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Abstract

Objective: Understanding healthy brain development in utero is crucial in order to

detect abnormal developmental trajectories due to developmental disorders.

However, in most studies neuroimaging was done after a significant postnatal

period, and in those studies that performed neuroimaging on fetuses, the quality of

data has been affected due to complications of scanning during pregnancy. To

understand healthy brain development between 37–41 weeks of gestational age,

our study assessed the in utero growth of the brain in healthy term born babies with

DTI scanning soon after birth.

Methods: A cohort of 93 infants recruited from maternity hospitals in Singapore

underwent diffusion tensor imaging between 5 to 17 days after birth. We did a

cross-sectional examination of white matter microstructure of the brain among

healthy term infants as a function of gestational age via voxel-based analysis on

fractional anisotropy.

Results: Greater gestational age at birth in term infants was associated with larger

fractional anisotropy values in early developing brain regions, when corrected for

age at scan. Specifically, it was associated with a cluster located at the corpus
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callosum (corrected p,0.001), as well as another cluster spanning areas of the

anterior corona radiata, anterior limb of internal capsule, and external capsule

(corrected p,0.001).

Conclusions: Our findings show variation in brain maturation associated with

gestational age amongst ‘term’ infants, with increased brain maturation when born

with a relatively higher gestational age in comparison to those infants born with a

relatively younger gestational age. Future studies should explore if these

differences in brain maturation between 37 and 41 weeks of gestational age will

persist over time due to development outside the womb.

Introduction

Understanding healthy fetal brain development is essential to be able to detect

abnormal developmental trajectories due to developmental disorders [1]. Previous

studies showed that younger gestational age at birth has been associated with

reduced maturation of the brain. However, current knowledge derives largely

from studies with premature infants [2–8], which do not inform us about healthy

brain development in term born infants. Second, different methods of scanning

have been used. Most of the existing literature relies upon ultrasound or

traditional structural magnetic resonance imaging (MRI). However, Ment et al.

(2009) pointed out in a review article that abnormal neurodevelopmental

trajectories associate with microstructural abnormalities in the brains, especially

white matter abnormalities such as diffuse injury of white matter with neuronal

and axonal disruption [9]. Nevertheless, microstructure development is best

measured by diffusion tensor imaging (DTI) [10], with white matter maturation

characterized by increasing fractional anisotropy (FA) and decreasing mean

diffusivity (MD) [11]. Third, neuroimaging is often done after a significant

postnatal period. The majority of existing studies with term infants used case-

control designs and compared term infants to late preterm infants (34–37 weeks),

preterm (32–34 weeks) and/or very preterm infants (gestational age at birth ,32

weeks) [2–6], scanned at term-equivalent age, after a significant postnatal period.

However, the days from birth to imaging can account for potential postnatal brain

growth with many ex-uterine environmental factors will influence neuronal

connectivity [12]. Indeed, a recent study showed the extraordinary rates of

structural growth in the very early postnatal period [13]. As such imaging after a

significant postnatal period will not inform us much about the in utero brain

development and it remains unclear if altered neuroconnectivitity emerges

prenatally [14]. Hence, performing DTIs during the third trimester directly on

fetuses would be most ideal. Recently some studies used neuroimaging during

pregnancy to understand fetal brain development [1, 12–15]. However, the

understanding of maturation of fetal neural networks remains limited due to

many complications of fetal scanning during pregnancy such as difficulties to
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recruit healthy pregnant women for DTI scans, the size of mothers during third

trimester, artifacts due to movements of the fetus and breathing of the mother,

and subsequently the long scanning duration (which is especially challenging for

women in the third trimester) [14, 16]. Hence, although during the third trimester

growth and neurogenesis of the fetal brain increase significantly, the direct effects

of a relatively younger gestational age at birth in healthy term infants on these

processes are not yet well understood [14, 17].

To understand the establishment of brain connections within healthy term born

infants, imaging soon after birth is essential to reduce the effects of postnatal brain

maturation. To the best of our knowledge there have been no DTI studies to date

that have examined differences brain maturation shortly after being born in

healthy term infants. The aim of this study is to investigate the differences in

in utero brain maturation between 37 and 41 weeks of gestational age in a large

cohort of healthy term infants in Singapore. We hypothesize that among healthy

term born infants, a younger gestational age at birth is associated with reduced

white matter maturity in the brain in comparison to healthy term born infants

born with an older gestational age at birth.

