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Abstract

Does the presence of a robot co-worker influence the performance of humans around it?

Studies of motor contagions during human-robot interactions have examined either how the

observation of a robot affects a human’s movement velocity, or how it affects the human’s

movement variance, but never both together. Performance however, has to be measured

considering both task speed (or frequency) as well as task accuracy. Here we examine an

empirical repetitive industrial task in which a human participant and a humanoid robot work

near each other. We systematically varied the robot behavior, and observed whether and

how the performance of a human participant is affected by the presence of the robot. To

investigate the effect of physical form, we added conditions where the robot co-worker torso

and head were covered, and only the moving arm was visible to the human participants.

Finally, we compared these behaviors with a human co-worker, and examined how the

observed behavioral affects scale with experience of robots. Our results show that human

task frequency, but not task accuracy, is affected by the observation of a humanoid robot

co-worker, provided the robot’s head and torso are visible.

Introduction

Robotics is now increasingly shifting to service and application fields, where robots need to

collaborate with, and work in close proximity to, human co-workers. In these scenarios, it is of

prime importance to understand how the presence of a robot co-worker influences the perfor-

mance of humans around them. This understanding is essential not just in regard to produc-

tivity, but also in order to monitor and control any emotional and motor effects the presence

of robot co-workers may have on the humans.

Observation of actions performed by others is known to induce implicit effects on an indi-

vidual’s action. These effects, that are referred to as motor contagions, have been extensively

studied in psychology and sports science [1–10]. In comparison, studies of motor contagions

during human-robot interactions [11] are sparse, and have examined either how the observa-

tion of robots affect a human’s movement velocity [12–15], or how it affects a human’s
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movement variance [16–19]. However, the studies that reported changes in movement vari-

ance utilize arguably abstract tasks, and the studies reporting changes in movement speed do

not analyze at how the participant movement variance changed with the speed. On the other

hand, most industrial tasks require specific precisions in the movements and therefore, the

performance in these tasks needs to be defined by considering both task speed (or frequency)

and task accuracy. Here primarily, we analyzed how looking at a robot affects both, the speed

and variance of the observing human’s movement, to see whether we can quantify how human

performance is affected by motor contagions. Furthermore, while there is contradictory evi-

dence to suggest that the physical form of a robot co-worker (specifically whether it is human-

oid or not) does [20] or does not [17] affect the variance of movements by human’s, it is

unclear whether this is also true for the case of movements speeds, and hence performance.

Finally, it is unclear whether and how the performance effects due to a robot co-worker are

modulated by a human co-worker’s prior experience with robots, an issue that is crucial to

understand how the human performance will change with continued exposure to a robot co-

worker.

To address these issues, we examined an empirical repetitive industrial task in which a

human participant and a humanoid robot work near each other, see Fig 1. We systematically

varied the behavior, specifically frequency of robot movements and examined whether and

how the frequency of movements by the human participants, and their task accuracy, is

affected by the presence of the robot. To investigate the effect of physical form, we added con-

ditions where the robot co-worker torso and head were covered, and only the moving arm was

visible to the human participants. Finally, in order to compare the humanoid co-worker to a

human co-worker, we also checked how the effects on the participants changed with a human

co-worker, with and without his/her torso and head visible. To anticipate our results, we

found that the presence of a humanoid co-worker can affect human performance, but only

when it’s humanoid form is visible. Furthermore, the effect was observed to increase with

prior robot experience by the humans.

Materials and methods

Participants

A total of 45 healthy adults participated in our study. 3 participants (2 males and a female of 3

nationalities, 29.6±5, mean±SD, aged 25-35) worked as volunteer models for the capture of

human arm motion data. 42 participants (20 Males and 22 females of 12 nationalities, 25.9

±4.35, mean±SD, min. age 20, max. age 39), were participated as ‘co-workers’ in our main

experiment. 3 out of 45 participants were left-handed according to the Edinburgh Handedness
Inventory, and all participants had normal or corrected to normal vision. The experiments

were approved by the local ethics committee at the National Institute of Advanced Industrial

Science and Technology (AIST) in Tsukuba, Japan, and all participants read and signed an

informed consent form along with the PLOS consent form for the usage of their images in the

paper before taking part in the experiments. Participants were well instructed and informed

with the experiment and task procedure, however they were naïve to the motives (participants

were not told what aspect of their behavior we were analyzing in the experiment) of the experi-

ments to avoid bias in the results as we are interested in the implicit effect of motor contagion.

