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Abstract

The striped flea beetle, Phyllotreta striolata (Fabricius), damages crops in the Brassicaceae.
The genetic data for this pest are insufficient to reveal its insecticide resistance mechanisms
or to develop molecular markers for resistance monitoring. We used PacBio Iso-Seq tech-
nology to sequence the full-length transcriptome of P. striolata. After isoform sequence clus-
tering and removal of redundant transcripts, a total of 41,293 transcripts were obtained, and
35,640 of these were annotated in the database of gene products. Structure analysis uncov-
ered 4,307 alternative splicing events, and 3,836 sequences were recognized as IncRNAs.
Transcripts with the complete coding region of important detoxification enzymes were fur-
ther classified. There were 57 transcripts of P450s distributed in CYP2, CYP3, CYP4, and
Mito CYP clades, 29 transcripts of ESTs from 4 functional groups, 17 transcripts of GSTs
classified into 5 families, 51 transcripts of ABCs distributed in 6 families, and 19 transcripts
of UGTs. Twenty-five IncRNAs were predicted to be regulators of these detoxification
genes. Full-length transcriptome sequencing is an efficient method for molecular study of

P. striolata and it is also useful for gene function analysis.

1. Introduction

The striped flea beetle, Phyllotreta striolata (Fabricius), is a pest damages economically impor-
tant crops in the Brassicaceae. P. striolata adults feed on fresh leaves. They lay eggs in the soil,
and the larvae feed on plant roots until pupation. After eclosion, the adults emerge from the
soil and begin a new generation. P. striolata is widely distributed in the northern and western
parts of the USA and is a major pest on cruciferous vegetables and oil producing Brassica culti-
vars [1,2]. Outbreaks of P. striolata now occur in southern China. The large populations of P.
striolata have caused serious economic losses there. The small body size, strong mobility, and
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high reproductive rate of P. striolata have made it difficult to control [3]. Chemical pesticides
are mainly used for controlling P. striolata but some populations have developed reduced sen-
sitivity to common insecticides such as the neonicotinoids. Evaluation of new pesticides
against this pest to determine efficacy has been expensive [4]. Little is known about resistance
mechanisms of P. striolata, which can lead to reduced pesticide effectiveness and increased
chemical use. It would be useful to obtain genetic information on the important insecticide
targets and detoxification enzymes of P. striolata.

Few genetic data of P. striolata are available and less than 500 nucleotide or protein
sequences have been submitted to the NCBI database. These data are insufficient to analyze
the physiological characteristics of P. striolata. Whole genome analysis is a good way to
obtain bioinformatics, but it not suitable for every species due to its high cost and long exper-
imental period (including sample preparation, sequencing, and data analysis). As an alterna-
tive method, transcriptome analysis is often used in biological research of animals, plants,
microorganisms, and insects. Next generation sequencing (NGS) technologies, such as ABI
SOLid, Illumina Solexa, and Roch 454 systems, are commonly used in transcriptome
sequencing [5]. The initial transcriptome analysis of P. striolata was performed by the Illu-
mina platform, and this mainly focused on the chemoreception genes related to olfactory rec-
ognition [6]. With the advantages of high accuracy, throughput and sensitivity, and relatively
low cost, Illumina sequencing has become a popular choice for transcriptome analysis. How-
ever, one disadvantage of [llumina sequencing is the short read length, which presents an
obstacle for the study of specific gene functions [7]. Most genes obtained from Illumina
sequencing are only partial sequences. Thus, RACE technology should also be used to obtain
the full sequence of important genes. To overcome these limits, third generation sequencing
(TGS) technology was invented based on single-molecule real-time (SMRT) sequencing tech-
nology [8]. With significantly longer reads (maximum of >20 000 nt) than NGS, full length
transcripts can be easily screened out of the sequence data obtained from the PacBio plat-
form. The complete transcripts also provide information useful for investigation of alterna-
tive splicing, alternative polyadenylation, fusion transcripts, long non-coding RNAs
(IncRNA), and novel genes. With its moderate cost, TGS has become a good choice for
researchers to obtain complete genetic information of specific species lacking whole genome
data [9-11].

In this study, PacBio Iso-Seq technology (PacBio, Menlo Park, CA, USA) was used to
sequence the full-length transcriptome of P. striolata. We classified transcripts with the com-
plete coding region of important detoxification enzymes, analyzed alternative splicing events,
and predicted IncRNA as a regulator of these transcripts.

