hence Newtonian bound-
ary element methods can be used to determine the flow fields for sperm swimming in the high viscosity-weakly 
elastic media considered in this paper.

First, the Newtonian momentum equations are given by

μ−
∂
∂

+ ∇ = .
p
x

u 0
i

i
2

In contrast, one has

μ−
∂

∂
+ ∇ =

x
p u 0,

i

M
i
M2

for the linear Maxwell fluid, with pM and uM denoting the Maxwell fluid pressure and velocity flow field, obtained 
by applying the operator λ= + ∂ ∂t: (1 / )  to the momentum balance equations. Hence

= = −u u p p, ,i
M

i
M 1

are solutions and satisfy all boundary conditions. For the initial time t0 the flow and sperm are stationary and 
hence the linear Maxwell solution and Newtonian solution coincide and thus the initial conditions also hold. 
These initial conditions also entail that the inverse operator −1 is unique as required for a unique pressure field 
for the linear Maxwell fluid solution. Hence, by explicit construction, the linear Maxwell and Newtonian bulk 
velocity fields are identical. Furthermore, since the bulk velocity fields are identical, so are the surface velocity 
fields by continuity and hence so are U and Ω, the remaining elements of the solution. However, the pressure, 
stress, viscous drag and other aspects of the mechanical forces required to maintain the sperm movement differ 
for the linear Maxwell fluid compared to Newtonian media.
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A more formal proof of the above result, together with details of the boundary element calculations of the cell 
trajectories and velocity flow fields in linear viscolelastic media, can be found in recent work37. In addition, details 
of Newtonian flow calculations may be found in numerous older works, for example43,44.

Closure equations.  The closure equations 5 and 6 can be interpreted via a representation of the sperm as an 
extended object, consisting of K negligibly small spheres, where = ∑ =K L m( )m

M
0  is the number of regularised 

Stokeslets in a single sperm. This is motivated by the commonly used simplification of sphere-linked swimmer 
models45–47, noting that the regularised Stokeslets are approximately singular Stokeslets, at least away from the 
singularity, and similarly Stokeslets are good approximations for spheres away from the very near field of the 
sphere.

To proceed, for the Newtonian case, we take the location of each sphere to be given by that of the regularised 
Stokeslets in Fig. 2. Let c be the radius of each point-like spherical particle, and μ the viscosity of the medium. 
Then using the Stokes drag law gives the hydrodynamic force on the sphere centred at x n m l

0
( , , )

ξ= − +F u U f( ) , (7)n m l
res

n m l n single m n( , , ) ( , , ) ( ), ( , )

where ξ = 6πμc is a constant and the residual velocity ures
n m l( , , ) is defined in the main text. In particular the velocity 

term −u Ures
n m l n single( , , ) ( ),  constitutes the speed of the sphere relative to the background flow, and the force term 

f(m,n) is the force due to the singularity. The total force balance on the nth sperm is then given by

∑ ∑ = .
= =

F 0
(8)m

M

l

L m
n m l

0 1

( )
( , , )

We first consider the case of one sperm, labelled by (n), swimming in isolation. Then =u 0res
n m l( , , )  by the defi-

nition of this residual velocity and we have

∑ ∑ξ− + =
= =

U fK 0,
(9)

n single

m

M

l

L m
n m( ),

0 1

( )
( , )

where = ∑ =K L m( )m
M

0 . As all terms in the above are independent of the other cells, this still holds even if other 
cells are present. Hence, combining Equations (7), (8) and (9) the force balance on each cell collapses to

∑ ∑ξ = ∈ …
= =

u n N0, {1, , },
(10)m

M

l

L m

res
n m l

0 1

( )
( , , )

yielding the first closure equation (5).
Similarly, the moment balance relation for the nth sperm around its centroid is given by

∑ ∑ × =
= =

x F 0,
(11)m

M

l

L m
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n m l n m l

0 1

( )
( , , ) ( , , )

where the relative location xrel
n m l( , , ) is given in the main text. This generates the second closure equation,

∑ ∑= × ∈ …
= =

x u n N0 , {1, , },
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on again noting there is no net moment associated with a single cell, swimming in isolation. Solving these closure 
equations with respect to the U(n),others and Ω(n),others, we have explicit forms,
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In the case of the linear Maxwell fluid, equations (7), (8), (9) and (11) hold on making the substitutions

 → →− −F F f f, ,n m l n m l m n m n( , , ) 1 ( , , ) ( , ) 1 ( , )

where λ= + ∂ ∂t(1 / ) . In particular, the cancellations required to derive equations (10) and (12), together in 
turn with equations (13) and (14), proceed identically to the Newtonian case, providing identical closure equa-
tions for the linear Maxwell fluid.

