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Abstract.  Kisspeptin has an indispensable role in gonadotropin-releasing hormone/gonadotropin secretion in mammals. 
In rodents, kisspeptin neurons are located in distinct brain regions, namely the anteroventral periventricular nucleus-
periventricular nucleus continuum (AVPV/PeN), arcuate nucleus (ARC), and medial amygdala (MeA). Among them, the 
physiological role of AVPV/PeN kisspeptin neurons in males has not been clarified yet. The present study aims to investigate 
the acute effects of the olfactory and/or mating stimulus with a female rat on hypothalamic and MeA Kiss1 mRNA expression, 
plasma luteinizing hormone (LH) and testosterone levels in male rats. Intact male rats were exposed to the following stimuli: 
exposure to clean bedding; exposure to female-soiled bedding as a female-olfactory stimulus; exposure to female-soiled 
bedding and mating stimulus with a female rat. The mating stimulus significantly increased the number of the AVPV/PeN 
Kiss1 mRNA-expressing cells in males within 5 minutes after the exposure, and significantly increased LH and testosterone 
levels, followed by an increase in male sexual behavior. Whereas, the males exposed to female-soiled bedding showed a 
moderate increase in LH levels and no significant change in testosterone levels and the number of the AVPV/PeN Kiss1 
mRNA-expressing cells. Importantly, none of the stimuli affected the number of Kiss1 mRNA-expressing cells in the ARC 
and MeA. These results suggest that the mating-induced increase in AVPV/PeN Kiss1 mRNA expression may be, at least 
partly, involved in stimulating LH and testosterone release, and might consequently ensure male mating behavior. This study 
would be the first report suggesting that the AVPV/PeN kisspeptin neurons in males may play a physiological role in ensuring 
male reproductive performance.
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Accumulating evidence suggests that kisspeptin neurons play 
an essential role in mammalian reproductive function [1, 2]. 

Kisspeptin neurons are indispensable for gonadotropin-releasing 
hormone (GnRH) and consequent luteinizing hormone (LH) and 
follicle-stimulating hormone (FSH) release in mammals including 
rodents [3–5], ruminants [6–8] and primates [9, 10]. Indeed, plasma 
LH and FSH levels are undetectable in male and female Kiss1 (kis-
speptin gene) knockout (KO) rats [3]. Cell bodies of kisspeptin 
neurons are located in distinct brain regions, such as the anteroventral 
periventricular nucleus (AVPV)/periventricular nucleus (PeN)/preoptic 
area (POA), arcuate nucleus (ARC) and medial part of the amygdala 
(MeA) [4, 11–13] in the brain of mammalian species including 
rodents [14–17], ruminants [7, 18–20], primates [21–23]. Since the 

discovery of kisspeptin neurons, the role of kisspeptin neurons in 
reproduction has been intensively studied mainly in females.

In male mammals, it is postulated that the ARC kisspeptin neurons 
play a role in the regulation of tonic GnRH/gonadotropin release 
[3, 24–26] similar to females. The ARC kisspeptin neurons are sug-
gested to serve as a GnRH pulse generator, which governs pulsatile 
gonadotropin release to control various reproductive events, such 
as puberty onset, spermatogenesis/folliculogenesis and sex steroid 
synthesis in both sexes [3, 25, 27]. On the other hand, a number 
of evidence suggests that the AVPV/PeN/POA kisspeptin neurons 
mediate the estrogen-positive feedback to induce GnRH/LH surge 
that leads to ovulation in female mice [28], rats [29], sheep [30], 
goats [31], cattle [32], musk shrews [33], pigs [34] and monkeys 
[35]. Moreover, our previous study suggests that the AVPV/PeN 
kisspeptin neurons integrate the external information, such as a 
male-olfactory stimulus, to enhance GnRH/LH surge in female rats 
[36]. Whereas, the number of AVPV/PeN/POA kisspeptin neurons 
in males is lower than in females in rodents [37] and monkeys 
[35]. Thus, the physiological importance of the AVPV/PeN/POA 
kisspeptin neurons in males has not been clarified yet. The AVPV/PeN 
Kiss1 mRNA expression in male mice is augmented by exogenous 
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androgen [38] and the POA kisspeptin neurons in male monkeys [35, 
39] and goats [31] are activated by exogenous estrogen followed 
by a surge-like increase in plasma LH levels as shown in females. 
These studies suggest that the AVPV/PeN/POA kisspeptin neurons 
may also function to control reproduction in males.