2. Materials and methods
2.1. Beetle collection and RNA isolation

P. striolata were collected from the field in BiShan, ChongQing, China. Original host was Bras-
sica juncea, and adults were reared on Chinese cabbage (Brassica rapa L. ssp. pekinensis). Total
RNA was extracted from 20 adults (10 males and 10 females) using Trizol reagent (Invitrogen,
CA, USA), and mixed together. The concentration of total RNA was quantified by Eon micro-
plate spectrophotometer (BioTek, VT, USA), and OD,¢4/2580 and OD 60,230 Were test to assess
purity. The integrity of RNA was confirmed by 1% agarose gel electrophoresis. Then, RNA
sample was sent to Biomarker Technologies (Biomarker, Beijing, China) for full transcriptome
sequencing on Pacbio platform. Since no dangerous species or technology were involved in
this research, no permits were required for the work.
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2.2. Library construction and full-length transcriptome sequencing

Ten pg total RNA with high quality (purity, concentration, and integrity) was used to construct
the cDNA library. Full length cDNA was synthesized from mRNA by using SMARter™ PCR
cDNA synthesis Kit (Clontech, CA, USA). Briefly, mRNA molecules were collected by oligo
(dT) magnetic beads, and then were copied into first and second cDNA by using random hex-
amers, dNTP, RNase H, and DNA polymerase. Synthesized cDNA was purified by AMPure
XP beads (Beckman Coulter, CA, USA), and modified with end repair, A tail and adapter liga-
tion, exonuclease digestion. After quality assessment, the cDNA library was sequenced on the
Pacbio platform.

2.3. Sequence assembly and assessment

Sequencing by the PacBio platform can provide information of an entire single transcript with
extreme long reads (median 10 kb), which could be directly used to assemble a full-length tran-
scriptome [12]. All of the original sequences were converted into Circular Consensus (CCS)
sequences according to the conditions that full passes >1 and sequence accuracy >0.9. CCS
sequences with 5" primer, 3’ primer and polyA tail (if any) were predicted to be full length
sequences, or else non full sequences.

Same transcripts may generate similar sequences, and these sequences were classified into
one cluster. Each cluster had only one consensus sequence. Then, Cd-hit was used to remove
redundancy to obtain non-redundant sequences [13]. Sequences with consistent exons except
the 5" end exon were merged to obtain the longest sequences as final transcripts [14].

2.4. Prediction of coding sequences and function annotation

The Open Reading Frame (ORF) was predicted by TransDecoder based on sequence length,
log-likelihood score, amino acid sequence, and protein domain sequence in the Pfam database
[15]. Transcripts containing a complete ORF were compared in main protein databases such
as NR and COG by BLAST software to get annotation information [16].

2.5. Alternative splicing (AS) analysis

AS events in non-redundant sequences were predicted by Astalavista software with default
parameters [17]. Sequences meeting the following conditions were considered as AS events: a)
two sequences were both >1000 bp, and contained two high-scoring segment pairs. b) The
alternative splicing gap was >100 bp, and splicing site location in relation to the 3’/5" end

was > 100 bp. ¢) Overlap of 5 bp was acceptable. Five different major types of AS events were
classified as Intron retention, Exon skipping, Alternative 3’ splice site, Mutually exclusive
exon, and Alternative 5 splice site [18].

2.6. IncRNA and its target prediction

The coding potential of transcripts was screened to determine whether they were IncRNA or
not. Four IncRNA analysis tools were comprehensively used to get a precise result. Transcripts
recognized as IncRNA were confirmed simultaneously by the Coding-Non-Coding-Index
(CNCI) [19], Coding Potential Calculator (CPC) [20], Coding Potential Assessment Tool
(CPAT) [21], and Pfam [22]. The IncRNA-mRNA interactions were identified by LncTar,
which was a reliable tool to efficiently predict the RNA targets of IncRNAs on a large scale
[23].
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2.7. Identification and analysis of detoxification related genes

Detoxification related genes (P450, EST, GST, ABC transporter, UGT) were screened out from
the annotated sequences against the protein database. The complete coding region was further
confirmed by the ORF finder (http://www.ncbi.nlm.nih.gov/gorf/gorf.html) and protein
BLAST results. Genes from other insects such as Tribolium castaneum were used as reference
to construct phylogenetic trees with MEGA software (neighbor-joining method and bootstrap
analysis with 1000 replications) [24].