Methods

Subjects

One hundred eighty nine infants who participated in a birth cohort study,

Growing Up in Singapore Towards Healthy Outcomes (GUSTO), also

participated in the neuroimaging study. The GUSTO methodology has been

published in detail [18]. The GUSTO cohort consisted of pregnant Asian women

attending the first trimester antenatal ultrasound scan clinic at the National

University Hospital (NUH) and KK Women’s and Children’s Hospital (KKH) in

Singapore, which are the two major maternity hospitals in Singapore. Birth

outcome and pregnancy measures were obtained from hospital records. The

pregnant women and their partners were Singapore citizens or Permanent

Residents of Chinese, Malay or Indian ethnic background. Socioeconomic status

(household income) and prenatal exposure to alcohol (regular alcohol drinking)

and tobacco (regular smoking, daily exposure to smoking at home and job) were

extracted from survey questionnaires conducted as a part of a scheduled

appointment during pregnancy. The GUSTO cohort study, including imaging

procedures, was approved by the National Healthcare Group Domain Specific

Review Board and the Sing Health Centralized Institutional Review Board. All

clinical investigation has been conducted according to the principles expressed in

the Declaration of Helsinki. Written consent was obtained from all guardians on

behalf of the children enrolled in the study.

The current study only included neonates with diffusion tensor imaging (DTI),

gestational age at birth greater or equal to 37 weeks, birth weight larger than

2500 g, and the last recorded APGAR$9, to exclude effects of intra-uterine

growth retardation or co-morbidities. Neonates of mothers with gestational
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diabetes, hypertension, and hypoglycemia were excluded from this study, as were

neonates of mothers who reported consuming any alcohol during pregnancy.

MRI Acquisition

Neonates underwent fast spin-echo T2-weighted MRI and single-shot echo-planar

DTI scans using a 1.5-Tesla GE scanner at KKH’s Department of Diagnostic and

Interventional Imaging between 5 and 17 days postpartum. The scans were

acquired when subjects were sleeping in the scanner. No sedation was used and

precautions were taken to reduce exposure to MRI scanner noise. A neonatologist

was present during each scan. A pulse oximeter was used to monitor heart rate

and oxygen saturation through out the entire scans.

The DTI imaging protocol is based on single-shot echo-planar DTI sequence

(TR57000 ms; TE556 ms; flip angle590 ,̊ FOV5200 mm6200 mm; matrix

size564664). 40 to 50 axial slices with 3.0 mm thickness were acquired parallel

to the anterior–posterior commissure line. Nineteen diffusion weighted images

(DWIs) with b5600 sec/mm2 and 1 baseline with b50 sec/mm2 were obtained.

All brain scans were reviewed by a neuroradiologist (M.V.F).

DTI Analysis

Diffusion weighted images (DWIs) were first corrected within individual subjects

for motion and eddy current distortions using affine transformation to the image

without diffusion weighting. Six elements of the diffusion tensor were then

determined, from which fractional anisotropy (FA) was calculated using

multivariate least-square fitting.

We constructed a DTI atlas based on the unbiased diffeomorphic atlas

generation algorithm [19] and detailed the processing procedure below. The FA

image and the image without diffusion weighting of each subject were first aligned

to those of the JHU neonate brain single-subject DTI atlas (resolution:

0.660.660.6 mm3, http://lbam.med.jhmi.edu/) [20] via affine and nonlinear

large deformation diffeomorphic metric mapping (LDDMM) transformations

[21]. These affine and nonlinear transformations were then applied to individual

DWIs. The mean DWIs were obtained by averaging the DWIs with the

corresponding gradient direction across all the subjects. The mean FA image was

computed using the mean DWIs. These mean DWIs and FA were considered as a

new atlas. This procedure was repeated three times until the intensity of DWIs was

no longer changed. The mean DWIs and FA at the last iteration were defined as

the final atlas and used as a common anatomical space.

DWIs of individual subjects were then aligned to the atlas based the same

registration procedure as one used for the atlas generation. FA was obtained from

the tensor calculation of DWIs in the atlas and used for the following voxel-based

analysis.

