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A dynamic multi-protein assembly known as the replisome is responsible

for DNA synthesis in eukaryotic cells. In yeast, the hub protein Ctf4 bridges

DNA helicase and DNA polymerase and recruits factors with roles in

metabolic processes coupled to DNA replication. An important question

in DNA replication is the extent to which the molecular architecture of the

replisome is conserved between yeast and higher eukaryotes. Here,

we describe the biochemical basis for the interaction of the human CTF4-

orthologue AND-1 with DNA polymerase a (Pol a)/primase, the replicative

polymerase that initiates DNA synthesis. AND-1 has maintained the trimeric

structure of yeast Ctf4, driven by its conserved SepB domain. However, the

primary interaction of AND-1 with Pol a/primase is mediated by its C-term-

inal HMG box, unique to mammalian AND-1, which binds the B subunit, at

the same site targeted by the SV40 T-antigen for viral replication. In addition,

we report a novel DNA-binding activity in AND-1, which might promote the

correct positioning of Pol a/primase on the lagging-strand template at the

replication fork. Our findings provide a biochemical basis for the specific

interaction between two critical components of the human replisome, and

indicate that important principles of replisome architecture have changed

significantly in evolution.
1. Introduction
Duplication of the genome before cell division is performed by a multi-protein

assembly known as the replisome [1,2]. The replisome contains the necessary

enzymatic activities, such as DNA unwinding and nucleotide polymerization,

to copy the genetic information using the parental DNA strands as templates.

In addition, integral to the replisome assembly are several non-enzymatic

components that are important for efficient DNA replication, under normal

conditions and in situations of replicative stress. One of the best characterized

of these replisome components is the yeast Ctf4 (chromosome transmission

fidelity 4), a homotrimeric hub that links the Cdc45-MCM-GINS (CMG) DNA

helicase with DNA polymerase a (Pol a)/primase, and interacts with protein fac-

tors involved in various DNA metabolic processes, such as the helicase–nuclease

Dna2, the sister chromatid cohesion helicase Chl1 and the rDNA compaction

protein Tof2 [3–8]. Ctf4 deficiency causes a pleiotropic phenotype, consisting

of sensitivity to DNA damaging agents, faulty sister chromatid cohesion and

alterations in the rDNA gene locus, which highlights its importance in maintain-

ing genome stability during DNA replication [7,9–12]. Ctf4 orthologues have

been identified in various eukaryotic organisms, including fission yeast (Mcl1)

[13], Drosophila (Ctf4) [14] and humans (acidic and nucleoplasmic DNA-binding

protein; AND-1) [15,16], suggesting that its functional role has been conserved

throughout evolution.
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To understand the molecular mechanisms of DNA syn-

thesis, it will be essential to elucidate in detail the molecular

principles of replisome architecture. We have recently made

an important advance by explaining how the protein hub

Ctf4 interacts with its partners at the replication fork [6,7].

One pertinent question is to what extent the network of contacts

holding together the eukaryotic replisome have been con-

served in evolution. We decided to explore this question by

biochemical and structural characterization of the human

CTF4-orthologue AND-1. AND-1 clearly shares some or poss-

ibly all the functions of its yeast counterpart in maintaining

genome stability and establishing sister chromatid cohesion

[15–20]. This is a likely consequence of its sequence similarity

with Ctf4 (21% identity and 36% similarity over 722 out of

1129 aligned residues) and their shared domain structure, com-

prising an N-terminal b-propeller domain and a C-terminal

SepB domain, the latter being responsible for trimerization

and for interactions with proteins harbouring a Ctf4-interacting

peptide (CIP) motif [21,22]. However, at 1129 amino acids,

AND-1 is considerably larger than Ctf4 (879 amino acids) and

contains an extended C-terminal region, including an

HMG-box domain, that is not present in Ctf4.

Here, we show that the SepB domain of AND-1 is a struc-

tural orthologue of yeast Ctf4, that it exists in a trimeric form

and that it binds to Pol a/primase, like its yeast orthologue

Ctf4. However, we find that although the AND-1 SepB

domain has retained a weak affinity for the CIP sequence of

human Pol a, the principal Pol a-binding region of AND-1 is

represented by its C-terminal HMG box. We demonstrate

that the HMG box makes a specific contact with the N-terminal

domain of Pol a’s B subunit, that had been previously demon-

strated to mediate Pol a/primase’s recruitment by the

T-antigen helicase for SV40 replication [23,24]. Furthermore,

we identify a novel DNA-binding activity in AND-1 which

maps to the intervening region between the SepB domain

and the HMG box, and might act to guide the lagging-strand

template towards Pol a/primase.