2.8. Sequence validation of transcriptome data by PCR

Primers were designed based on transcriptome data to amplify CDS of detoxification genes
(S1 Table). The T3 Super PCR Mix Kit (TsingKe biological technology, BeiJing, China) was
used to perform PCR. The PCR products were purified from 1% agarose gel by PCR Clean-Up
System (Promega, Madison, WI, USA), and cloned into a pGEM-T Easy vector (Promega,
Madison, WI, USA), then, recombinant plasmid were sequenced for nucleotide information
(BGI, Beijing, China).

3. Results
3.1. Sequencing assembly

The clean data size of full-length transcriptome sequencing of P. striolata based on PacBio
SMRT (single molecule real time) sequencing technology was 45.29 Gb. According to the con-
dition that full passes >1 and sequence accuracy >0.9, 475,276 circular consensus (CCS)
sequences were extracted from the clean data. The total reads of CCS and mean read length
were 1,307,818,400 and 2,751. 400,368 CCS sequences (84.24% of total) containing a correct 5’
primer, 3’ primer, and polyA tail, and were classified as full-length non-chimeric sequences.
Same full-length non-chimeric sequences were screened out and divided into a cluster. Only
one consensus isoform was reserved in each cluster. In this step, 76,994 consensus isoforms
were detected with an average read length of 2,356 bp. Although 97.65% of these isoforms
(75,182) had high quality (accuracy >0.99), multiple copies of same transcripts were still likely
to be placed in different clusters, which resulted in redundant sequences. After removing
redundant sequences from high quality isoforms, 41,293 non-redundant transcript sequences
were obtained for annotation analysis (Table 1). The sequencing data is available at NCBI
under the accession number of SUB6581297.

3.2. Transcripts annotation

Among the non-redundant transcript sequences, there were 37,423 transcripts containing an
ORF, and 31,054 of them were complete ORF (Table 1). The amino acid lengths coded by the
ORF mainly ranged from 300 to 2200 aa (60.7%) (Fig 1A). Function prediction of transcripts
were annotated in databases. There were 34,751, 13,648, 22,854, and 21,400 transcripts that
returned valid results in Nr, COG, GO, and KEGG databases, respectively (Table 1). Blast anal-
ysis in the Nr database showed the homology distribution of full-length transcripts of P. strio-
lata. The majority of transcripts showed high homology with Tribolium castaneum, which is
the model species of Coleoptera, followed by Dendroctonus ponderosae (17.17%), while homol-
ogy with other insect species were less than 5.00% (Fig 1B). It was notable that 3.18% of the
transcripts were homologous with Gregarina niphandrodes, which is a parasite of arthropods.
According to annotation results in the COG database, the transcripts were mainly enriched in
function classes such as “General function” (12.13%), “Translation, ribosomal structure and
biogenesis” (10.35%), “Carbohydrate transport and metabolism” (9.98%), “Posttranslational
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Table 1. Statistics of full-length transcriptome sequencing.

Statistic Number
Clean data size 45.29Gb
Circular consensus (CCS) 475,276
Read bases of CCS 1,307,818,400
Mean read length of CCS 2,751
Full-length sequences 400,368
Consensus isoforms 76,994
Average consensus isoforms read length 2,356
High-quality isoforms 75,182
non-redundant transcripts 41,293
Transcripts with ORF 37,423
Transcripts with complete ORF 31,054
Annotated isoform number in Nr 34,751
Annotated isoform number in COG 13,648
Annotated isoform number in GO 22,854
Annotated isoform number in KEGG 21,400
Predicted IncRNA 3836
Alternative splicing events 4,307

https://doi.org/10.1371/journal.pone.0248749.t001
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Fig 1. Basic information of full-length transcriptome analysis of Phyllotreta striolata. A. Length distribution of transcripts; B. homologous species

distribution in Nr database; C. COG function classification of transcripts; D. IncRNA prediction results.

https://doi.org/10.1371/journal.pone.0248749.9001
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modification, protein turnover, chaperones” (9.93%), and “Signal transduction mechanisms”
(9.14%) (Fig 1C). Alternative splicing (AS) analysis was applied to identify multiple splicing
methods of pre-mRNA generated by gene transcription. A total of 4,307 alternative splicing
events were recorded (Table 1). Details of alternative splicing events were presented in S1 File.
Besides the coding transcripts, IncRNA was also predicted. The results integrated the most
widely used methods of coding potential analysis, including CPC, CNCI, Pfam, and CPAT
analysis. A total of 3,836 IncRNA transcripts were predicted by all four methods (Fig 1D). Tar-
get prediction of IncRNA was presented in S2 File. Specific alternative splicing events and
IncRNA related to detoxification genes were further screened out.