Numerical implementation.  A solution is required for the ordinary differential equations governing the pop-
ulation dynamics, (1) and (2), subject to initial conditions and the closure equations, which reduce to the 
explicit relations of equations (13) and (14) for the modifier velocity, U(n),others, and the modifier angular velocity, 
Ω(n),othersez.
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Noting the location, velocity and angular velocity of each sperm is known from initial conditions the modifier 
velocities and angular velocities can be determined at the initial time from equations (13) and (14). In turn this 
allows a numerical timestep of equations (1) and (2); iterating thus generates the dynamics of the population, 
while incorporating the information contained within the regularised singularity representation of each sperm. 
In practice, the time evolution is performed simply, by the explicit Euler method, with the time discretization 
Δt = T/100, where T = 1 is the non-dimensional time period of the flagellar beat cycle.

To specify the initial conditions in the simulations, sperm positions and orientations are drawn from a uni-
form random distribution on the square domain. Note that the sperm configuration rapidly relaxes to its statis-
tical stationary state regime, regardless of the initial conditions, and that the simulation with initial complete 
alignment exhibits an analogous rapid convergence. The simulations are performed from t = 0 to t = Tend, where 
the end time, Tend, ranges from 1000 to 6000, depending on the number of cells, N. This end-time is always much 
larger than time required for the system to relax to the statistical steady state and once this constraint is satisfied 
the results have been confirmed to be insensitive to the choice of Tend. The computations have been performed 
within the supercomputing system at the Institute for Information Management and Communication (IIMC), 
Kyoto University. Using 36 cores in parallel computation required approximately 400 CPU hours to simulate 
N = 250 sperm up to t = Tend = 2000.

Plotting features of the population data analysis.  As documented in the main text, the relative distance, rnn′, and 
the relative angle, θnn′, between the cells n and n′ are extensively analysed via cell alignment, clustering and angular 
auto-correlation. The alignment ordering function, C = 〈cos θnn′〉nn′ is a function of the cell separation, denoted r.  
Dividing the time interval [0, Tend] into 10 sub-intervals and averaging both pair-wise and temporally within each 
of these time sub-intervals, leads to the plots of C(r) as in Fig. 3(c) of the main text for both HVM and LVM cases. 
Here, the bars give the standard error, that is plus/minus the standard deviation for the calculations from these 
10 sub-intervals.

The analogous clustering order function ⁎C r( ), together with standard errors, is also calculated via the mean 
and standard deviation across the above-mentioned 10 time sub-intervals and plotted in Fig. 3(d) of the Main 
Text. The fact ⁎C r( ) can be negative is expected from its definition; for example when more clustering is observed 
at short range, small, r then conservation of cell number entails that sperm must be more dispersed than the 
homogeneous distribution elsewhere, leading to negative ⁎C r( ) for larger values of r.

Both these ordering functions have global maxima as r → 0+, and this is a useful summary statistic. Hence we 
plot the alignment order parameter C0 = C(0), and the clustering order parameter =⁎

⁎C C (0)0  in Fig. 4(a,b) of the 
main text. However, it not feasible to numerically take r → 0+ as this ultimately reduces r below numerical resolu-
tion. Thus these plots are generated by an exponential fitting for both C(r) and ⁎C r( ) using the MATLAB fit 
function, allowing C0 and ⁎C0  to be determined, together with 95% confidence intervals via the MATLAB function 
confit, with the latter plotted as bars in Fig. 4. Finally, the auto-correlation function 〈cos (θnn′(t) − θnn′(t − T))〉nn′,  
is fitted by exp(−T/τ), with τ presented in Fig. 4. However this plot is not accompanied by confidence intervals as 
the latter are too small to be meaningfully depicted.

Code Availability
Custom computer codes simulating the collective behaviour are available to readers via the University of Oxford 
Research Archive: https://doi.org/10.5287/bodleian:ZBRnm2Pa9.
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