These findings represent an important advance in our

understanding of the interaction between human AND-1

and its protein client Pol a/primase in the mammalian repli-

some, and therefore in the architecture of the eukaryotic

replication fork. They further highlight how similarities in

ternary and quaternary structure between orthologous

DNA replication factors can conceal mechanistic differences

in their functional behaviour.
2. Results
2.1. Human AND-1 interacts with Pol a/primase
We expressed and purified human AND-1 and Pol a/primase,

as well as a truncated version of Pol a/primase lacking the

N-terminal regions of Pola’s catalytic subunit and its B subunit

(figure 1a). Our pulldown experiments with purified com-

ponents confirmed earlier reports of an interaction between

AND-1 and Pol a/primase in cell extracts (figure 1b) [15,25].

Our experiments further showed that the interaction is

mediated by the N-terminal regions of Pol a and its B subunit,

as no binding was observed in the case of the truncated Pol a/

primase (figure 1). These results are consistent with our pre-

vious findings for the orthologous yeast proteins, where the

interaction between Ctf4 and Pol1 (yeast Pol a catalytic
subunit) is mediated by the CIP motif of Pol1, present in its

N-terminal region [6].

2.2. Structure of human AND-1 SepB domain and
interaction with Pol a Ctf4-interacting peptide

To investigate further the structural basis for the interaction

of AND-1 with Pol a, we determined the crystal structure of

amino acids 329–826 of human AND-1, comprising its SepB

domain, which correspond to the region of Ctf4 (Ctf4CTD) that

we had previously characterized (figure 2a,b; electronic sup-

plementary material, table S1) [6]. Despite the low sequence

identity (17%, based on structure superposition), the AND-1

SepB structure bears a remarkable resemblance to that of yeast

Ctf4CTD, with the same tertiary structure comprising a six-

bladedb-propeller fused to a C-terminal bundle of fivea-helices,

and an RMSD value of 1.8 Å over 305 Ca positions. In the AND-1

structure, the trimeric arrangement of protomers seen for Ctf4

arises from crystallographic symmetry, and it was confirmed

by size-exclusion chromatography multi-angle laser light scat-

tering measurements (electronic supplementary material,

figure S1). These findings agree with a crystallographic analysis

of human AND-1 that was reported earlier this year [22].

Our data provide strong structural evidence that human

AND-1 might behave in the same fashion as yeast Ctf4CTD,

by acting as a protein hub at the replication fork. Indeed,

inspection of the putative binding site for its client proteins,

based on structural homology with the Ctf4CTD structure, high-

lights a solvent-exposed hydrophobic patch formed by M766,

A770, A792, L795 and Y799 (figure 2c). To test whether

AND-1 interacts with its client proteins in the same fashion

as Ctf4CTD, we performed pulldown experiments of AND-

1336 – 826 with a GST-tagged Pol a region spanning residues

148–171, that encompasses its putative AND-1 binding site

or CIP (electronic supplementary material, figure S2);

we used either the wild-type (WT) sequence or a sequence

containing a double alanine mutation of amino acids I162

and L163 (AA) in the middle of the CIP motif. The pulldown

experiments showed a clear interaction of Pol a148–171 with

AND-1336 – 826, which was not observed for the double alanine

mutant (figure 2d). Together, these findings indicate that

AND-1336 – 826 is a structural and oligomeric analogue of

Ctf4CTD, and that it interacts with its client protein Pol a

using the same molecular mechanism.

To obtain a quantitative estimate of the affinity of human

PolaCIP towards AND-1336–826, we measured the fluorescence

polarization of a fluorescein-labelled Pol a CIP sequence span-

ning amino acids 152-DLSKDGLLGDILQDLNTETP-171, in the

presence of increasing amounts of AND-1329–826 (figure 2e).
The alanine mutation of residue M766, at the centre of the

putative Pol a CIP-binding site in AND-1 (figure 2c; electronic

supplementary material, figure S3), was used as control for the

specificity of the interaction. The resulting dissociation constant

of 39 mM showed that the interaction of AND-1 with Pol a CIP

is surprisingly weak, and prompted us to ask whether other

regions of AND-1 and Pol a/primase contribute to their

reciprocal association.