3.3. Full-length transcripts of P450 genes (P450s), and related IncRNA and

AS events

According to function annotation results in all databases, a total of 188 transcripts with a cod-
ing region of P450 were screened out. The completeness of these transcripts was manually con-
firmed by comparison of amino acid sequence in the nr database. Duplicates of the same gene
were also removed by cross comparison. After removal of incomplete sequences and dupli-
cates, 57 transcripts with the full coding region of P450 were identified. The mean length of
fully sequenced ORFs was 1491 bp. Phylogenetic analysis based on amino acids of other Cole-
optera showed that 57 P450 coding transcripts distributed in four clades, CYP2, CYP3, CYP4,
and mitochondrial, in which CYP3 was the largest clade containing 30 transcripts (Fig 2A).

A B
75
IncRNA: IncRNA_ 39453 5" .. AATTCATAATTCGTGGGGTAATTTAGAACT, TCCAC......3"
2910||||||||||||||||||||||||||||||||||||| |||||] |||| ||]| 128 3'UTR
Target: PS trnseript 683273 TTAAGTATTAAGCACCCCATTATATCT TOATAAAAACCAATIT AAMAAGGTT o '
IncRNA: IncRNA_69835 5' 3 AATGTATGTCTACTAAAAAATTAAAGAAAAAAATTTCATTT TTG 37
56 FILLETLIETL L 77 cps
Target: PS_transeript 59963 37 .....GAGITAAAACTTAAAAGAATTTTAATICTT TTTAAAGTAAAAACT . 57

123
IncRNA: IncRNA_24810 5" .- “AATATGG]
1840 I|||||||||||||

. TCAAACGTTATACC.

i
Dy 2
XD g
42015

Target: PS_transcript_12629 3’

PS trap,
Seripe 14

195 o
@rs e 963

PS trange,
vty o
pS transeript 14265
@ P tramserip

PS transeript 9939 ¢

@ PS ranseript 12316

PS transcript 11211 ¢
La4d2 NP 023012913

1
IncRNA: IncRNA_40112 5" GAAAACACCGATGTATTAAAATTAAATAAATTATCTG... ...
37

),IIIIIIIIIIIIIIII

O PS transeripy 14205

*
e “‘“«uﬂ
et ', Target: PS_transcript_48189 3" “.o ATGTGGC TACATAATTTCAATAGATCACATTATTT
2720

Mﬂv\
o

114
IncRNA: IncRNA_24234 57 _..AACACCGATGTAT TAAAATTAAATAAATTATCTGGAAG... 3’

4379 [LLEEEL T 154 3UmR
Targel: PS_transcript 48189 3' TITTAMAAGATG ATTTTTATT TATGTTGTAAAATCTTC. . S°
ICRNA: IncRNA 53519 5' L/ AATAAAATTAACTT TTTTATATGTAAATTGAAAAATAAAACGTTGGTATTIGG 3'
[EHEELEELELLL o sum

Target: PS_transcript_56996 3’ AAAAACTC‘\ATN\AAAAATAT'\CAT"ITTA;\_AAGAA\ACTATAGCGA»\'ITT/\
100

5-UTR CDS 5
PS_transcript_48144
PS_transcript_12922 .

PS_transeript_9817

PS_transeript_10277
Altemative 3" splice

Altemative 5” splice
C 5-UTR CDS 3-UTR
PS_transcript_2399 H
PS_transcript_11211 AI-[H\/
Exon skipping

Fig 2. Sequence analysis, regulatory IncRNA, and splicing events of P450s. A. Phylogenetic analysis of transcripts encoding P450s; B. binding sites of
IncRNA and P450s; C. splicing events of P450s.

https://doi.org/10.1371/journal.pone.0248749.9002
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Table 2. Sequence validation by PCR.