Each Participant received 2021 Japanese Yen (JPY) to participate. Participants for our study

were recruited through an advertisement via a local event forum, Facebook page of our experi-

ment and via word of mouth in the Tsukuba University, Tsukuba, Japan. Participants needed

to be at least 18 years old to participate in this experiment, apart from that, there were no

restrictions.
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Setup

The participant and co-worker (a human or a humanoid robot) were seated on a chair with

tables facing each other as shown in the experiment setup (Fig 1). On a horizontally placed

touch-screen (23-inch HD DELL, P2314T) on the table, participants were presented with two

red circles of diameter⊘5 cm at distance of 50 cm from each other. The co-worker was simi-

larly presented with two red circles on black cardboard⊘9 cm at distance of 50 cm. The whole

setup was enclosed by movable panels and the panel behind the co-worker was covered with a

dark grey curtain. A motion tracking system (Motion Analysis Co.) with six infrared cameras

(kestrel) and ten passive markers were used to record the arm motions of the participant and

co-worker at 200Hz. A bipedal HRP-2Kai [21] humanoid robot (154 cm tall, 58 kg, 32 degrees

of freedom) was used as the robot co-worker (Fig 1). A well-trained experimenter (M, 37)

acted as the human co-worker. Both co-workers used their right arm throughout the

experiment.

Fig 1. Experimental setup. The participants in our experiment worked in six conditions; with a robot performing biologicalmovements in A) robot

co-worker condition; B) human co-worker condition; to check relevance of human form in C) robot covered co-worker condition; and D) human

covered co-worker condition; E) a robot co-worker performing non-biologicalmovements in robot non-biol co-worker condition; F) a robot co-

worker performing industrial movements. The coordinate axis defining the movement setup is indicated in white (A).

https://doi.org/10.1371/journal.pone.0206698.g001
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Experimental task and conditions

Motivated by the hand movements during an industrial pick-and-place, or parts assembly

task, our task required participants to repeatedly touch two static red circles on the touch-

screen with a stylus in their right hand during the task (Fig 1). While the participants were

asked to touch the circle in each trial, they were free to touch anywhere on the circle. In pre-

liminary experiments, we found that the standard deviation of the participant’s touches were

less than 1 cm (both in the x and y directions), and we purposely chose the radius of the

touched circles to be more than 2 times larger than their standard deviation (targets were of 5

cm in diameter). This large size was crucial because, while the participants were asked to touch

the circle in each trial, they were free to touch anywhere on the circle. The large target size

therefore enabled us to observe any change in participant’s touch location (that may accom-

pany contagions in their speed), in terms of position and standard deviation, across our

experiment.

A co-worker (human or HRP-2Kai) worked on the same task in front of the participants.

The participants were asked to perform their task at their own chosen ‘comfortable’ frequency,

and ignore the co-worker. The participants worked in a series of 50 second trials with the co-

worker. In a trial, participants initially performed alone for 10 seconds (participant-alone

period), performed with the co-worker for next 20 seconds (together period) and then relaxed

while watching the co-worker performs the task for the last 20 seconds (co-worker-alone

period) (Fig 2).

Fig 2. Trial protocol. The participants worked in repeated trials with either a robot or human co-worker (the figure shows the trial with a robot co-worker). Each trial

consisted of period when the participant worked alone and co-worker relaxed (participant-alone period), both worked together (together period), and the co-worker

worked alone (co-worker-alone period). The notation of the time variable (represented in general by τ) in each period are shown.

https://doi.org/10.1371/journal.pone.0206698.g002
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All participants wore ear buds and headphones (through which we sent white noise) and

had no external audio feedback (confirmed in the post experiment questionnaire, Q6). They

were instructed to “always hold the stylus like a stamp and touch alternatively inside each red
circle on the touch-screen with continuous and smooth hand movements at a comfortable speed”.

They were specifically told to “focus on your own task and ignore the co-worker when he/it starts
after them”. No instructions were given regarding the speed and movement trajectory.

We studied six experimental conditions. The participants worked with a HRP-2Kai human-

oid robot co-worker in four conditions, specifically, a) robot co-worker in which the whole

robot was visible to the participant, and the robot played back biological movements, b) robot
covered co-worker, in which the robot played back biological movements, but its head and

torso were covered, such that the participant could only see the robot’s moving arm. c) robot
non-biol co-worker, in which a fully visible robot performed non-biological arm movements, d)

robot indus co-worker, in which a fully visible robot performed industrial arm movements and

they worked with a trained human experimenter in the remaining e) human co-worker and f)

human covered co-worker (where the head and torso of the human experimenter were covered)

conditions, (see subsection HRP-2Kai movement trajectories).

