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Abstract

There is a growing interest on physical and biogeochemical oceanic hindcasts and forecasts from a wide range of users and
businesses. In this contribution we present an operational biogeochemical forecast system for the Portuguese and Galician
oceanographic regions, where atmospheric, hydrodynamic and biogeochemical variables are integrated. The ocean model
ROMS, with a horizontal resolution of 3 km, is forced by the atmospheric model WRF and includes a Nutrients-
Phytoplankton-Zooplankton-Detritus biogeochemical module (NPZD). In addition to oceanographic variables, the system
predicts the concentration of nitrate, phytoplankton, zooplankton and detritus (mmol N m23). Model results are compared
against radar currents and remote sensed SST and chlorophyll. Quantitative skill assessment during a summer upwelling
period shows that our modelling system adequately represents the surface circulation over the shelf including the observed
spatial variability and trends of temperature and chlorophyll concentration. Additionally, the skill assessment also shows
some deficiencies like the overestimation of upwelling circulation and consequently, of the duration and intensity of the
phytoplankton blooms. These and other departures from the observations are discussed, their origins identified and future
improvements suggested. The forecast system is the first of its kind in the region and provides free online distribution of
model input and output, as well as comparisons of model results with satellite imagery for qualitative operational
assessment of model skill.
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Introduction

Providing operational oceanographic data on biological and

chemical variables has become an issue of concern over the last

years. The demand for this kind of information arises from a range

of fields and applications such as scientific research on marine

ecosystems, monitoring of seawater quality and decision-making

support for marine and coastal management. A recent question-

naire conducted by ICES-WGOOFE (International Council for

the Exploration of the Sea, Working Group on Operational

Oceanographic Products for Fisheries and Environment) showed

that temperature, currents, salinity, chlorophyll standing stock and

primary production were the most requested products among

ocean sciences scientific community, who scored several biological

parameters in the top 10 rankings of products on demand [1].

There is a well known increasing interest in combined physical,

chemical and biological operational products, including near-real

time and forecast, which are currently possible due to facilitated

access to computational resources, development of numerical

solutions and improvement of modelling algorithms and perfor-

mance.

The marine policies implemented in many countries to protect

the sea from increasing environmental pressures has urged the

need for monitoring systems of seawater quality. In the European

Union, the Water Framework Directive and the Marine Strategy

Framework Directive launched in 2000 and 2008, commit the

member states to the evaluation and monitoring of the ecological

status of their river basins/coastal waters and marine waters,

respectively (e.g., [2,3]). The setting up of the European Earth

Monitoring Programme GMES (Global Monitoring for Environ-

ment and Security) by the European Commission, which includes

an important ocean component and aims to be fully operational by

2014, highlights the interest on reliable and up-to-date marine

environmental information [4].

Biogeochemical models constitute a valuable tool for opera-

tional oceanography when coupled with circulation models. They

can complement the time and space limitation of observations and

offer the possibility to help explain processes and variability. The

simplest version of these models are the NPZD (Nutrients-

Phytoplankton-Zooplankton-Detritus) models. They can give

information on concentration of the biological state variables over

time, and have strong potentialities for analysis and prediction.
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Nevertheless, modelling the ocean biogeochemical properties has a

number of difficulties that make it a challenging task. The

parameters used in biogeochemical models are often not well

constrained in the literature and finding an appropriate set of

parameters through trial runs is seldom straightforward. In

addition, independently of the level of complexity of a biogeo-

chemical model, it is still a great simplification of the reality.

The strong dependency of biology on hydrodynamics requires

an ocean circulation model able to reproduce adequately the main

features and variability in the modelling domain, at both seasonal

and event time scales. In regional coastal domains, sufficiently high

resolution is required to resolve the shelf mesoscale eddy processes,

which depends upon high performance computational facilities.

Operational modelling products of ocean biogeochemical

variables are rarely provided by online operational systems,

presumable because of the difficulties mentioned above. In the

western Iberia, an early experience of chlorophyll forecast in 1998

in the Gulf of Cadiz is referred in Pinard and Woods [5], Chap 11.

The GMES ocean data server MyOcean (http://www.myocean.

eu) provides modeled biogeochemical data for the European

northwest shelf since April 2011, including the northernmost part

of the Iberian maritime region. The model used has been

implemented operationally over the last years in the seas around

the UK and Ireland [6]. The Project EasyCO (model products in

several European maritime regions, including the western Iberia)

foresees to distribute biogeochemical data, although this type of

information is currently available only for the western French

coast. Other regions in Europe with operational modelling

products for biology are the Baltic Sea, developed by the Baltic

ocean community [7], and the Mediterranean Sea, developed by

the Istituto Nazionale di Oceanografia e di Geofisica Sperimen-

tale, OGS, in collaboration with other Italian Institutions (INGV,

CINECA and GOS-ISAC-CNR) [8,9]. Both available through

MyOcean.