Gene name/Transcriptome ID

CYP18/PS_transcript_7165
CYP302/PS_transcript_13980
CYP306/PS_transcript_15513
CYP315/PS_transcript_47185
CYP6al3/PS_transcript_68327
acel/PS_transcript_444
ace2/PS_transcript_75978

CarE B/PS_transcript_60296
ABC G1/PS_transcript_61690
ABC D1/PS_transcript_5581

GST sigmal/PS_transcript_20971
GST epsilon1/PS_transcript_15201
UDP1/PS_transcript_31014
UDP2/PS_transcript_14115

https://doi.org/10.1371/journal.pone.0248749.t002

GenBank accession numbers Sequence identity with transcriptome data

Nucleotides Amino acids
MW149298 100% 100%
MW149299 100% 100%
MW149300 99.18% 98.76%
MW149301 99.20% 99.13%
MW149302 99.87% 99.61%
MW149303 100% 100%
MW149304 100% 100%
MW149305 99.56% 99.62%
MW149306 97.11% 97.36%
MW149307 99.48% 99.87%
MW149308 99.69% 100%
MW149309 99.54% 98.62%
MW149310 99.74% 99.80%
MW149311 99.68% 99.42%

Most transcripts were enriched in the cyp6, cyp9, and cyp4 families. Genes in these families
generally function in detoxification of exogenous toxins. Another important function of P450
in insects is biosynthesis of ecdysone. CYP302, CYP306, CYP307, CYP314, CYP315, CYP18 are
involved in this process and known as Halloween genes. The full transcriptome of P. striolata
detected five P450 genes having high homology with the Halloween genes (CYP302, CYP306,
CYP314, CYP315, CYPI8), while one gene (CYP307) was missing. The sequences of Halloween
genes and PS_transcript_68327 from cyp6 family were verified by PCR. The sequences align-
ment showed high reliability of trascriptome data (Table 2). Although the PCR product of one
Halloween gene, CYP314, showed a correct electrophoresis band, no signal was detected when
sequencing with either universal or specific primers.

The IncRNA can function as a regulator of mRNA and the transcriptome analysis revealed
six IncRNA targeting five P450 genes (Fig 2B). The [ncRNA_53519 could bind to the 5’UTR of
the PS_transcript_56996, and IncRNA_69835 could bind to the CDS of PS_transcript_59963,
and the binding site of the other four IncRNA was located at 3’UTR of the P450 genes. Nota-
blely, IncRNA_40112 and IncRNA_24234 were both predicted as regulators of PS_tran-
script_56996, and the binding sites are located in 3’'UTR.

Two alternative splicing (AS) events were detected in the P450 transcripts of P. striolata.
PS_transcript_10277 and PS_transcript_12922 were annotated as alternative splicing of
PS_transcript_9817 and PS_transcript_48144, respectively. Compared with PS_tran-
script_9817, mRNA sequence of PS_transcript_10277 skipped a region of 171 bp in 5UTR.
PS_transcript_12922 skipped a region of 107 bp in 3’UTR of PS_transcript_48144 (Fig 2C).

3.4. Full-length transcripts of esterase genes (ESTs) and related IncRNA
and AS events

Nighty-eight transcripts with a coding region of esterase from the transcriptome data were
manually submitted to blast in the nr database. After removing incomplete sequences and
duplicates, 29 identical full length transcripts encoding esterase were varified. The mean length
of fully sequenced ORFs was 1747 bp. A phylogenetic tree classified the 29 transcripts into four
functional groups (Fig 3A). “Generally intracellular enzymes, dietary detoxification functions”
was the major group containing 24 transcripts. Eight of them clustered in the branch of
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Fig 3. Sequence analysis, regulatory IncRNA, and splicing events of ESTs. A. Phylogenetic analysis of transcripts encoding ESTs; B. binding sites of
IncRNA and ESTs; C. splicing events of ESTs.

https://doi.org/10.1371/journal.pone.0248749.9003

detoxification enzyme, “carboxylesterase”, and the others may take part in generally intracellu-
lar and digestion processes. Two transcripts functioned as “AChE”, which is an important tar-
get of some insecticides. PS_transcript_444 and PS_transcript_75978 were annotated as
homology genes of acel and ace2 of T. castaneum. Two transcripts showed high homology
with neuroligin of T. castaneum, and D. melanogaster (“Neuro functions”). PS_tran-
script_50950 in “ThE” is a crucial enzyme for insect development. The sequences of two ace
genes (PS_transcript_444, PS_transcript_75978) and a carboxylesterase gene (PS_tran-
script_60296) were varfied by PCR. The sequences alignment showed high reliability of tras-
criptome data (Table 2).