The experiment for each participant consisted of working in 3 conditions. Each participant

was assigned to one of 6 condition combination groups, see Table 1, each with the robot co-

worker condition (main), in addition to two out of five other conditions. The order of the con-

ditions was balanced across the combination groups. This allowed us to compare the behavior

of the same participants in each condition in a combination group, with their behavior in the

robot co-worker condition.

Each condition had 10 trials. The co-worker performed at a constant, pseudo-randomly

selected frequency (in the range of 0.16 to 1.1 Hz) in each trial. The pseudo-random nature of

the co-worker performance was critical to avoid behavioral drift contamination across trials.

The human co-worker was provided with a metronome using earphones like in [15], to cue

and help maintaining the movement frequency in each trial.

The robot movements in the robot co-worker conditions were a playback of the movements

recorded from a previous human volunteer (see subsection HRP-2Kai movement trajectories

for details). We quantified the participant performance in the trials by their half time periods

or htp (the average time between two consecutive alternate touches, measured using motion

tracking), and the variance of their press location (measured as a change of mean and standard

deviation of their touch-screen presses in the X-Y plane).

HRP-2Kai movement trajectories

The biological movements played on HRP-2Kai in robot co-worker and robot covered co-

worker conditions were a playback of the human arm movements (Fig 3, blue plot) recorded

in a preliminary experiment with three volunteers using the same (Motion Analysis Co.)

motion tracking system, while the human movements were cued by an audio metronome.

Table 1. Condition combination groups (G). HRP-2Kai in robot co-worker (RV), robot covered co-worker (RC),

robot non-biol co-worker (RN), robot indus co-worker (RI) conditions and Human experimenter in human co-worker

(HV), human covered co-worker (HC) conditions. The order of conditions in a combination group were randomized

across participants.

Sessions/Groups G1 G2 G3 G4 G5 G6

Session 1 RI RC HV RC RN RC

Session 2 RV RI RV HC HV RN

Session 3 RN RV HC RV RV RV

https://doi.org/10.1371/journal.pone.0206698.t001
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Fig 3. HRP-2Kai movement trajectories. The trajectories played by the robot in robot co-worker, robot covered co-worker, robot non-biol co-worker and robot

indus co-worker conditions.

https://doi.org/10.1371/journal.pone.0206698.g003

Fig 4. HRP-2Kai trajectory generation. The time trajectories in the Y and Z axis by the HRP-2Kai in the robot non-biol co-worker and robot indus co-worker

condition, and the via-points (blue circles) used to generate both trajectories.

https://doi.org/10.1371/journal.pone.0206698.g004
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Movements were collected at several frequencies between 0.16 to 1.1Hz. We found the move-

ments of the three volunteers to be statistically similar in the Cartesian velocity profiles

(p>0.05), and showing similar trend in movement height with movement frequency –trajec-

tory height consistently decreased with increase of movement frequency. We therefore chose

to use the movements recorded from one volunteer (a male) in this experiment.

Well learnt human movements are characterized by a bell-shaped velocity profile. The peak

of the bell-shaped profile may be shifted forward in time when precision is required at the

reach end (like in our task when the participants required to touch inside a given target

region), but the velocity profile is normally characterized by a single peak. Therefore, to

develop a ‘non-biological’ movement profile for the robot non-biol co-worker condition, we

developed a movement profile with multiple velocity peaks. This profile was developed in posi-

tion-time (cyan plots in Figs 3 and 4) profile using fifth and third order polynomial segments

(lift-off, carry, set-down) [22]. We observed that human volunteers’ movements to predomi-

nantly be in the Y-Z plane. The piece-wise polynomial trajectory for the robot non-biol co-

worker condition was designed over the y (horizontal) and z (vertical) dimensions, while x was

always kept constant zero.

The industrial trajectory was characterized by a constant velocity phase. Inspired from the

industrial manipulators, and keeping in mind our HRP-2Kai joint constraints during fast

movements, we improvised the traditionally used industrial trapezoidal velocity profile, with a

third order velocity sections in the acceleration and deceleration phase (magenta plots in Figs

3 and 4). Again, since our movements were restricted in the Y-Z plane, we designed our

smooth trapezoidal trajectory over the y (horizontal) and z (vertical) dimensions, while x is

kept constant and zero. The Z elevation (zmax) in this trajectory was set to 13 cm when the

robot moved from left to right, and 8 cm during the return.