2.3. The B subunit of Pol a binds AND-1
As the pulldown experiment of figure 1b showed loss of

AND-1 binding with a truncated version of Pol a/primase
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lacking the first 148 amino acids of the B subunit, we sought

to determine whether the N-terminal region of the B subunit

contributed to the interaction with AND-1. Indeed, pulldown

experiments of AND-1 with the N-terminal region of the B

subunit revealed a clear interaction, which could be refined

further to its first 78 amino acids, known to contain a four-

helix bundle domain (B N-terminal domain or BNTD)

(figure 3a) [23]. Reciprocal pulldown experiments aimed at

mapping the region of AND-1 responsible for the interaction

with the B subunit showed that the binding site resided
within AND-1’s C-terminal region (AND-1CT; amino acids

827–1129) extending beyond its SepB domain (figure 3b).
2.4. Specific interaction of AND-1 HMG box
with the BNTD

The AND-1CT is predicted to be largely unstructured, except

for an HMG-box domain that was mapped to near the

C-terminus of the protein [21] (PDB ID 2D7L). Indeed, further
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experiments showed that the HMG-box sequence was suffi-

cient to bind to BNTD, with an affinity that appears to be

similar to that possessed by the entire AND-1CT (figure 4a).
The GST-BNTD and AND-1 HMG proteins co-eluted over

size-exclusion chromatography, confirming the interaction

(electronic supplementary material, figure S4).
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To investigate the specific structural basis for the interaction

between AND-1 HMG box and BNTD, we generated a panel

of structure-based single-point mutants for both proteins,

and tested whether the mutations had affected their ability to

interact. The mutations were designed to target exposed hydro-

phobic patches on the surface of each domain, as these typically

mediate protein–protein interactions. In the case of AND-1

HMG box, we identified a contiguous cluster of hydrophobic

amino acids resulting from the antiparallel packing of the

second and third a-helix (figure 4b). Introducing point

mutations I1047E and M1051E in the HMG box, which

reversed the chemical nature of the amino acid, abolished its

interaction with BNTD (figure 4c; electronic supplementary

material, figure S5).

The BNTD folds in a four-helix bundle domain [23]. Inspec-

tion of the available BNTD structure (PDB ID 2KEB) for

hydrophobic patches that could complement the one identified

in the HMG box structure showed the presence of a contiguous

set of hydrophobic residues, I14, F15, I46 and A47, located on

the second and third helix of the BNTD structure (figure 5a).

Alanine mutations of I14, F15 and I46 in the BNTD caused

loss of interaction with AND-1 HMG box, and glutamate
mutation of the A47 reduced its affinity (figure 5b; electronic

supplementary material, figure S5). Interestingly, I14 had

been shown previously to be important for the interaction of

the B subunit with the SV40 T-antigen helicase [23,24].

2.5. Comparing Pol a Ctf4-interacting peptide and BNTD

affinities for AND-1
The discovery of a new interaction site in AND-1 for Pol a/

primase, mediated by the unique C-terminal HMG box present

in the human CTF4-orthologue, points to a different, more

complex mode of interaction with the DNA polymerase than

observed previously for yeast Ctf4. To assess the relative

binding strength of AND-1’s HMG box and SepB domain

with the B subunit and the CIP motif of Pol a, respectively,

we performed comparative binding studies with full-length

proteins. Collectively, the experiments indicate that the novel

interaction mediated by the HMG box is the dominant contact

between AND-1 and Pol a/primase (figure 6). First, using the

same concentration of full-length AND-1 protein, we could

observe AND-1 pulldown by GST-BNTD but not by GST-Pol

a CIP (figure 6a). Second, introduction of the single-point

HMG-box mutation M1051E is sufficient to lose most of the

interaction with full-length AND-1, despite the presence of

an intact CIP in Pol a/primase (figure 6b). Third, competition

experiments where the association of full-length AND-1 with

Pol a/primase was challenged by addition of free BNTD or

free Pol a CIP showed that the BNTD, but not Pol a CIP,

caused reduced recovery of AND-1 from the resin (figure 6c).

2.6. AND-1CT interacts with DNA
Being responsible for initiating DNA synthesis at the fork,

Pol a/primase is expected to be positioned close to the

CMG helicase, poised to prime synthesis on the lagging-

strand template. As the protein factor that tethers Pol a/

primase to the fork and possibly acts as a bridge between

the polymerase and the helicase, AND-1 might be expected

to possess an independent DNA-binding activity. This

activity would contribute to directing the unwound DNA

strand, sterically excluded from the helicase and acting as

lagging-strand template, towards the polymerase, based on

current models of the yeast replisome [26,27].