Gestational Age and Brain Development

PLOS ONE | DOI:10.1371/journal.pone.0115229 December 23, 2014 4 / 17

http://lbam.med.jhmi.edu/


Statistical Analysis

Voxel-based analysis was performed to investigate the association between

gestational age at birth and neonatal brain microstructure (FA) using SPM8. The

FA images were smoothed with a Gaussian kernel with full width half maximum

of 4 mm. Linear regression was performed conducted at every voxel in the white

matter region. The regression model included gestational age at birth as the main

factor and controlled for age at MRI. Most infants were scanned at the second

week after birth. Gestational age was highly correlated with the postmenstrual age-

at-scan (r50.966). As the aim of this study is to investigate the effects of

gestational age at birth on the neonatal brain to assess effects of fetal maturity, we

controlled for age at MRI (postmenstrual age-at-scan - gestational age at birth) in

the regression analysis.

We also adjusted for birth weight [22], maternal age [22], monthly household

income [22, 23], prenatal smoking exposure [22], [23], and ethnicity [24–26], on

the basis of previous knowledge that these variables are potential confounders of

younger gestational age. Family-wise error was computed for correcting multiple

comparisons at a significance level of 0.001.

Birth weight was adjusted based on gestational age using linear regression with

the mean-centered gestational age as a main factor on the GUSTO cohort. The

residual was defined as adjusted birth weight that is statistically independent of

gestational age. As small-for-gestational age has been identified as a risk factor for

prematurity, we included birth weight as a covariate [22]. The brain grows rapidly

in early life even in the first few weeks of life [27, 28] and hence it is crucial to

justify the days from birth to the MRI visit. Several studies have suggested

differences in brain morphology in different ethnic groups [24–26] and we thus

also included ethnicity in the regression model. Also other reproductive risk

factors have been identified, such as advanced maternal age and smoking, for

which we adjusted in our analyses [22]. Furthermore, previous studies showed

significant socioeconomic differences in preterm births, hence we have included

household income [22].

Results

Demographics

Among 189 neonates who underwent MRI scans, 93 were included in the current

study. We excluded 13 neonates with gestational age at birth less than 37 weeks, 11

with birth weight less than 2500 g, 2 with a 5-min Apgar score less than 9, and 52

with no DTI data. Moreover, our study also excluded infants whose mothers had

gestational diabetes (n522), hypertension (n55), and hypoglycemia (n51)

during pregnancy. Mothers who reported consuming any alcohol during

pregnancy (n53) were also excluded from this study. Hence, the total sample

involved in this study was 93. Table 1 lists the demographic information of this

study.
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Gestational Age at Birth and Fractional Anisotropy

Fig. 1 shows the statistical map for the association between gestational age at birth

and FA of the neonatal brain. Adjusting for days from birth to MRI, adjusted birth

weight, maternal age, monthly household income, prenatal smoking exposure,

and ethnicity, we found that greater gestational age at birth was associated with

larger FA values in two clusters. One cluster was located at the corpus callosum,

specifically the genu (CC; corrected p,0.001). The mean FA in this region in

relation with gestational age at birth is shown on the right panel of the first row in

Fig. 1. The second cluster was at the right anterior corona radiata (ACR), anterior

limb of internal capsule (ALIC), and external capsule (EC) (corrected p,0.001).

The mean FA in this region in relation with gestational age at birth is shown on

the right panel of the second row in Fig. 1. Our study did not reveal any non-

linear relationship between brain measures and gestational age at birth.

We performed two additional analyses. First, we replaced gestational age at

birth with post-conception age in the linear regression model. The effects of post-

conception age on FA are the same as those of gestational age at birth. This is not

surprising as the correlation of gestational age at birth and post-conception age at

Table 1. Demographics.

Sample (n593)

Gestational age (37–41 weeks), mean (SD) 38.8 (0.9)

Age on the MRI day (days), mean (SD) 9.9 (2.3)

Birth Weight (gram), mean (SD) 3115.6 (320)

Adjusted Birth Weight (gram), mean (SD) 3103.4 (328)

Gender, Male/female 44/49

Maternal Age (year), mean (SD)* 29.2 (5.4)

Maternal Education Level, % University 14.0

GCE 26.9

ITE_NTC 15.1

Secondary 37.6

Primary 4.3

Others 2.2

Ethnicity, % Chinese 39.8

Malay 44.1

Indian 16.1

Monthly Household
Income (S$), % *

#999 4.3

1000,1999 18.3

2000,3999 40.9

4000,5999 22.6

$6000 14.0

Prenatal Smoking Exposure, % yes 52.7

Abbreviations. SD – standard deviation; ITE – Institute of Technical Education; NTC – National Technical Certificate; GCE – General Certificate of
Education.

doi:10.1371/journal.pone.0115229.t001
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MRI is 0.966. Second, we examined the growth pattern of FA after birth, that is,

the growth pattern of FA as a function of age at MRI, where age at MRI is defined

as the difference between post-conception age and gestational age at birth. No

significant statistical results were found after correcting for multiple comparisons.