In this contribution we present an operational biogeochemical

forecast system implemented for the Atlantic Iberian shelf

ecosystem: Portuguese and Galician shelf and slope and nearby

oceanic regions. This product is the first of its kind in the region

and provides free online access to all ocean state and biogeo-

chemical simulated variables. The hydrodynamic forecast system

is working since 1st November 2008 and the biogeochemical

module is available operationally since 10th June 2011.

The next section describes the ocean model setup, the

atmospheric model providing surface data for the ocean model,

the biogeochemical model and the operational system setup.

Then, results are presented and compared with observations. In

the last section we present the summary and outlook of upcoming

improvements.

Models

Ocean Model
The numerical model implemented is the Regional Ocean

Modelling System, ROMS [10,11,12]. ROMS is a free-surface

terrain-following primitive equation hydrostatic model with

Boussinesq approximations and configurable for realistic applica-

tions. ROMS has been used in a variety of time and space scales,

from very small regions, like harbours, to the coastal, large and

global scale.

The model configuration in use has been successfully applied in

the western Iberian region during roughly the last ten years, to

many different studies, like dispersion of larvae [13,14,15], river

plumes [16,17,18,19] and pollution transport [20,21]. The

Gibraltar exchange flow and the large scale circulation associated

with the Azores Current are included in the modelling configu-

ration and were based on [22,23].

The ocean model uses two different domains, illustrated in

Figure 1 as OCEAN-0 and OCEAN-1. The large domain,

OCEAN-0, has horizontal resolution of 1/10u, able to resolve the

Figure 1. Study region with nested grids configuration of the atmospheric model (ATM) and ocean model (OCEAN-0 and target
domain OCEAN-1).
doi:10.1371/journal.pone.0037343.g001
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large scale circulation features, and vertical resolution of 30 s-levels

with enhanced surface and bottom resolution. The simulations of

OCEAN-0 started from rest with temperature and salinity

climatologies from [24] and [25], used to initialise and constrain

the open boundaries of this domain. The surface was forced with

fluxes from the Atlas of Surface Marine Data [26]. Monthly

geostrophic velocities (referenced to 1200 m) and Ekman velocities

were calculated from the climatologies and applied along the

lateral boundaries. The Mediterranean inflow/outflow and

spreading was parametrised following [22]. This configuration

ran for several years until a stable kinetic solution was attained by

year five. The monthly mean of this last year is considered a good

resolution climatology and thus used to provide initial and

boundary data to the high resolution configuration OCEAN-1.

The target domain OCEAN-1 (Figures 1 and 2) has a horizontal

resolution of about 3 km extending from Gibraltar to North

Galicia (,1200 km). The domain width is about 600 km. In the

vertical 60 s-levels are used with increased near bottom resolution,

in order to deal with the Mediterranean exchange (parametrised in

the same way as in OCEAN-0). This model was initialised at 1st

November 2008 and forced with realistic high resolution surface

fluxes from a local solution of the atmospheric model WRF

(described in the next section).

The main riverine fresh water inputs from Portugal and Galicia

were included in both domains as monthly climatologies. All rivers

used are indicated in Figure 2 together with the corresponding

percentage of freshwater input in the model domain. The river

discharges were obtained from the Portuguese Water Institute

(INAG, http://www.inag.pt) and from estimations presented in

[27]. A fixed value of 12uC was used for river temperatures.

Atmospheric Model
The model which provides surface forcing data to the ocean

domain OCEAN-1 (Figure 2), is an operational implementation of

the Weather Research and Forecasting Advance Research model

(WRF-ARW) version 3.2.1 [28]. The WRF model is driven by

GFS forecasts [29] with an horizontal resolution of 0.5u x 0.5u, and

vertical domain extending from a surface pressure of 1000 hPa to

0.27 hPa, discretized in 64 vertical unequally-spaced levels (15

levels are located below 800 hPa and 24 levels above 100 hPa).

The atmospheric forecasts are performed daily by the Group of

Meteorology and Climatology of Aveiro University (CliM@UA,

http://climetua.fis.ua.pt) and encompass the Portuguese main-

land, Madeira and Azores archipelagos. The oceanic operational

system uses the weather forecasts for Portuguese mainland domain

with spatial resolution of 25 km (Figure 1).

The atmospheric model in use by CliM@UA was configured

after a set of numerical experiments described by Ferreira [30].

Model outputs were tested against observations and the best

combination of model parametrisations was found for the region.

Biological Model
The biogeochemical model contains a 4-component nitrogen

based ecosystem NPZD model (based on [31]), computing 4 state

variables: nutrients (nitrate), phytoplankton, zooplankton and

detritus, all expressed in mmol N m23. Chlorophyll a (mg m23)

is derived from phytoplankton concentration using a variable

chlorophyll:C ratio (h) that is a function of light and nutrients

availability, and a C:N ratio of 6.625 (mmol C/mmol N), i.e., a

Redfield ratio. The equation for h describes the proportion of

photosynthetically fixed carbon that is used for chlorophyll a

biosynthesis considering the model of Geider et al. [32], which

implementation in the ocean model is described in Gruber et al.