We tested the ability of AND-1 to bind DNA by electro-

phoretic mobility shift assay (EMSA) of a range of DNA

substrates, including single-stranded (ss) DNA, double-

stranded (ds) DNA and fork (f) DNA. We found that AND-1

could form a stable protein–DNA complex with all three sub-

strates, but with higher apparent affinity for ssDNA and fDNA

(figure 7a). We further found that AND-1CT was the region of

AND-1 responsible for DNA binding (figure 7b). Mapping

the DNA-binding region within the AND-1CT sequence

(figure 8a; electronic supplementary material, figure S6)

showed that, unexpectedly, the HMG box was not involved

in DNA binding and that the DNA-binding activity resided

within a stretch of approximately 100 amino acids between

the C-terminus of the SepB domain and the HMG-box

domain (figure 8b,c). Fluorescence polarization measurements

of fluorescein-labelled ssDNA confirmed the ability of AND-1

to bind DNA (figure 8d) and that AND-1CT interacted with

ssDNA with the same affinity (Kd approximately 0.8 mM) as

the full-length protein (figure 8e).



PriS

AND-1

191

64

51

39

M r 
(k

Da)

28

AND-1
, in

pu
t

Pol
a (1

48
–1

71
), A

A

Pol
a (1

48
–1

71
), 

W
T

B (1
–7

8)

Coomassie

WB, anti-His

191

64

51

39

M r 
(k

Da) AND-1 input

WT M1051E

control

WT M1051E WT M1051E

AND-1

Pol a

B

PriL 
PriS

WB, anti-His

Coomassie

191

64

51

39

M r 
(k

Da)

Pol a
AND-1

B

PriS
PriL

Pola
-B

-P
riS

-P
riL

AND-1

input AND-1
, c

on
tro

l

elution

+BNT +Pol a CIP

Coomassie

191

64

51

39

AND-1

WB, anti-His

(a) (b)

(c)

Figure 6. The interaction of AND-1 with the B subunit is stronger than the interaction with Pol a CIP. (a) Full-length His-myc-AND-1 pulldown by equimolar amounts of GST-
tagged Pol a CIP and BNTD on glutathione agarose. GST-CIPAA was used as negative control (figure 2d ). (Top panel) Coomassie-stained SDS – PAGE gel. (Bottom panel) Corre-
sponding anti-His western blot (WB). (b) Pulldown of WT and M1051E AND-1 by Pol a/primase. StrepII-tagged Pol a/primase was immobilized on Strep-Tactin Superflow resin
and released by desthiobiotin. (Top panel) Coomassie-stained SDS – PAGE. (Bottom panel) Corresponding anti-His western blot. (c) Competition co-precipitation. Full-length Stre-
pII-tagged Pol a/primase was tested for interaction with full-length His-myc-AND-1 on Strep-Tactin Superflow resin, in the presence of excess purified BNTD or Pol a CIP. AND-1
control comprised resin only with AND-1. (Top panel) Coomassie-stained SDS – PAGE. (Bottom panel) corresponding anti-His western blot (His-tagged PriS is also detected).
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3. Discussion
Here, we have described an investigation into the interaction

of AND-1, the human orthologue of the yeast replisome

factor Ctf4, with DNA polymerase a/primase. We have

found that, although AND-1 does interact with Pol a via

the evolutionarily conserved CIP motif of the polymerase,

binding is dominated by a specific interaction of AND-1’s

C-terminal region with the B subunit of Pol a. The large

C-terminal sequence after the conserved SepB domain is a

unique feature of mammalian AND-1, as it is absent in

yeast Ctf4. Although predicted to be mostly disordered,

AND-1CT contains a previously identified HMG-box

domain [21]. We show that the HMG box is responsible for

the interaction with the B subunit of Pol a/primase and

identify specific hydrophobic amino acids on its surface

that mediate the interaction. These findings are summarized

in figure 9.
AND-1 binding by Pol a/primase is dependent on a

small helical domain in the N-terminus of the B subunit.

The role of the B subunit in DNA replication had remained

poorly understood, although it is encoded by an essential

gene in budding yeast [28]. Here, we have shown that

one role of the B subunit is to drive the association with

AND-1 and therefore presumably with the rest of the

human replisome. Interestingly, and in agreement with a

role as a protein–protein interaction module reported here,

the equivalent domain in the B subunit of Pol 1 mediates

an important interaction with the Psf1 subunit of the GINS

complex [29].

Intriguingly, the AND-1 binding site on the surface

of the BNTD overlaps with the previously identified site that

is targeted by the T-antigen helicase for recruitment of

Pol a/primase during SV40 replication [23] (figure 9).

Given the need to hijack the polymerase for its own replica-

tion, it would make sense for the virus to target the main
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mode of association of Pol a/primase with the replisome.