The IncRNA analysis identified nine IncRNA targeting nine esterase genes (Fig 3B). Two
neuroligin genes both had regulatory IncRNA. The IncRNA_49355 could bind to PS_tran-
script_49963 at 5’UTR, while IncRNA_67144 targeted CDS of PS_transcript_5899. The targets
of the other seven IncRNAs were all general esterases, and four binding sites were in CDS, two
in 5’°UTR, and one in 3’°UTR.

Only one AS event was detected in the esterase transcripts of P. striolata. PS_tran-
script_27107 was annotated as alternative splicing of PS_transcript_75978, and it skipped a
region of 558 bp in CDS (Fig 3C).
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Fig 4. Sequence analysis, regulatory IncRNA, and splicing events of GSTs. A. Phylogenetic analysis of transcripts encoding GSTs; B. binding sites of
IncRNA and GSTs; C. splicing events of GSTs.

https:/doi.org/10.1371/journal.pone.0248749.g004

3.5. Full-length transcripts of glutathione S-transferase genes (GSTs), and
related IncRNA and AS events

In the transcriptome data, 35 transcripts were annotated as GSTs, after removing incomplete
sequencse and duplicates, 17 full-length sequences of GST's were confirmed. The mean length
of fully sequenced ORFs was 611 bp. These 17 genes were clustered into four groups and five
classes including “Delta and Epsilon” (5 transcripts), “Zeta” (5 transcripts), “Sigma” (4 tran-
scripts), and “Mirosome” (5 transcripts) (Fig 4A). The sequences of PS_transcript_20971 from
sigma class and PS_transcript_15201 from epsilon class were varfied by PCR. The sequences
alignment showed high reliability of trascriptome data (Table 2).
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Three IncRNA targeting GST genes were screened out (Fig 4B). The IncRNA_34225 could
bind to a Zeta Gst gene (PS_transcript_63739) at 3’UTR, and IncRNA_46049 could bind to
3’'UTR of a Delta Gst gene (PS_transcript_20971). The IncRNA_66820 targeted the CDS of a
Sigma GST (PS_transcript_15201).

No alternative splicing (AS) event was detected in the GST transcripts of P. striolata.

3.6. Full-length transcripts of ABC transporter genes (ABCs), and related
IncRNA and AS events

There were 135 transcripts encoding ABC transporters in the transcriptome data. After remov-
ing incomplete sequences and duplicates, 51 full-length ABC sequences were confirmed. The
mean length of fully sequenced ORFs was 2562 bp. Phylogenetic analysis showed that the ABC
transcripts were distributed in seven families including “A” (12 transcripts), “B” (6 transcripts),
“C” (5 transcripts), “D” (2 transcripts), “E” (2 transcripts), “F” (4 transcripts), and “G” (20
transcripts) (Fig 5A). The sequences of PS_transcript 61690 from G family and PS_tran-
script_5581 from D family were varfied by PCR. The sequences alignment showed high reli-
ability of trascriptome data (Table 2).

Five IncRNA were identified as regulators of ABC genes (Fig 5B). The IncRNA_69458,
IncRNA_74105, IncRNA_65078 could bind to the 5’UTR of PS_transcript_5581,

B
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Fig 5. Sequence analysis, regulatory IncRNA, and splicing events of ABCs. A. Phylogenetic analysis of transcripts encoding ABCs; B. binding sites of
IncRNA and ABCs; C. splicing events of ABCs.

https://doi.org/10.1371/journal.pone.0248749.9005
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PS_transcript_46259, and PS_transcript_61690, respecitively, while IncRNA_66622 and
IncRNA_54577 could bind to the CDS of the PS_transcript_56336 and PS_transcript_5406.

Two alternative splicing (AS) events were detected (Fig 5C). “Alternative 5 splice” and
“Exon skipping” were both identifed in PS_transcript 28512, which was annotated as alterna-
tive splicing of PS_transcript_5581. Two sites of “Alternative 5’ splice” and one site of “Alterna-
tive 3’ splice” were identified in PS_transcript_50613, which was annotated as alternative
splicing of PS_transcript_56600.