Variables

Our analysis is based on the position data from both the participant’s and co-worker’s stylus

markers. To extract out possible behavioral differences between the movements forward and

backward, between the touch points, we analyzed behavioral variables across each movement

between the red circles on the touch-screen, which we call as iterations (such that two itera-

tions make a movement cycle). As participants and co-workers were required to make non-

stop continuous movements between touches, we could extract individual iterations of partici-

pant’s and co-worker’s by looking for changes in the direction of y-velocity in the recorded

motion capture data. In this study, we were interested in the task performance of participants,

and therefore we primarily concentrated on the time between the alternate touches in each

iteration, which we refer to as the half-time period (htp) or τ, and the location of their touches

on the touch-screen (in the X-Y plane). In addition, we also analyzed various measures of posi-

tion, velocity and acceleration along the Y (horizontal) and Z (vertical) axes over each itera-

tion. However, these results are out of scope of this study.

Data analysis

We quantified the motor contagion in a participant’ htp (the average time between two conse-

cutive alternate touches) by analyzing the change of participant’s htp between the together

period and alone-period (see Fig 2) in a trial (ttpðiÞ � t
a
pðiÞ), relative to the htp of the co-worker

behavior in the same trial (tcðiÞ � AvðtapÞ), where AvðtapÞ represents the average undisturbed

htp by a participants across his/her participant-alone periods. This data was regressed with

either a first or second order regression model that was chosen based on the Akaike Informa-

tion Criteria (AIC) [23] and by using MATLAB’s fitlm function for each participant. The

Humanoid robot co-worker influences human performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0206698 November 8, 2018 7 / 19

https://doi.org/10.1371/journal.pone.0206698


tangent slope at the minimum data abscissa value (min½tcðiÞ � AvðtapÞ�) was collected across

participants, checked for normality using the Shapiro-Wilk test and then analyzed for differ-

ence from zero using a one sample T-test (in case the distribution was normal) or a Signed

Rank test. The fitting of htp in one sample participant from each of the six reported conditions

are shown in Fig 5, and the plot of the collection of slopes are in shown in Fig 6. A similar pro-

cedure was used to analyze the change in a participant’s average X press location, average Y

press location, standard deviation of X press location, and standard deviation of Y press loca-

tions relative to the htp of the co-worker behavior in the same trial (tcðiÞ � AvðtapÞ). The slopes

from these analysis are shown in Fig 7.

Fig 5. Examples of linear regression fits. The change of participant’s htp (the average time between two consecutive alternate touches) between the together period

and alone-period (ttpðiÞ � tapðiÞ), relative to the htp of the co-worker behavior in the same trial (tcðiÞ � AvðtapÞ), where AvðtapÞ represents the average undisturbed htp by

a participant across all his/her participant-alone periods. Note that the (robot or human) co-worker htp was random across trials, and the data in plots here are the

ensemble of the participant behaviors arranged in increasing co-worker’s htp on the abscissa. Each plot represent a condition, A) robot co-worker (blue); B) human co-

worker (orange); C) robot covered co-worker (dark blue); D) human covered co-worker (dark orange); E) robot non-biol co-worker (cyan); F) robot indus co-worker

(magenta) conditions. We used the AIC to choose either a first or second order model to fit the data for each participant. The lines represent the tangent slopes at the

minimal data abscissa value.

https://doi.org/10.1371/journal.pone.0206698.g005
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Next, to check the relevance of the human form, we conducted the robot covered co-worker

and human covered co-worker conditions, in which the head and torso of the co-worker was

covered and only the moving arm was visible to the human (see Fig 1C and 1D or inset photos

in Fig 6). All other experimental settings and analysis were same as in the robot co-worker and

human co-worker conditions.

Participant sample size

As the effects of the robot co-worker condition was the focus of our experiments, each of our

participant worked in the robot co-worker condition, and two of the remaining 5 conditions

(human co-worker, robot covered co-worker, human covered co-worker, robot non-biol co-

worker and robot indus co-worker). Note that due to the fact that each of our conditions lasted

over 20 minutes, resulting in more than 1 hour of total experiment time for the three condi-

tions, we could not have every participant participating in all the conditions. We initially

recruited 35 participants to have 14 participants in each of the five conditions (giving five par-

ticipant groups each of whom participated in one of the five conditions in addition to the

robot co-worker condition), so as to enable a intra participant one sample T-test between the

robot co-worker and each of the remaining conditions. The number ‘14’ was chosen as it cor-

responds to participant numbers in similar previous studies [14, 15] and corresponds to a

power analysis using G� power for a 2-tailed, one sample T-test (α = 0.05, β = 0.85, d = 0.9)

Fig 6. All six conditions htp comparision. The plot of the collection of slopes which is obtained in Fig 5 and S1 to S6 Figs supplementary figures. The condition-wise

comparison of the change of participants htp with co-worker htp. P-values are Bonferroni corrected where required. The tangent slope at the minimum data abscissa

value (min½tcðiÞ � AvðtapÞ�) was collected across participants (as shown in Fig 5), checked for normality using the Shapiro-Wilk test and then analyzed for difference

from zero using a one sample T-test (in case the distribution was normal) or a Signed Rank test.