Thus, the observation of a shared BNTD interface for AND-1

and T-antigen corroborates our finding that the interaction
of the B subunit with the HMG box is the primary means

of AND-1-dependent recruitment of Pol a/primase to

the replisome.
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In addition to interacting with Pol a/primase, AND-1CT

can bind ssDNA, thus pointing to a potential role for

AND-1 in directing the lagging-strand template towards Pol

a/primase for priming DNA synthesis. When combined,

these observations suggest that AND-1 mediates Pol
a/primase recruitment to the fork and contributes to the geo-

metry of the interaction of Pol a/primase with the DNA

template. Our observation of a DNA-binding activity in

AND-1 agrees with previous data [21,22]. However, we find

that DNA binding by AND-1CT is not mediated by the

HMG, as previously reported [21,22], but by the intervening

region between the SepB and HMG domains.

Our emerging model of yeast Ctf4 function indicates that it

acts as a protein hub at the replication fork, mediating multiple

interactions with other replication factors via its Ctf4CTD

domain [7]. These interactions help bridge DNA helicase and

DNA polymerase, as well as recruiting other proteins with

roles in processes associated with DNA replication. The

amino acid sequence of human AND-1 shows that it is clearly

related to Ctf4, with which it shares its domain structure,

formed by an N-terminal WD domain and a C-terminal SepB

domain, as well as oligomerization state. Functional inter-

actions with other replication factors such as Timeless, Tipin,

Claspin and MCM10 have also been reported [15,25,30].

Thus, the evidence points to a role for AND-1 as a hub for

recruitment of client proteins to the fork, in a similar fashion

to Ctf4. However, our findings provide evidence for clear

mechanistic differences too, concerning the mode of binding

to Pol a/primase. The canonical interaction with the Pol a

CIP, although detectable, is rather weak, whereas a novel,

stronger contact is observed with the B subunit, which depends

on the HMG-box domain in the AND-1CT, not present in Ctf4.

Furthermore, the ability of AND-1CT to interact with ssDNA, at

a site juxtaposed to the location of the HMG box, suggests that

AND-1 helps position Pol a/primase at the fork via both

protein–protein and protein–DNA contacts.

What do these biochemical observations tell us about the

architecture of the human replisome? Although it is impos-

sible to draw reliable conclusions in the absence of structural

information, these data point to a distinct reciprocal arrange-

ment of AND-1 and Pol a/primase at the replication fork

(figure 9). The picture is further complicated by our ignorance

concerning how AND-1 is linked to the human CMG helicase,

as its GINS Sld5 subunit of the human helicase lacks the CIP

motif of its yeast counterpart. More biochemical and structu-

ral investigations will be required to shed more light on the

architecture of the human replisome.
4. Material and methods
4.1. Protein cloning, expression and purification
Double StrepII-tagged human DNA polymerase a (1–1462)

and its B subunit (1–598) were cloned into the pFBDM

vector. The human primase subunits, His10-PriS (1–420) and

PriL (1–509), were similarly cloned into a separate pFBDM

vector. These vectors were each used to generate a recombinant

baculovirus using the MultiBac system [31]. Expression of the

heterotetrameric Pol a/primase complex entailed co-infection

of Sf9 insect cells (at a density of 2 � 106 cells ml21) with

both baculoviruses, after which the cells were incubated

for 72 h at 278C, with shaking at 120 rpm. An N-terminally

truncated version of the complex, comprising double StrepII-

tagged Pol a (334–1462) and B subunit (149–598), was

cloned and expressed with full-length primase in the same

way. Full-length and truncated Pol a/primase were purified
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using Strep-Tactin Superflow resin (IBA), and confirmed

DNA-free by UV absorption spectroscopy.

Synthetic, annealed oligonucleotides (Sigma Aldrich)

were used to clone the Pol a CIP sequence 148-DKAVDLSK

DGLLGDILQDLNTETP-171, and a double alanine mutant

148-DKAVDLSKDGLLGDAAQDLNTETP-171 into vector

pGAT2 [32]. Proteins were expressed in Rosetta2(DE3) cells

(Novagen), and purified using Ni-NTA agarose (Qiagen).

Full-length His10-myc-tagged AND-1 (1–1129) was cloned

into the pFBDM vector, which was subsequently used to gen-

erate recombinant baculovirus using the MultiBac system [31].

AND-1 protein was expressed by infecting Sf9 insect cells

(density ¼ 2 � 106 cells ml21) with the baculovirus and

shaking the cells at 120 rpm for 72 h at 278C. Purification

involved successive Ni-NTA agarose (Qiagen) and Q-Sepha-

rose anion-exchange (GE Healthcare) chromatography steps.