3.7. Full-length transcripts of UDP-glucuronosyltransferases genes
(UGTSs), and related IncRNA and AS events

Seventy-one transcripts were annotated as UGT genes. After removing incomplete sequences
and duplicates, 19 full-length sequences of UGTs were confirmed. The mean length of fully
sequenced ORFs was 1556 bp. These UGT's were clustered into two families, including
“UGT1” (7 transcripts), and “UGT2” (12 transcripts) (Fig 6A). The sequences of PS_tran-
script_31014 from UGT1 family and PS_transcript_14115 from UGT2 family were varfied by
PCR. The sequences alignment showed high reliability of trascriptome data (Table 2).

Two IncRNAs were identified as regulator of UGT's (Fig 6B). The IncRNA_41661 could
bind to the 5’UTR of PS_transcript_31014, and IncRNA_64764 could bind to the CDS of
PS_transcript_9986.

No alternative splicing (AS) event was detected in UGT transcripts of P. striolata.

4. Discussion

This full transcriptome analysis of P. striolata revealed 37,423 transcripts with ORF and 34,751
were annotated in the Nr database. Homology analysis of the transcripts showed that most of
the transcripts had high homology with the sequences of T. castaneum, which is the model
Coleopteran with a fully sequenced genome [25]. In this case, sequences from T. castaneum
were used as an important reference to analyze the identified transcripts of P. striolata.

Multiple sequences were classified as P450s, which is a large superfamily. They function in
detoxification and biosynthesis pathways [26]. The accurate number of P450s in different spe-
cies varies. According to genome data, there are 204 P450s in Culex quinquefasciatus, while
only 38 exist in Pediculus humanus humanus [27,28]. A total of 143 genes encoding P450s
were identified in T. castaneum, with 133 being putatively functional isoforms and the other
10 being pseudogenes. Phylogenetic analysis showed that CYP3 and CYP4 are two major clans
and cyp4, cyp6, cyp9 are three important families within these two clans [29]. A total of 188
transcripts encoding P450s were screened out from the full transcriptome of P. striolata. After
removing partial and duplicate sequences, we only found 57 fully sequenced transcripts. These
transcripts were mainly distributed in the CYP3 and CYP4 clans and cyp4, cyp6, cyp9 families
as well. In insects, P450 genes in the cyp6 family are widely involved in pesticide detoxification
[30-32]. This is also the largest family of P. striolata identified in this study including 23
unique transcripts. It will be a useful resource for P450s functioning in detoxification with a
possible direct relationship with the insecticide resistance mechanism of P. striolata. Besides
detoxification, a group of special P450s in arthropods, called Halloween genes, are involved in
ecdystroid biosynthesis [33]. Most full sequences of the Halloween genes were identified here,
but CYP307 was missing as well as any partial sequences. In some arthropod species Halloween
genes have not been found [34]. However, Coleoptera generally have a complete sets of Hal-
loween genes including CYP307. Thus, failure to find CYP307 in P. striolata may be due to
blind areas in the transcriptome sequencing [29,35].
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Fig 6. Sequence analysis, regulatory IncRNA, and splicing events of UGTs. A. Phylogenetic analysis of transcripts encoding UGTs; B. binding sites of
IncRNA and UGTs; C. splicing events of UGTs.

https://doi.org/10.1371/journal.pone.0248749.9g006

Genes with functions as generally intracellular, dietary, and detoxification enzymes form
the largest group of esterases in P. striolata. As a kind of particular esterase, acetylcholinester-
ase (AChE) of insects is an important target of many insecticides, and most insect species have
two AChE genes. T. castaneum and P. striolata were not exceptions to this rule. The first
AChE gene (ace) was sequenced from D. melanogaster, and it is the only sequence encoding
AChE in D. melanogaster. Acel from other insects is considered as the paralogous gene of ace,
and ace2 is considered as orthologous to ace [36]. Functional analysis of these two genes indi-
cates that acel is the target site of anticholinesterase insecticides, while the importance of ace2
is comparatively less [37]. This study found both fully sequenced acel and ace2 genes in P.
striolata as well as a alternative splicing sequence with an exon skipping in the CDS of ace2.