https://doi.org/10.1371/journal.pone.0206698.g006
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[24, 25]. However, we found that with these participant numbers, the slopes in the same robot

co-worker condition were not similar among the participant groups (p<0.05, one-way

ANOVA). The robot co-worker condition slopes were significantly different from zero with

two participant groups (p = 0.022, and p = 0.038), tended to be significant in two (p = 0.07,

and p = 0.08) and not significant in another (p = 0.36). As a majority of the values tended to be

significant, we decided to increase the participant numbers by 50% (7 participants) across the

participant group that were tending or not significant (these included participants who partici-

pated also in the robot covered co-worker, robot non-biol co-worker, and robot indus co-

worker conditions), making a total of 42 participants. With this participant number, the robot

co-worker htp slopes were observed to be similar across the participant groups (H(4), p = 0.99;

one-way Kruskal-Wallis H-test). After removal of three outliers, this gave us participants num-

bers of 13 (human co-worker condition), 13 (human covered co-worker), 17 (robot covered

co-worker), 17 (robot non-biol co-worker), 18 (robot indus co-worker), and 39 in total for the

robot co-worker condition, see Table 2.

Questionnaire

Perception and fatigue. Each of the participant in our experiment answered a short post

experiment questionnaire consisting of 6 questions. The participants were asked to choose a

score on a scale of 0 to 7, where 0 (Not at all), 7 (very strongly), for each of these questions,

individually for every session they participated in:

Q1. My movements were affected when the agent was working with me.

Q2. My movement speed was changed when the agent was working with me.

Fig 7. Participants touch variance. Change of participant touch position with A) robot co-worker htp; B) human co-worker htp. A similar procedure which was used

to quantify htp was also used here (see subsection Data analysis) to analyze the change in a participant’s average X press location, average Y press location, standard

deviation of X press location, and standard deviation of Y press locations relative to the htp of the co-worker behavior in the same trial.

https://doi.org/10.1371/journal.pone.0206698.g007
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Q3. I was tired during the experiment.

Q4. I could maintain the movement speed that I wanted even when the robot was perform-

ing its task.

Q5. I found it difficult to do my task when the agent was working with me.

Q6. I could hear noises from the co-worker during the experiment.

Q1, Q2, Q4 and Q5 were designed to access whether the participants cognitively realized

the affects on their behavior due to the co-worker. A score close to one in Q1, Q2 and Q5 (and

a score close to 7 in Q4) indicates that they did not consciously realize the effects. Therefore

we considered the Q4 scores by subtracting the reported values from 7.

Robot exposure questionnaire. Following the end of our data collection, we also noted

the need to measure the participant’s robot experienced and exposure to robots. We therefore

sent them a questionnaire of four questions:

RQ1. How many hours do you see and/or read about robots on average per week (include

robots on TV)?

RQ2. If you work with robots currently, how many hours do you work with robots (or on

robotics related topics) per week?

RQ3. If you have worked with robots, but do not work anymore, how many hours have you

worked on them?

RQ4. How will you rate your knowledge of robots?

For each question, the participant had to answer in hours and chose between ‘0’, ‘less than

5’, ‘5-10’ ‘10-15’, ‘15-20’, ‘20-25’, ‘25-30’, ‘more than 30’.

Statistical correction

As reported earlier, every participant in our study participated in three conditions: the robot

co-worker condition, and two of the remaining conditions. We thus compare the behavior of

the participant in any condition with the robot co-worker. For each participant, there were

thus two comparisons made. Correspondingly, in our comparisons in Fig 6, we use a Bonfer-

roni correction of (3 conditions—1) 2, and all p values below 0.05 were multiplied by 2. There-

fore, note that all the comparisons between conditions in Fig 6 are between equal number of

participants (and we use a one sample T-test).