The sex-related olfactory stimulus and/or mating stimulus are 
suggested to be involved in a rapid induction of GnRH release, and 
the GnRH may directly or indirectly (via LH and then testosterone 
increase) enhance mating behavior in male animals [40–42]: Previous 
studies reported that plasma LH levels increase after female urine 
exposure within 15 min in male mice [43]; plasma LH and testosterone 
levels increase after copulation within 10 min and 60 min, respectively, 
in male rats [44]; rapid LH or testosterone increase after copulation 
has been reported in other mammals including rabbits (testosterone: 
within 45 min) [45], cows (LH: within 60 min) [46] and pigs (LH: 
within 20 min) [47]. Further, a central administration of GnRH 
facilitated male-sexual behavior in gonad-intact male rats within 
15 min [40] and testosterone-implanted castrated male rats within 
30 min [41], suggesting that the GnRH may rapidly and positively 
affect the brain circuit involved in the male sexual behavior. These 
results suggest that the olfactory stimulus and/or mating stimulus 
may rapidly stimulate kisspeptin neurons, consequently enhances 
GnRH release and then LH and testosterone release in circulation in 
male mammals. Further, the MeA kisspeptin neurons are suggested 
to mediate pheromonal cues to increase LH release in male mice 
[43, 48]. Thus, we hypothesized that a rapid increase in Kiss1 mRNA 
expression in the brain of male rats may mediate the signals originated 
from the olfactory and/or mating stimuli from/with female rats to 
enhance GnRH/LH and then testosterone release; eventually, the 
information(s) augment male sexual behavior.

The present study, thus, aims to investigate the acute effects of the 
olfactory stimulus derived from female rats and/or mating stimulus 
with a female rat on Kiss1 mRNA expression in the brain, LH and 
testosterone release in male rats. To address this issue, we examined 
the effects of three-stimulus, such as exposure to clean bedding, 
exposure to female-soiled bedding as a female-olfactory stimulus, 
and exposure to female-soiled bedding and mating stimulus with a 
female rat on the number of the Kiss1 mRNA-expressing cells in 
the AVPV/PeN, ARC, and MeA, and plasma LH and testosterone 
levels in intact male rats. Kiss1 mRNA expression in the nuclei was 
investigated within 5 min after the stimuli, because plasma LH levels 
increased within 12 min after the stimuli in the present study. Sexual 
behavior was also analyzed in the males mated with a female rat.

Materials and Methods

Animals
Adult males (ages 10–13 wk; 300–400 g body weight) and females 

(ages 10–12 wk; 250–300 g body weight) Wistar-Imamichi strain 
rats were maintained under a controlled environment (14 h light 
and 10 h darkness, lights on at 0500 h; 23 ± 3°C) and allowed free 
access to standard laboratory rat chow (CE2; Clea, Tokyo, Japan) 
and water. All male and female rats were sexually experienced before 
the experiments. Sixteen male rats were subjected to the analysis for 
plasma LH and testosterone levels, and the other fifteen males were 
subjected to the histological analysis for Kiss1 mRNA expression in 

the brain after exposure to clean or female-soiled bedding, or exposure 
to female-soiled bedding and mating with a female rat. The surgical 
procedures for all animals were performed under ketamine (27.0 mg 
kg-1)/xylazine (5.3 mg kg-1) mixture and inhalant isoflurane (1–3%) 
anesthesia, if not otherwise specified. Seven days before blood or 
brain tissue sampling from the males, the females for bedding/mating 
stimulus were bilaterally ovariectomized (OVX) and subcutaneously 
implanted with Silastic tubing (1.0-mm inner diameter; 1.5-mm 
outer diameter; 20 mm in length; Dow Corning, Midland, MI, USA) 
containing crystalline estradiol-17β (E2) (Sigma, St Louis, MO, USA) 
to mimic a proestrous level of plasma E2 to ensure the olfactory 
stimulus from the female and acceptance of copulation by a male 
rat: The OVX + E2 females were confirmed to show robust lordosis 
behavior [49], and the plasma E2 levels in OVX rats with the same 
E2 treatment were 1.86 ± 0.34 nmol/l as determined in our previous 
study [50]. All animal experiments were conducted in accordance 
with the Guidelines of the Committee on Animal Experiments of 
the Graduate School of Bioagricultural Sciences, Nagoya University 
(Accession number 2018031358).