As an important phase II detoxification enzyme, GST's are mainly involved in the detoxifi-
cation of pesticides. In the T. castaneum genome, a total of 41 GST genes were anotated. Delta
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and Epsilon were the two biggest classes of GSTs, and their function is highly correlated to
insecticide resistance [38]. However, according to the transcriptome of P. striolata, 35 tran-
scripts were identified as GSTs, including 17 full-length sequences of GSTs.

Compared to P450s, CarEs, and GSTs, which are important detoxification enzymes, ABCs
and UGTs are relatively newly identified groups that also have a role in insecticide resistance
[39,40]. In the transcriptome analysis of P. striolata, 135 transcripts encoding the ABC trans-
porter were identified, and 51 were full-length sequences, distributed in 7 families. A total of
73 ABCs have been annotated in the genome of T. castaneum. ABCC is the largest family and
it is mainly associated with resistance. ABCs are involved in many important physiological
processes. RNAi of ABCs in T. castaneum can cause aberrant phenotypes such as wing, molt-
ing and developmental defects, white eyes, and death before molting [41]. This suggests that
ABCs are potential RNAi targets for developing novel control methods for P. striolata.

As GSTs, UGTs are phase II detoxification enzymes widely distributed in various insect
species. UGTs have been divided into two distinct families, UGT1 and UGT2, based on
sequence identities [42]. UGTs from the UGT?2 family are mainly involved in detoxification of
xenobiotics. In insects, over-expression of UGT2 genes is usually related to insecticide expo-
sure or resistance [43,44]. A total of 43 UGTs have been classified in the genome of T. casta-
neum [45]. In this study, 71 transcripts were annotated as UGTs, and 19 sequences had a
complete coding region. Most of these belong to the UGT2 family.

Although up-regulation of expression and specific point mutation were most studied mech-
anisms for detoxification resistance of insects [46], the alternative splicing of detoxification
genes has attracted much interest with development of sequencing technology [47]. Besides
providing information on the complete sequences of functional genes, another advantage of
TGS technology is prediction of alternative splicing events. A total of six alternative splicing
events were observed in classified genes, three in P450s, two in ABCs, and one in EST's. There
are three kinds of alternative splicing events according to their position. These include alterna-
tive 5-UTR or 3’-UTR splice, and direct skipping in the CDS. Splicing in the 5’-UTR or 3’'UTR
may affect the post transcriptional regulation of a specific gene and result in a higher or lower
translation to functional protein. Skipping in the CDS can lead to a direct function change.
The three alternative splicing events of P450s were identified in 5°-UTR, 3°UTR, and CDS,
respectively, which might change the translation of mRNA or directly affect the enzyme activ-
ity. In the Nilaparvata lugens, a novel alternative transcript of CYP6ERI was found important
for imidacloprid resistantance [48]. In Drosophila, an alternative splicing event in ABC gene
MDRA49 was associated with DDT resistance [49]. In this study, two alternative splicing events
were detected in ABCs of P. Striolata, which might also contribute to inseciticide resistance.
Only one alternative splicing event was found in ESTs, and interestingly, it was happened in
AchE gene, which was not a detoxificaiton enzyme, but a target of organophosphorus insecti-
cide. The target change could lead to high resistance level, which were commonly occured in
insects [50]. As splicing is a major mechanism for the enhancement of transcriptome and pro-
teome diversity [51], these data would provide a broad view to understand detoxification
mechanism of P. Striolata.

The IncRNA is a regulator of gene expression. It is involved in nearly every level of the gene
expression program. The IncRNA can participate in posttranscriptional gene regulation
through controlling processes like protein synthesis, RNA maturation, and transport as well as
in transcriptional gene silencing through regulation of the chromatin structure [52]. The full
transcriptome analysis also predicts IncRNAs based on their interaction with sequences of
transcripts, and these information could be used in analysis of detoxification mechanisms of
insects. In the studies of Plutella xylostella, IncRNAs associated with P450s, ESTs, UGTs, ABCs
and insecticide targets were sequenced and annotated. The function of these IncRNAs was
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thought to contribute to chlorantraniliprole and BT resistance [53,54]. In this case, the pre-
dicted IncRNAs in P. Striolata will provide insights into the regulation of detoxification genes.

5. Conclusions

Our data provide abundant gene resources with complete CDS for function analysis, and its
accuracy is confirmed by PCR validation. It suggests that full-length transcriptome sequencing
is an efficient way to promote molecular study of organisms without genome.
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