Results

Robot behavior influences human movement frequency

Fig 5 shows the change of participant’s htp (the average time between two consecutive alternate

touches) between the together period and alone-period (ttpðiÞ � t
a
pðiÞ), relative to the htp of the

Table 2. Participant sample size.

condition sample size

robot co-worker 39

human co-worker 13

robot covered co-worker 17

human covered co-worker 13

robot non-biol co-worker 17

robot indus co-worker 18

https://doi.org/10.1371/journal.pone.0206698.t002
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co-worker behavior in the same trial (tcðiÞ � AvðtapÞ), where AvðtapÞ represents the average

undisturbed htp by a participants across all his/her participant-alone periods. Note that the

(robot or human) co-worker htp was random across trials, and the data in Fig 5 is an ensemble

of the participant behaviors arranged in increasing co-worker’s htp on the abscissa. We then

collected the slope of the polynomial at the lowest data abscissa as a measure of how the partic-

ipant htp was affected by the co-worker htp. In the robot co-worker condition the slope distri-

bution was not normal across the participants (p<0.05, Shapiro-Wilk test, median = 0.017)

and was significantly positive across participants (median = 0.017, Z(38) = 3.70, p = 0.0002,

Signed Rank test). The positive slopes (light blue data in Fig 6) show that the robot perfor-

mance htp (hence frequency) influenced the human participants. First, the human partici-

pant’s htp increased when the robot htp was longer (see first quadrants of Fig 5A), but for

several participants, this increase had a threshold after which the participant’s htp decreased.

This behavior is the reason why we found a second order fit to explain the data better with

many participants using AIC. Second, the participants htp also decreased when the robot htp
was shorter (3rd quadrants of Fig 5A, only across the participants in robot co-worker condi-

tion) indicating that a faster robot made the participants frequency higher. The htp results

were similar with the human co-worker. The positive slopes (orange data in Fig 6) show that

the human co-worker’s performance htp (hence frequency) influenced the human participants

(median = 0.012, p = 0.0017, Signed Rank test).

Press accuracy in the human not affected by robot co-worker

Studies in motor control have exhibited that human movements are constrained by motor

noise, which increases with the magnitude of motor commands in the muscles [26]. In the

case of ‘regular’ and automatic movements in daily life, this leads to a trade-off between the

speed and accuracy of the movement [27]. However, the accuracy of movements is also modu-

lated by the regulation of arm impedance by muscle co-contraction [28–30]. As mentioned

earlier, to comment on the task performance of the human co-worker, we next analyzed

whether and how the touch accuracy of the participants changed alongside the contagions in

their htp.

Again, note that the target circles provided to the participants were large (5 cm diameter),

and there were no constraint on where inside the target they touched. Therefore the partici-

pant’s touches can change (in position and/or variance) with their movement speed, without

violating the task. However, interestingly we found that while the participants htp (hence

movement frequency) changed, there were no such trend in the participants press (task)

accuracy.

The mean touch positions were (�X ¼ 0:95 cm; �Y ¼ 1:17 cm) from the circle center across

the participants, and showed a mean standard deviations of (std(X) = 0.23 cm; std(Y) = 0.79

cm) (across participants) when they worked alone (in the participant-alone period). And cru-

cially, the participants maintained the same touch positions (there was no change of mean

touch positions �X : p ¼ 0:64; �Y : p ¼ 0:86) and mean standard deviations (change of std(X):

p = 0.56; std(Y): p = 0.41) between when they worked alone and when they worked with the

robot co-worker (Fig 7A), showing that the robot did not affect their task accuracies.

The press accuracy was similarly constant in the human co-worker condition in which the

participants worked with another (unfamiliar) human, with no observed changes in the mean

touch positions (�X : p ¼ 0:69; �Y : p ¼ 0:83; Fig 7B) and mean standard deviations (std(X):

p = 0.56; std(Y): p = 0.39; Fig 7B). Here note again, that the touched circles were relatively

large (5 cm) and the participants could have changed their touch position and variance while

still satisfying the required task, but we do not observe this trend. Together, the change in
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movement frequency, and the lack of change in task accuracy shows that robot as well as

human co-workers influenced participant task performance in our experiment.

Human form matters

Interestingly, covering the head and torso extinguished the contagions in the participant’s htp
–the participant’s htps were no longer affected in the robot covered co-worker (T(16) = -0.3,

p = 0.78; dark blue data in Fig 6) and the human covered co-worker (T(12) = 0.24, p = 0.82;

dark orange data in Fig 6), and these effects were significantly lower than the effects induced in

the same participants in the robot co-worker condition (T(16) = 2.74, p = 0.028, Bonferroni

corrected, one sample T-test between robot co-worker and robot covered co-worker; T(12) =

2.50, p = 0.054, Bonferroni corrected, one sample T-test between robot co-worker and human

covered co-worker). This result show that the human form is crucial for induction of the per-

formance changes.