Olfactory or mating stimulation for male rats
Intact male rats were divided into three groups: exposure to clean 

bedding, exposure to female-soiled bedding, and placed with a female 
for mating with female-soiled bedding (Fig. 1A). The female-soiled 
bedding was prepared by housing an OVX + E2 female rat in a clean 
acrylic cage covered with bedding for seven days. On the day of 
blood or brain sampling, the testing cages (60 cm long × 45 cm wide 
× 45 cm high, the front side was transparent, and the other sides were 
opaque) were covered with clean (fresh) or female-soiled bedding 
30 min before introducing a male. The OVX + E2 female rat was 
placed in the testing cage covered with their own female-soiled 
bedding at the same time. A male rat was then transferred from his 
home cage to the testing cage at 1730 h and kept there for 60 min 
for blood sampling (Fig. 1B) or 5 min for brain sampling (Fig. 1C).

Blood sampling for analyzing plasma LH and testosterone 
levels and monitoring for male sexual behavior

A silicon cannula (inner diameter 0.5 mm; outer diameter 1.0 mm; 
Shin-Etsu Polymer, Tokyo, Japan) was inserted into the right atrium 
through the jugular vein on a day before the blood sampling in male 
rats (n = 4–6 in each group). To determine the effect of olfactory and/
or mating stimuli on the plasma LH and testosterone levels, blood 
samples (150 μl) were obtained from free-moving conscious intact 
male rats (n = 4–6 in each group) for 84 min at 6 min intervals: 
Male rats were subjected to the blood sampling in their home cage 
(for the first 24 min) and then in the testing cage (for the last 60 
min). Plasma samples were obtained by immediate centrifugation 
and stored at –20°C until assayed for LH and testosterone. The 
sexual behavior of the male rats placed in the testing cage with a 
female rat was recorded on a video camera and the total number of 
mounting, intromission, and ejaculation of the males was counted 
every 6 minutes according to previous studies [51, 52].

LH and testosterone assays
Plasma LH concentrations in 50-μl plasma samples were determined 

by a double-antibody radioimmunoassay (RIA) with a rat LH RIA kit 
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provided by the National Hormone and Peptide Program (Baltimore, 
MD, USA), and were expressed in terms of the NIDDK rat LH 
RP-3. The least detectable level of LH assay was 156 pg/ml, and the 
intra- and inter-assay coefficients of variation were 6.75 and 2.65% 
at 0.98 ng/ml, respectively.

Plasma testosterone levels were determined by an enzyme-linked 
sorbent immunoassay using a testosterone ELISA kit (Cat No. 582701, 
Cayman Chemicals, Ann Arbor, MI, USA, RRID: AB_328059) 
according to the manufacturer instructions. Testosterone extracted 
from 40-μl plasma samples with a mixture of hexane and ether (3:2) 
was dissolved in 0.1% gelatin-0.05 M phosphate solution and then 
quantified. The least detectable level of testosterone was 6 pg/ml, 
and the intra- and inter-assay of coefficients of variation were 2.61 
and 11.06% at 1.40 ng/ml, respectively.