The full-length His10-myc-tagged AND-1 M1051E point

mutant was cloned, expressed and purified in the same way.

Following purification, proteins were confirmed DNA-free

by UV absorption spectroscopy.

His6-tagged AND-1 SepB (336–826) and AND-1 SepB þ
CT (316–1129) were individually cloned into pRSF-Duet1

(Novagen) and expressed in Rosetta2(DE3) cells (Novagen).

The AND-1 M766A point mutation was introduced by site-

directed mutagenesis. Proteins were purified using Ni-NTA

agarose (Qiagen) and Q-Sepharose anion-exchange chrom-

atography (GE Healthcare), followed by overnight TEV

protease cleavage of the His6-tag. Finally, size-exclusion

chromatography was performed using a HiLoad 16/60

Superdex 200 prep grade column (GE Healthcare), equili-

brated in 25 mM HEPES pH 7.2, 280 mM NaCl and 5 mM

DTT. The size-exclusion chromatography confirmed that the

M766A point mutant was correctly folded.

AND-1 (1–334) was cloned into the pGAT3 vector and

expressed in Rosetta2(DE3) cells (Novagen) [32]. The protein

was purified using Ni-NTA agarose (Qiagen) followed by

size-exclusion chromatography over a HiLoad 16/60 Superdex

200 prep grade column (GE Healthcare) in buffer containing

25 mM HEPES pH 7.2, 300 mM KCl, 5% (w/v) glycerol.

AND-1 C-terminal constructs (837–1129, 1017–1129,

1017–1076, 1017–1090, 895–987) were cloned into the

pMAT11 vector for expression as His6-MBP-tagged proteins

[32]. Point mutations I1047E and M1051E were introduced

into the AND-1(1017–1076) construct, encoding the HMG

box, by site-directed mutagenesis. His6-MBP-tagged proteins

were expressed in Rosetta2(DE3) cells (Novagen), and purified

using Ni-NTA agarose (Qiagen) followed by size-exclusion

chromatography using a HiLoad 16/60 Superdex 200 prep

grade column (GE Healthcare) in buffer containing 25 mM

Tris–HCl pH 7.9, 300 mM KCl and 1 mM TCEP. The point

mutants were confirmed folded by cleaving the His6-MBP

tag overnight with TEV protease, followed by Ni-NTA agarose

recapture of the His6-MBP tag and subsequent size-exclusion

chromatography of the AND-1 HMG constructs using a Super-

dex 75 10/300 GL column (GE Healthcare) in PBS buffer.

Untagged AND-1 (837–1129) protein, AND-1CT, was prepared

by incubating the His6-MBP-tagged protein with TEV protease

overnight, followed by purification over Ni-NTA agarose

(Qiagen) and a Heparin HiTrap 5 ml column (GE Healthcare).

B subunit N-terminal constructs (1–78, 1–104 and 1–156)

were cloned into the pGAT2 vector [32]. Point mutations

(I14A, F15A, I46A, A47E) were introduced into the B (1–78;

BNT) construct by site-directed mutagenesis. His6-GST-tagged
proteins were expressed in Rosetta2(DE3) cells (Novagen),

and purified using Ni-NTA agarose (Qiagen). These mutants

were confirmed folded by cleaving the His6-GST tag overnight

with thrombin protease (50 units, Sigma Aldrich), followed by

Ni-NTA recapture of the His6-GST tag and subsequent size-

exclusion chromatography of the BNTD on a Superdex 75 10/

300 GL column (GE Healthcare) in PBS buffer.

4.2. AND-1 SepB crystallization and structure
determination

An AND-1 construct spanning amino acids 329–826 (SepB

domain) was cloned into a PRSFDuet-1 vector and transformed

in Escherichia coli BL21Rosetta2(DE3) (Novagen) for expression.

About 3–5 l of bacteria was grown in 2 � YT medium in an

orbital shaker at 378C and 210 rpm until they reached an opti-

cal density at 600 nm (OD600) of 0.9. Protein expression was

induced with the addition of 0.5 mM IPTG and the cultures

were grown for an additional 16 h at 208C. Bacteria were

harvested by centrifugation at 4000g, resuspended in 20 mM

HEPES pH 7.0, 500 mM NaCl, 10 mM imidazole and

sonicated. AND-1 (329–826) was initially purified by nickel

affinity chromatography, followed by TEV cleavage of the

His-tag, and further purification by anion-exchange chromato-

graphy over a 6 ml-RESOURCE Q column (GE Healthcare) and

gel-filtration chromatography over a Superdex S200 16/60

column (GE Healthcare) in 25 mM HEPES pH 7.0, 200 mM

NaCl, 10% (w/v) glycerol. Peak fractions were pooled, concen-

trated to 9 mg ml21, supplemented with 1 mM TCEP, flash

frozen in liquid nitrogen and stored in small aliquots at 2808C.