In the robot co-worker and robot covered co-worker conditions, the robot played back the

biological arm movements of a previous human volunteers. Finally, corresponding to previous

studies that have shown that motor contagions are attenuated when a robot makes non-biolog-

ical movements [9, 15], we added two control conditions (robot non-biol and robot indus) in

which the participants could see the robot co-worker’s whole upper body, but the robot made

non-biologically inspired arms movements to perform the task (see subsection HRP-2Kai

movement trajectories). Consistent with previous studies we did not find any significant

change in htps in this condition (Z(16) = -1.07, p = 0.29 (cyan data); Z(17) = -0.28, p = 0.77

(magenta data) in Fig 6), and these values were different (tending to significance) compared to

the robot co-worker condition of the same participants (robot non-biol condition: T(16) =

2.32, p = 0.066, Bonferroni corrected, one sample T-test) and (robot indus condition: T(17) =

2.53, p = 0.043, Bonferroni corrected, one sample T-test).

The performance effect were implicit

An average of the scores from Q1, Q2, Q5 and Q4 (value subtracted from 7) was found to be

equal to (mean±SD, 1.90±0.18) for the robot co-worker condition, and (mean±SD, 1.65±0.24)

for the human co-worker condition respectively. These low scores suggested that the partici-

pants did not consciously realize the effects on their behavior. Q3 was used to confirm that the

participants were not tired in our task. We obtained scores of (mean±SD, 0.96±0.18) across

the participants in the robot co-worker condition, and (mean±SD, 0.75±0.22) in the human

co-worker condition. Q6 was used to confirm that the participants did not hear any external

audio cues from either the robot’s joints in the robot co-worker conditions (mean±SD, 0.5

±1.25), nor the human co-worker’s touches in the human co-worker conditions (mean±SD,

0.58±1.36).

Contagion increases with robot exposure. We received answers from 23 participants on

our robot exposure questionnaire. Out of these participants, one participant who scored ‘0’ for

all questions was removed. We averaged the scores (taking either one from RQ2 and RQ3, as

they were complementary) for the others and plotted the average against their htp slope in the

robot co-worker condition in Fig 8. Interestingly, we observed a significant positive correlation

(Pearson’s R = 0.44, p = 0.039), such that the effect on the participants were larger if they had

more exposure and experience with robots. This result is conform to a recent report where

participants with more experience with robots show higher adaptation to it, see [31].
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Discussion

In summary, primarily, we observed that the performance frequencies of human participants

were influenced by the presence of a humanoid robot co-worker (or a human co-worker). We

observed that participants not only become slower with a slower co-worker, but also faster

with faster co-workers. Here we were interested to see the change of participant behavior ‘rela-

tive’ to the robot behavior. Hence we looked at a ratio, hence to quantify the motor contagion,

we analyzed change in participant’s htp between the together period and alone-period in a trial

and relative to the htp of the co-worker behavior in the same trial. When the numerator term

(ttpðiÞ � t
a
pðiÞ) is negative that means participants get faster from their initial participant-alone

period htp (movement speed) and vice versa. Note that the subtraction in the denominator (of

AvðtapÞ) is a constant that only shifts the curve and does not effect the slope.

In this study we wanted to choose a task that is simple, yet rich, and is representative of

many industrial co-worker scenarios. We found that (repetitive) pick and place tasks to be the

most common industrial tasks in which robots are employed. We therefore chose to start with

a cyclic touch task in this experiment. The results we obtain here therefore, are specific to

Fig 8. Robot experience exposure. The plot of the change of participant htp, with respect to their prior robot exposure and

experience (self-scored by participants) showed a significant correlation between the two.

https://doi.org/10.1371/journal.pone.0206698.g008
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repetitive tasks. On the other hand, it has been shown that cyclic and discrete tasks may be

very different in terms of neural processes [32], and further studies are required to verify

whether the effects that we observe here are also valid for discrete movements. Further studies

are also required to understand whether and how the contagions we observed here are related

to Motor entrainment, which is a phenomena predominantly defined for rhythmic auditory

stimuli [33, 34]. In our case we used white noise feedback to stop the participants from hearing

noise from the moving robot. However, having said that, it is possible that the effect we

observe here may be a form of visual Motor entrainment.

The performance frequencies of the participants were affected by the human and humanoid

robot co-workers, their (press) task accuracy remained undisturbed (Fig 7). The effect on the

human co-worker’s frequency and the absence of an effect on his accuracy, suggests that the

performance of the human participants is affected by the presence of a robot co-worker; a

slower robot co-worker reduces human performance (in terms of speed and accuracy), while a

faster robot co-worker improves it. Previous studies have shown that specialized robots can

influence both human performance and motivation during physical [35] and cognitive [36]

interactions, our results here show that the mere presence of humanoid robots can induce

effects in human performance.