Hence, this suggests that the findings shown in Fig. 1 are mainly due to

gestational age at birth.

Discussion

Our cross-sectional findings show an association between gestational age at birth

within the normal range and brain maturation measured with diffusion tensor

imaging, shortly after birth. Specifically, younger gestational age at birth within

the ‘‘term’’ window associates with reduced white matter organization in the CC,

ACR, ALIC, and EC in comparison to older gestational age within the ‘‘term’’

window. These brain regions are parts of the cortical-striatal-thalamic neural

circuit. This circuit is functionally important as is has been related to sensory

functions, executive functions, and working memory [29–31].

Despite the fact that tracts, such as the CC, do not fully mature until adulthood,

the majority, including the internal capsule (IC) with its extensions to the

Fig. 1. Association between gestational age at birth and fractional anisotropy of the neonatal brain.
The left two columns show the statistical maps for the associations between gestational age at birth and
fractional anisotropy of the neonatal brain, which were obtained from voxel-based analysis. The third column
shows the scatter plots of FA in the CC region (top row) and in ACR/ALIC/EC regions (bottom row) highlighted
in the left panels in relation with gestational age at birth. Abbreviations: CC --- corpus callosum; ACR ---
anterior corona radiata; ALIC --- anterior limb of internal capsule; EC --- external capsule.

doi:10.1371/journal.pone.0115229.g001
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thalamus and basal ganglia, are in the limited myelinated brain regions at birth

[32]. These tracts may be vulnerable to brain damage in the perinatal and early

postnatal period [33], [34], and are involved in several neural circuits supporting

basic brain functions at birth. For example, the ALIC is a major cortico-

subcortical white matter bundle that contains fibers running from the thalamus to

the basal ganglia as well as connecting the thalamus to the frontal lobe.

Coordinated activity of the thalamus, basal ganglia and frontal lobes is essential

for regulating sensori-motor functioning. Likewise, the corona radiata is the

continuation of the IC as it makes its way to sensorimotor cortex in and near the

central sulcus [35].

During the second trimester of gestation, the commissural fibers [36] and

projection fibers (ALIC and CR) are visible using tractography in ex-vivo DTI

[1, 37]. It has been recently found that structures like ACR, ALIC and EC are likely

to develop rapidly at near-term age during the third trimester, when growth and

neurogenesis of the fetal brain increase [38]. Indeed, our findings show variation

of in utero brain maturation in these early developing structures in healthy term

infants. This is consistent with previously reported associations in studies with

premature infants and as such implies a consistent pattern of white matter

development in the fetal brain. Those studies indeed found an association between

gestational age at birth and maturation of the posterior limb of the internal

capsule (PLIC) [39, 40, 41, 42]. Also, associations between gestational age and

ALIC have been found before [38, 40].

And one previous study, although performed in very-low-birth-weight and

premature children, also reported higher FA in the posterior regions within the

CR. The same study found a positive association between gestational age at birth

and the EC for Mean Diffusivity but not FA [38]. The authors suggested a slower

growth of this region in infants with higher gestational age, possibly caused by

accelerated growth in these regions upon birth in preterm neonates [38].

However, our study represents the observance of associations between gestational

age at birth and higher FA in CR and EC in term born infants. The formation of

the CC is relatively more advanced in the frontal lobe than other brain regions

during the fetal stage, which may suggest the importance of inter-hemispherical

communication in the frontal region beginning early in life [43].

Previous work examining very preterm and near term infants has also

documented an association between CC development and gestational age [38],

[44–46].

Indeed, most of this research demonstrates that FA and diffusion variations in

the CC correlate significantly with gestational age [36, 38, 47], although some

found an association with birth weight instead of gestational age [48].