Crystals of AND-1 329–826 were grown at 9 mg ml21

using the hanging-drop vapour diffusion technique, in

0.1 MHEPES pH 7.0, 1.1 M di-sodium malonate and 0.5%

(v/v) Jeffamine ED-2003, supplemented with 0.36–0.42 M

sulfobetaine NDSB-195. For data collection, crystals were

cryo-protected using 25% (w/v) glycerol and flash frozen in

liquid nitrogen. X-ray diffraction data were collected at beam-

line I03 of the Diamond Light Source, Oxford, UK, and the

data were integrated using XDS [33]. Space group symmetry

was assigned in POINTLESS and intensities scaled in AIM-

LESS [34]. The protein crystallized in the cubic space group F

4 3 2 with unit cell dimensions of a ¼ b ¼ c ¼ 249.72 Å and

one AND-1 protomer per asymmetric unit. The structure

was solved using PHENIX MR-Rosetta [35] in combination

with a Robetta generated fragment library [36] using the

Ctf4CTD structure as search model. Local and global protein

homology assisted alignments were calculated using the

HHpred server [37] and an initial model was generated

using PHENIX AutoBuild as part of MR-Rosetta [38]. The

crystallographic model was extended and completed by

repeated cycles of manual building in Coot and crystallo-

graphic refinement with PHENIX Refine [38,39]. The final

model was refined using data to 2.5 Å, to R-work and

R-free values of 0.173 and 0.210 and a Molprobity score of

1.16 [40]. Amino acids 329–420 and 824–826 were not

included in the final model due to missing or poor electron

density and are presumed to be disordered.

4.3. Pulldown experiments
All experiments were performed in PD buffer (PBS, 5% (w/v)

glycerol, 0.5 mM TCEP, 0.2% Igepal), and all proteins were
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buffer exchanged into this buffer prior to the experiment. BSA

(Sigma Aldrich) was present at a concentration of 2.5 mg ml21

in all cases. The same basic procedure was followed for each

experiment: saturating quantities of bait protein were bound

to 100 ml resin for 30 min at 48C. The resin was washed with

2 � 1 ml PD buffer, followed by addition of the prey protein.

Following a 90 min incubation at 48C, the resin was washed

with 4 � 1 ml PD buffer and the bound proteins eluted and ana-

lysed by SDS–PAGE with Coomassie staining. AND-1 was

visualized by western blotting using a mouse monoclonal

anti-His antibody (H1029, Sigma Aldrich) and HRP-conjugated

anti-mouse antibody (W402B, Promega).

For pulldown of full-length AND-1 (WT or M1051E) by

Pol a/primase, purified Pol a/primase was bound to 100 ml

Strep-Tactin Superflow resin (IBA). About 2.4 nmol purified

AND-1 was added, and elution performed with 100 ml PD

buffer supplemented with 10 mM desthiobiotin (Sigma

Aldrich). GST-Pola fusion proteins were bound to 100 ml gluta-

thione agarose resin (Cube Biotech), after which 20 nmol of

purified AND-1 SepB was added, and elution performed

with 100 ml PD buffer supplemented with 20 mM reduced

glutathione (Sigma Aldrich). GST-B fusion proteins were

bound to 100 ml glutathione agarose resin (Cube Biotech),

after which 2.2 nmol purified AND-1 (1–1129, 316–1129 or

336–826) was added, and elution performed as described

above. MBP-AND-1 constructs were bound to 100 ml amylose

resin (NEB), after which 25 nmol purified GST-B was added.

Elution was performed with 100 ml PD buffer supplemented

with 20 mM maltose (Sigma Aldrich).

For the competition experiment, purified Pol a/primase

was bound to 100 ml Strep-Tactin Superflow resin (IBA) and

1 nmol of purified AND-1 was added, together with either

100 nmol B (1–78) or Pol a CIP sequence 156-DGLLGDI

LQDLNTET-170 (Genosphere Biotechnologies). Elution was

performed with 100 ml PD buffer supplemented with

10 mM desthiobiotin (Sigma Aldrich).
4.4. DNA constructs
DNA oligonucleotides were purchased from Sigma Aldrich