Interestingly, the effect on the movement frequency was observed only when the head and

torso of the co-worker was visible to the participants (Fig 6), indicating the crucial importance

of the human form for these effects. Note that in order to investigate the effect of the visibility

of the co-worker torso, we chose to cover the torso of the humanoid robot instead of using a

different manipulator as a co-worker due to two main reasons. Primarily, this enabled us to

create a condition where the physical appearance of the robot arm and its movement were

identical between the robot co-worker and robot covered co-worker conditions. Furthermore,

this helped us clarify that the contagions are not influenced by the presence of a humanoid co-
worker (and the participant’s knowledge of it), but rather by the torso visibility. Both these

issues would have been unclear with the use of a manipulator as a co-worker. On the other

hand, our results open several new questions for future research perspectives. First, we

observed that the visibility of the robot co-worker’s torso modulates contagions in a human

co-worker, but the reasons behind this are still unclear. The effect is probably related to aspects

of saliency as the torso not only occupies a larger visual field, but (especially the head and the

eyes) also probably attracts participant attention when present. Second, in our task we exam-

ined the case where the robot co-worker made predominantly arm movements, while the

torso remained static. While we believe the effect of the torso’s visibility should increase in

tasks in which the torso moves, it remains to clarify how the torso movements affect conta-

gions. Finally, while here we analyze a task where both co-workers (human and humanoid

robot HRP-2Kai) and participants perform the same task, it would be interesting to analyze

whether and how the contagions manifest in settings where the co-workers and participants

work on different tasks, including non-industrial task that are explicitly collaborative, or

competitive.

Quantitatively, the trends we observed were significant but not that substantial. However,

within our participants, these trends were observed to increase with their participant’s robot

experience (Fig 8), suggesting that they can prevail over a long time and are thus may impor-

tant in scenarios involving long time robot-human interactions. Note that the questions used

to quantify robot exposure represent the self perceived robot exposure by the participants

rather than the actual robot exposure. A standard questionnaire to access actual robot expo-

sure is absent and the development of one can be useful to understand how the effects, such as

the one we highlight here, vary over time.
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Overall, the results of our exploratory study highlight several new features of motor conta-

gions, but also opens new questions for future research. These results can be useful for custom-

izing the design of robot co-workers in industries and sports in order to moderate or exploit

the contagions induced by them; contagions such as those related to body postures and unde-

sirable competitions and that may affect worker health and psychology in long run, may be

reduced by controlling the physical appearance and/or kinematics of robot co-workers, while

where ethically valid, contagions may also be used to improve worker performance speed and

hence productivity.

Supporting information

S1 Video. The video of our experiment explaining task protocol and data analysis is avail-

able here. https://goo.gl/9rqv4G.

(MP4)

S1 Fig. All participants regression fits in the robot co-worker condition. Examples of linear

regression fits obtained between the participant’s htp change between the together and alone

conditions (ordinates), as a function of co-worker’s htps (abscissa). Note that most participant

plots show a positive slope indicating that the robot co-worker’s performance htp (hence fre-

quency) influenced the human participants.

(TIF)

S2 Fig. All participants regression fits in the human co-worker condition. Examples of lin-

ear regression fits obtained between the participant’s htp change between the together and

alone conditions (ordinates), as a function of co-worker’s htps (abscissa). The positive slopes

show that the human co-worker’s performance htp (hence frequency) influenced the human

participants.

(TIF)

S3 Fig. All participants regression fits in the robot covered co-worker condition. Examples

of linear regression fits obtained between the participant’s htp change between the together

and alone conditions (ordinates), as a function of co-worker’s htps (abscissa). Note that there

is no trend in slopes across participant –the slopes were in fact observed to be zero across par-

ticipants (Fig 6), indicating that the participant’s htps were not affected in the robot covered

co-worker condition.

(TIF)

S4 Fig. All participants regression fits in the human covered co-worker condition.

Examples of linear regression fits obtained between the participant’s htp change between

the together and alone conditions (ordinates), as a function of co-worker’s htps (abscissa). Like

in S3 Fig, the slopes were observed to be zero across participants (Fig 6), indicating that the

participant’s htps were not affected in the human covered co-worker condition.

(TIF)

S5 Fig. All participants regression fits in the robot non-biol co-worker condition.

Examples of linear regression fits obtained between the participant’s htp change between the

together and alone conditions (ordinates), as a function of co-worker’s htps (abscissa). The

plots again show that the participant’s htps were not affected in the robot non-biol co-worker

condition.

(TIF)
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S6 Fig. All participants regression fits in the robot indus co-worker condition. Examples of

linear regression fits obtained between the participant’s htp change between the together and

alone conditions (ordinates), as a function of co-worker’s htps (abscissa). Like in S3 to S5 Figs,

we observed no effect in the participants in the robot indus co-worker condition.

(TIF)
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