Brain sampling
Five minutes after the transfer to the testing cages, male rats (n = 

5 in each group) were deeply anesthetized with sodium pentobarbital 
and perfused with 0.05 M PBS followed by 4% paraformaldehyde in 
0.05 M PB to obtain the brain sample for analysis of Kiss1 mRNA 
expression. The timing of the brain sampling for Kiss1 mRNA 
analysis was chosen, because the plasma LH levels in male rats 
were significantly increased 12 minutes after mating stimulation and 
thereafter with kisspeptin being a dominant stimulator for GnRH/
LH release in male rats [3]. Note that all male rats in the group for 
mating stimulus immediately showed mating behavior. Brains were 
immediately removed from the skull, postfixed with the same fixative 
at 4°C overnight, and then immersed in 30% sucrose in 0.05 M PB 
at 4°C for 2–3 days until they sank. Serial 50-μm coronal sections 
containing the AVPV/PeN, ARC, and MeA were obtained.

In situ hybridization of Kiss1 mRNA
In situ hybridization for Kiss1 was performed in the brain sec-

tions taken from male rats in each group as previously described 
[36, 37]. The brain sections were hybridized with 1 μg/ml DIG-
labeled anti-sense Kiss1 cRNA probe (position 33-348; GenBank 
accession no. AY196983) overnight at 60°C. The sections were 
washed with 2 × SSC containing 50% formamide for 15 min at 
60°C twice, then treated with 20 μg/ml RNase A for 30 min at 37°C 
and alkaline phosphatase-conjugated anti-DIG antibody (sheep 
IgG, dilution 1:1000; Roche Diagnostics, Indianapolis, IN, USA, 
RRID: AB_514497) 2 h at 37°C, and then treated with a chromogen 
solution (337 μg/ml 4-nitroblue tetrazolium chloride, 175 μg/ml 
5-Bromo-4-Chloro-3-indoyl-phosphate) for 1.5 h. The number of 
Kiss1 mRNA-expressing cells on each brain section was bilaterally 
counted twice by a blind investigator under a microscope, and the 
average per section was calculated in each group. The number of Kiss1 
mRNA-expressing cells was counted every second section through 
the AVPV/PeN (from 0.48 mm anterior to 0.48 mm posterior to the 
bregma; eleven sections in total) or every fourth section through the 
ARC (rostral division, from 1.80 to 2.60 mm; middle division, from 
2.60 to 3.40 mm; caudal division, from 3.40 to 4.20 mm posterior 
to the bregma; three sections for each division of the ARC and 
nine sections in total) and MeA (from 2.40 to 3.60 mm posterior to 
the bregma; four sections in total) according to the rat brain atlas 
[53]. No positive signal for Kiss1 mRNA was detected in the brain 

Fig. 1. Experimental scheme of olfactory or mating stimulation. Intact 
male rats were divided into three groups: exposure to clean 
bedding, exposure to female-soiled bedding, and placed with a 
female for mating with female-soiled bedding. The males were 
kept in their home cages and then introduced to each testing cage 
containing fresh bedding or female-soiled bedding without/with 
an ovariectomized (OVX) + estradiol-17β (E2) female rat. The 
fresh bedding or the female-soiled bedding taken from the cage, 
where an OVX + E2 female rat had been kept for a week, was 
placed into a testing cage without/with an OVX + E2 rat 30 min 
before introducing a male rat into the testing cage (A). Male rats 
were subjected to the blood sampling in their home cage (for the 
first 24 min) and then in the testing cage (for the last 60 min) at 
6 min intervals, and the plasma samples were used for luteinizing 
hormone (LH) and testosterone assays (B). Five minutes after 
the onset of the exposure to each stimulus in the testing cage, the 
male brain samples were taken for histological analysis for Kiss1 
mRNA expression (C).
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sections hybridized with the corresponding sense probe as described 
previously [36].

Data and statistical analysis
Statistical differences in the plasma LH or testosterone concentra-

tions were determined by two-way (stimulus and time as main 
effects) ANOVA, followed by the Bonferroni test using js-STAR 
software (http://www.kisnet.or.jp/nappa/software/star/). Statistical 
differences in the number of mounts, intromission or ejaculation in 
male rats were determined by one-way repeated measures ANOVA, 
followed by the Bonferroni test using js-STAR software. Statistical 
differences in the number of Kiss1 mRNA-expressing cells per 
section in the AVPV/PeN, ARC (rostral, middle, caudal divisions) 
or MeA were determined by one-way factorial ANOVA, followed 
by the Bonferroni test using js-STAR software.