(oligo A: 6FAM-CTTCCGAGACCTTGCCCATCCCGTAGAA

CCTGTTATCCAA, oligo B: TTGGATAACAGGTTCTACGG

GATGGGCAAGGTCTCGGAAG, oligo C: GCTACCTTTG

AACCTACGATGATGGGCAAGGTCTCGGAAG). Oligo A

was used as the ssDNA substrate, while B or C was annealed

to A to generate the dsDNA and fDNA substrates, respect-

ively. An ssDNA 60mer was used in figure 8c, of sequence:

6FAM-ATGGTGTGTGTAGGTTAATGTGAGGAGGAGAGG

TGAAGAAGGAGGAGAGAAGAAGGAGGC.
4.5. Electrophoretic mobility shift assay
All proteins were buffer exchanged into EMSA buffer (25 mM

HEPES pH 7.2, 200 mM KCl, 1 mM TCEP) using an Illustra

NAP-5 column (GE Healthcare). Sample reactions contained

3 mM 6FAM-labelled DNA (listed above) and the indicated

amount of protein. The salt concentration was adjusted to

100 mM KCl and 5 mM MgCl2, in a final volume of 20 ml.

Reaction mixtures were run for 60 min at 48C on 0.75%

(w/v) agarose gels, at 45 V in 0.5� Tris-borate buffer pH

8.3, in an EM100 gel unit (Cambridge Electrophoresis Ltd)

and the gels were visualized under UV light.
4.6. Fluorescence polarization
Binding experiments were performed in 96-well plate format.

Fluorescence anisotropy measurements were recorded at

258C in a PHERAstar Plus multi-detection plate reader (BMG

Labtech) equipped with fluorescence polarization optic

module (lex ¼ 485 nm; lem ¼ 520 nm). Each data point is the

mean of 200 flashes per well, and the voltage gain was set by

adjusting the target mP values of fluorescein-labelled peptide

or DNA relative to that of fluorescein (35 mP). Curve-fitting

was performed in pro Fit 6.1.11 (Quantum Soft) using a

Levenberg–Marquardt fitting algorithm.

The optimal concentration of peptide or DNA was deter-

mined by calibration curves. To analyse the interaction

between Pol a and AND-1 SepB, a fluorescein-labelled

Pol a CIP sequence (fluorescein-labelled DLSKDGLLGDILQ

DLNTETP) was synthesized by Genosphere Biotechnologies.

Each well contained 30 nM peptide, in buffer comprising

25 mM HEPES pH 7.2, 140 mM NaCl, 5 mM DTT, 5 mM

MgCl2 and 5% glycerol. AND-1 SepB was titrated in

increasing concentration.

To measure the binding of AND-1 to DNA, fluorescein-

labelled ssDNA, dsDNA or fDNA was used (sequences listed

above). Each well contained 20 nM DNA in buffer containing

25 mM HEPES pH 7.2, 100 mM KCl and 0.5 mM TCEP. Full-

length His10-myc-AND-1 (1–1129) or untagged AND-1CT

(837–1129) was titrated in increasing concentrations.
4.7. Size-exclusion chromatography
To analyse the interaction between AND-1 HMG and BNTD, a

250 ml sample containing 42 nmol GST-B(1–78) and 84 nmol

AND-1 HMG was injected onto a Superdex 200 10/300 GL

column (GE Healthcare) pre-equilibrated in 25 mM HEPES

pH 7.2, 100 mM KCl and 0.5 mM TCEP. The individual

proteins alone were also analysed. Eluted fractions were

analysed by SDS–PAGE with Coomassie staining.
4.8. Size-exclusion chromatography and multi-angle
laser light scattering

Size-exclusion chromatography experiments in combination

with multi-angle laser light scattering were performed using

100 ml of AND-1 336–826 protein at 2–4 mg ml21. The protein

was injected onto a Superdex S200 10/300 GL gel-filtration

column (GE Healthcare) in 25 mM HEPES pH 7.0, 200 mM

NaCl and at a flow rate of 0.5 ml min21. The column was

controlled using an Äkta Purifier System (GE Healthcare)

and was linked to a DAWN 8þ 8-angle light scattering detector

(Wyatt Technology) with a fused silica sample cell using a laser

wavelength of 664 nm. The change in the refractive index

was detected using an Optilab TrEX refractometer with

extended range (Wyatt Technology) at a wavelength of

658 nm. Data collection and analysis was carried out using

the ASTRA6 software package (Wyatt Technology). Molecular

weight determination across the sample peak was carried out

using a Zimm-plot derived global fitting algorithm with a fit

degree of 1 and a dn/dc value of 0.1850 ml g21.

Data accessibility. The coordinates and structure factors for AND-1
SepB domain have been deposited in the Protein DataBank under
accession code 5OGS.
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