Nevertheless, extreme prematurity and extremely low birth weights imply multiple

complications that could influence brain development and may not be applicable

to healthy term infants. Indeed, Bonfacio (2010) did a first MRI scan (of a serially

DTI scans) as soon as the premature infants born between 24 and 33 weeks of

gestation were deemed clinically stable by the attending neonatologist, in between

30 weeks and 33 weeks of postmenstrual age. They found that brain
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microstructure was independent of (extremely) premature birth, and that only

brain injury and co-morbid conditions were important determinant of

microstructure maturation [49]. This suggests that white matter abnormalities

found with brain DTI in clinical samples may be due to the overwhelming

influences of brain injury and does not inform us about the influence of

gestational age on brain maturation in the ‘‘term window’’ of healthy infants.

Other studies about CC compared preterm and term children with

neuroimaging, but the timings of scanning were after a significant postnatal

period [3, 39, 40, 50–52]. These studies consistently report reduced CC in

premature children [3, 39, 50, 51] in comparison to nearly preterm or term born

infants [3, 40]. However, the multiple confounders that influence postnatal brain

maturation in the time between birth and imaging comprise the ability to directly

associate gestational age at birth to in utero brain development.

Although other studies also found associations between gestational age and the

thalamus in premature infants, we did not find this in our study. This can be

explained by previous findings of myelination of the thalamus around the second

trimester, and makes this structure more vulnerable for effects of prematurity

instead of effects of gestational age within the ‘‘term window’’ [38, 40].

Although some studies in preterm infants suggest that differences in brain

trajectories at birth can be persistent over time [50, 53], other studies in preterm

infants suggest that early life brain development is ongoing and independent of

the degree of gestational age [54–56]. These latter studies suggest that many post

birth environmental factors can potentially influence brain functioning, which

suggests plasticity of the brain. It is still unclear if variation of in utero brain

maturation in healthy term infants will also have implications for functional

outcomes. It is known that there is rapid rate of growth of the brain, inclusive

subcortical areas, during the first 3 months after birth [13]. On the other hand a

previous study in 6 years old Singaporean boys demonstrated an association

between gestational age at birth between 37 and 41 weeks and reaction time on a

stop-signal test that assesses executive functioning dependent upon fronto-striatal

functioning [57], which suggest that gestational age within the ‘‘term’’ window

may have longer lasting effects on functioning. Future studies are required to

investigate the functional significance of the variability in brain maturation found

with DTI in healthy infants at birth and its predictive validity.

A major strength of this study is the use of DTI techniques to image newborn

infants soon after birth. Our study focused on a healthy sample, excluding infants

born preterm as well as infants with very low birth weights, low Apgar scores and

complications during pregnancy. These strict rules for subject inclusion allowed

us to examine the effects of gestational age without the associated influences of

pathologies common in pre-term and high-risk pregnancies. Although inclusion

of infants with APGAR score $9 after maximum of 10 minutes may be over-

conservative, we only excluded two infants based on an APGAR,9, which will not

have changed our results.

Still, our study has limitations. First, FA indices should be interpreted with

caution without knowledge of the possible effects of water concentration in the
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newborn infant brain [39]. We employed FA to indicate the integrity of the white

matter in early life. Relatively greater FA in regions such as ALIC and CC at birth

may indicate greater coherence in fibers organization and greater proliferation of

oligodendrocytes prior to myelin ensheathment [58]. Second, as we did scan the

infants as soon as possible after birth, we were not able to compare them at

equivalent gestational ages. Hence, we do not know how the brain regions of the

infants that were born with a relatively younger gestational age will evolve, and if

these infants will eventually ‘‘catch up’’ in brain maturation over time. There was

still a postnatal period of brain maturation of maximum 2.5 weeks. As this is a

significant period given the fast brain development in the early postnatal period

[13] we did not only adjust for days after birth but also have run additional

analyses using post-conception age instead of age at birth to explore the general

maturation due to age since conception.

Third, because DTI is still a relatively new technique, the functional significance

of these findings is unclear. Our study did not explore the functional outcomes of

the differences in brain maturation in term born infants. However, the GUSTO

cohort will be followed over the coming years, which will help us to explore not

only if some variation in brain maturation will persist at later ages but also the

functional significance of our findings of early variation of in utero brain

development, such as effects on executive functioning.

Conclusions

We report that a relatively higher gestational age at birth in healthy term infants is

associated with more white matter maturity in the CC, as well as in ALIC, ACR

and EC, in comparison to healthy term infants born with a relatively lower

gestational age. Future studies in term infants are needed to explore the effects of

variations in brain development at birth and later brain development and

functional outcomes.
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