Results

The mating stimulus with a female rat increased plasma LH 
and testosterone levels in intact male rats

The profiles of changes in mean plasma LH concentrations in 
intact male rats in each group were shown in Fig. 2A. The LH level 
showed an immediate increase in intact male rats after the mating 
with a female rat, while the LH level gradually increased after the 
exposure to female-soiled bedding. The LH level was stable when 
the male rats were exposed to the clean bedding. Two-way ANOVA 
analysis (main effects, stimuli and time) revealed significant effects 
of stimuli (F2,13 = 6.37, P < 0.05), time (F14,182 = 2.72, P < 0.05) 
and interaction between stimuli and time (F28,182 = 2.57, P < 0.05) 
on the plasma LH levels (Fig. 2A). Specifically, the plasma LH levels 
in the male rat at 18, 24, and 54 minutes after the mating with a 
female rat were significantly higher (†, P < 0.05, analyzed by the 
Bonferroni test) than those in clean-bedding- and female-soiled-
bedding-exposed male rats (Fig. 2A). The plasma LH levels in the 
male rat at 12, 30, and 36 minutes after the mating were significantly 
higher (*, P < 0.05, analyzed by the Bonferroni test) than those in 
clean-bedding-exposed male rats (Fig. 2A). The plasma LH levels in 
the male rat at 12 and 30 min after the exposure to female bedding 
were significantly higher (*, P < 0.05, analyzed by the Bonferroni 
test) than those in clean-bedding-exposed male rats (Fig. 2A).

The mean plasma testosterone concentrations in the male rats mated 
with a female gradually increased, while testosterone levels were stable 
in the males exposed to the clean or female-soiled bedding during the 
sampling period (Fig. 2B). Two-way ANOVA analysis (main effects, 
stimuli and time) revealed significant effects of time (F4,52 = 4.94, 
P < 0.05) and interaction between stimuli and time (F8,52 = 2.99, P 
< 0.05), but no significant effects of stimuli (F2,13 = 0.98, P > 0.05), 
on the plasma testosterone levels (Fig. 2B). Specifically, the plasma 
testosterone levels in the male rat at 54 minutes after the mating were 
significantly higher (P < 0.05, analyzed by the Bonferroni test) than 
those of male rats exposed to clean bedding (Fig. 2B).

Temporal analysis of the number of male-type sexual behavior
Temporal changes in the number of mounting, intromission, and 

ejaculation, and the total number of these sexual behavior in male 
rats for 60 min after the cohabitation with a female rat are shown 

in Fig. 3. All male rats showed sexual behaviors during the 60 min 
blood sampling/behavior test period. The mounting and intromission 
behavior seemed to show a biphasic increase during the period, 
but no significant difference was found in the number of mounting 

Fig. 2. Effects of olfactory and/or mating stimulation on plasma 
luteinizing hormone (LH) and testosterone levels in intact male 
rats. The changes in the mean plasma LH levels of intact male 
rats in each group that were exposed to the clean bedding, the 
female-soiled bedding, or female-soiled bedding and mated 
with an ovariectomized (OVX) + estradiol-17β (E2) rat (A). The 
changes in the mean plasma testosterone levels in each group (B).  
Arrows indicate the onset of each bedding exposure and/or 
mating with a female. †, values indicating significant difference 
compared with the value in the males exposed to clean bedding 
and female-soiled bedding (P < 0.05, two-way ANOVA). 
*, values indicating significant difference compared with the 
value in the males exposed to clean bedding (P < 0.05, two-way 
ANOVA).



MATING STIMULUS INDUCED MALE AVPV Kiss1 583

(F9,45 = 0.78, P > 0.05), intromission (F9,45 = 0.33, P > 0.05), 
ejaculation (F9,45 = 0.72, P > 0.05) or total (F9,45 = 0.56, P > 0.05) 
in male rats (Fig. 3).

The mating stimulus with a female rat increased Kiss1 mRNA 
expression in the AVPV/PeN, but not in the ARC and MeA in 
intact male rats

Kiss1 mRNA-expressing cells in the AVPV/PeN, ARC and MeA 
in representative intact male rats are shown in Fig. 4. Kiss1 mRNA-
expressing cells were found in the AVPV/PeN (Fig. 4A), ARC 
(Fig. 4B) and MeA (Fig. 4C) of all male rats exposed to clean or 
female-soiled bedding, and mated with a female rat.

The mating stimulus significantly increased the number of Kiss1 
mRNA-expressing cells in the AVPV/PeN, but not in the ARC and 
MeA of intact male rats (Fig. 4D). Specifically, one-way ANOVA 
analysis showed a significant effect of the stimulation on the number 
of Kiss1 mRNA-expressing cells in the AVPV/PeN in the males 
(F2,12 = 7.23, P < 0.05) (Fig. 4D), and the number in the AVPV/
PeN in male rats mated with a female rat was significantly higher 
than the rats exposed to clean bedding or female-soiled bedding (P 
< 0.05, analyzed by the Bonferroni test) (Fig. 4D). No significant 
difference was found in the number of Kiss1 mRNA-expressing cells 
in the rostral ARC (F2,12 = 0.18, P > 0.05, Fig. 4D), middle ARC 
(F2,12 = 4.74, P > 0.05, Fig. 4D), caudal ARC (F2,12 = 0.57, P > 
0.05, Fig. 4D) or MeA (F2,12 = 0.54, P > 0.05, Fig. 4D) in male 
rats between groups.

Discussion

The present study demonstrated that the AVPV/PeN kisspeptin 
neurons are, at least partly, involved in ensuring the mating behavior 
in male rodents, because the mating stimulus with a female rat 
rapidly (within 5 min) increased the number of AVPV/PeN Kiss1 
mRNA-expressing cells and then LH release followed by testosterone 
release in male rats. Further, our previous study showed that kis-
speptin neurons are indispensable for male-type behavior: Kiss1 KO 
male rats failed to show the ejaculation, even if the KO rats were 
supplemented with exogenous testosterone [52]. The central GnRH 
has been suggested to be involved in enhancement of male sexual 
behavior in a previous study [41]: The central GnRH administration 
restored mounting behavior in hyperprolactinemic male rats showing 
deficits of the behavior. Taken together, the present findings suggest 
that the mating stimulus induces Kiss1 mRNA expression in the 
AVPV/PeN to enhance GnRH/LH and then testosterone release, 
consequently strengthening male sexual behavior. To our knowledge, 
this is the first report suggesting a physiological role of AVPV/PeN 
kisspeptin neurons in males.

Interestingly, solely female-olfactory stimulus failed to increase 
AVPV/PeN Kiss1 mRNA expression and plasma testosterone levels 
in male rats, suggesting that physical stimulus caused by mating 
with a female but not female-derived olfactory stimulus is mainly 
involved in the induction of the AVPV/PeN Kiss1 mRNA expression 
to activate the hypothalamic-pituitary-gonadal (HPG) axis. We have 
previously demonstrated that the male-derived olfactory stimulus 
increased c-Fos expression in the AVPV/PeN kisspeptin neurons 
and LH release in estrogen-primed-female rats [36], suggesting that 
the male derived-olfactory stimulus activated AVPV/PeN kisspeptin 
neurons in females and that the olfactory stimulus derived from the 
mates is less important in male rats than females for the activation 
of AVPV/PeN kisspeptin neurons. The notion is consistent with a 
previous study, showing that exposure to a mate’s bedding increased 
the number of AVPV/PeN kisspeptin neurons in female mice, but 
not in males [54]. Thus, these results suggest a sexual differentiation 
of neural responses to sex-related olfactory cues to affect kisspeptin 
neurons and then GnRH and gonadotropin release.

The present results concerning the number of Kiss1 mRNA-
expressing cells suggest that the ARC and MeA kisspeptin neurons 
in male rats would be less important than AVPV/PeN kisspeptin 
neurons for the induction of the LH release after copulation. On 
the other hand, a recent study showed that exposure to female urine 
(including pheromonal signals) for 30 min increased the number of 
kisspeptin neurons co-expressing c-Fos in the MeA in intact male 
mice, suggesting that activation of the MeA kisspeptin neurons 
may be involved in an increase in LH release in intact male mice 
[43]. Moreover, it is suggested that the MeA kisspeptin neurons 
were positively regulated by sex steroids in male mice [55]. These 
studies suggest that there might be species difference in the central 
mechanism regulating kisspeptin neurons and sexual behavior in 
males. Further studies are required to clarify whether the MeA and/
or ARC kisspeptin neurons are also involved in the enhancement of 
LH and testosterone release by the olfactory/mating stimulus in the 
male rodents and other mammalian species.

Interestingly, the number of Kiss1 mRNA-expressing cells in the 

Fig. 3. Temporal changes in the number of male-type sexual behaviors 
in intact male rats after the introduction to the female-soiled 
bedding and a female rat. The number of mounting, intromission, 
and ejaculation were measured every 6 min for 60 min in intact 
male rats exposed to female-soiled bedding and mated with an 
ovariectomized (OVX) + estradiol-17β (E2) rats. Values are the 
mean ± SEM. There was no significant difference between each 
time point (one-way ANOVA).



WATANABE et al.584

Fig. 4. Effects of olfactory and/or mating stimulation on Kiss1 mRNA expression in the anteroventral periventricular nucleus-periventricular nucleus 
continuum (AVPV/PeN), arcuate nucleus (ARC) and medial amygdala (MeA) in intact male rats. Kiss1 mRNA expression determined by in situ 
hybridization in the AVPV/PeN (A), ARC (B) and MeA (C) in representative intact male rats exposed to clean bedding, female-soiled bedding, 
or female-soiled bedding with a female rat. The boxed area in the schematic illustration of the coronal section of the rat brain shows the location 
of the AVPV/PeN, ARC, or MeA examined. Insets show Kiss1 mRNA-expressing cells at higher-magnification in each brain area indicated by 
arrows in the photomicrographs. Scale bars, 100 μm; 3 V, the third ventricle; Opt, optic tract. The number of Kiss1 mRNA-expressing cells per 
section in the AVPV/PeN, ARC (the rostral, middle, and caudal divisions), and MeA of intact male rats exposed to clean bedding, female-soiled 
bedding, or female-soiled bedding with a female rat (D). The value with different characters shows a significant difference within the three groups 
(P < 0.05, one-way ANOVA followed by Bonferroni test). There was no significant difference (NS) between the groups (one-way ANOVA) in the 
number of the Kiss1 mRNA-expressing cells per section in the ARC (the rostral, middle, and caudal divisions) and MeA. Values are the means ± 
SEM. The number in each column indicates the number of animals used.
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AVPV/PeN increased rapidly after the mating stimulus. This rapid 
increase in Kiss1 mRNA expression is consistent with previous 
studies, suggesting that mRNA expression of some peptides increased 
within 15 min after the stimuli: corticotropin-releasing hormone 
mRNA expression in the hypothalamic paraventricular nucleus was 
induced by isotonic saline injection as a mild stressor [56]; brain 
natriuretic peptide mRNA expression in the cultured ventricular 
cardiocytes was induced by endothelin-1 stimulation [57]. These 
results suggest that some peptide mRNA could be rapidly expressed 
after the stimuli as immediate early genes do. Generally, the amount 
of mRNA in the cell depends on both the rates of mRNA transcription 
in the nucleus and mRNA degradation in the cytoplasm [58]. Thus, 
the rapid increase in the AVPV/PeN Kiss1 mRNA expression in the 
current study would be the results of an increase in transcription 
and/or decrease in degradation of the Kiss1 mRNA. Future studies 
are required to clarify if the rapid increase in the AVPV/PeN Kiss1 
mRNA expression would be associated with an activation of the 
AVPV/PeN kisspeptin neurons.

In conclusion, the present results suggest that the increase in the 
number of Kiss1 mRNA-expressing cells in the male AVPV/PeN 
induced by the mating stimulus may be involved in stimulating the 
HPG axis, and might consequently assure the mating behavior in 
male rats. The current study suggests that the AVPV/PeN kisspeptin 
neurons in males may play a physiological role in ensuring male 
reproductive performance.
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