[33]. The 3D time evolution of the concentration of any of the

biogeochemical variables (Bi) follows the general equation:

dBi

dt
~+:K+Bi{u:+hBi{(w{wsin k)

dBi

dz
zSMS(Bi)

where the terms in the right hand side account for diffusion,

horizontal advection, vertical mixing and sink minus source (SMS)

biological processes, respectively. K is the eddy kinematic

diffusivity tensor, u is the horizontal velocity of the fluid, w and

wsink are the vertical velocity of the fluid and the vertical sinking

rate of the biogeochemical tracer, respectively, with the exception

of zooplankton and nitrate, to which no sinking rate is attributed.

The biogeochemical processes included in SMS are specific for

each variable and represent the following conceptual description:

phytoplankton uptakes nitrate at a rate that is dependent on the

instantaneous nitrate concentration; temperature and light inten-

sity/PAR (photosynthetically available radiation). PAR at the

surface is calculated as 43% of the incident radiation and

attenuated with depth as it is absorbed by water and chlorophyll.

Phytoplankton dies at a constant linear rate, been automatically

incorporated to the detritus pool. Zooplankton growth relies on its

grazing on phytoplankton, which rate depends on prey concen-

tration, and its assimilation efficiency. A constant excretion rate is

attributed to zooplankton, providing a source of nutrients to the

nitrate pool. Zooplankton incorporates to the detritus pool at a

constant linear mortality rate. Mineralization of detritus is

formulated as direct transformation to nitrate at a constant

nitrification rate. Model parameters for the sink/source terms

selected to represent our region of study are listed in Table 1. A

detailed description of the biogeochemical model equations,

including sink-source terms, can be found in Koné et al. [34].

The concentration of nitrate and chlorophyll a for the model

initial and boundary conditions were supplied by the climatolog-

ical data sets World Ocean Atlas 2005 [35] and SeaWiFS,

respectively. The initial and boundary data of phytoplankton and

zooplankton were derived from chlorophyll a. Detritus were

introduced constant with the value 0.02 mmol N m23. Boundary

conditions were supplied seasonally. The riverine inputs of nitrate

and chlorophyll were used constant along the year and were

obtained from Ferreira et al. [36] and from the European

Environment Agency (http://www.eea.europa.eu). The values

used are listed in Table 2.

The biological model runs as a module integrated in the ocean

model. It became operational at 10th June 2011.

Operational System
The ocean and biological modelling system was implemented

operationally with OOFe (Operational Ocean Forecast Python

Engine, [37]). OOFe is a comprehensive set of tools, written in the

Python programming language, which creates and operates the

model input/output and controls all the required tasks for the

operationality of the ocean model. The operational engine

executes daily analysis and forecast (currently three days), whose

cycles are repeated continuously in a robust and fully automated

manner. The operational engine also includes a visualisation

module able to produce many types of slices and plots from the

ocean model inputs/outputs. Some graphical outputs of the

current implementation can be seen at the homepage of the

forecast system, http://neptuno.fis.ua.pt/oof. Among the several

outputs are horizontal slices at several depths of temperature,

salinity and chlorophyll, as well as forcing wind, sea surface height,

currents, etc. For a quick comparison to observational data sets,

the web site also shows satellite observations, namely sea surface

temperature from O&SI-SAF (Ocean & Sea Ice Satellite

Iberian BGQ Operational System
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Figure 2. Operational ocean model domain with the location of geographical features and landmarks referenced through the text.
The model grid covers the Portuguese and Galician coasts. The main riverine sources of the model are indicated together with the corresponding
percentages of fresh water inputs (rivers were introduced as monthly climatologies). The three triangles at the latitudes 42uN and 38uN indicate the
locations of surface currents (42uonly), temperature and chlorophyll comparisons, between model and observations, done in this work. The cross near
the Vouga river mouth is the location of wind comparison.
doi:10.1371/journal.pone.0037343.g002
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Application Facility, www.osi-saf.org) and from OSTIA (Opera-

tional Sea Surface Temperature and Sea Ice Analysis, http://

ghrsst-pp.metoffice.com), and high resolution chlorophyll pro-

cessed and distributed by IFREMER (http://cersat.ifremer.fr/

science/ocean color).

The full model data sets are freely available through the Python

OPenDAP server Pydap (http://pydap.org). OPeNDAP is an

efficient protocol for allowing the remote access of data sets (e.g

[38,39]). Data usually available as a set of different individual large

data files is made available in an efficient and consistent way by

OPeNDAP servers.

The system implemented with OOFe has been successfully

operating the ROMS model in other locations, like the Brazilian

region [40] and the Northern Gulf of Mexico [41].

Results

The results presented give an overview of model ability to

reproduce the hydrodynamic (surface currents and surface

temperature) and chlorophyll fields for the four months following

the operational implementation of the biogeochemical model (10th

June 2011 to 10th October 2011). These preliminary results are

thus addressed as a general reliability assessment rather than a

thorough validation, which would need more comparisons with

observations and for a longer time period. The period studied

corresponds to summer and early autumn, which is characterised

in the western coastal region by recurrent upwelling conditions.

Therefore, the model is evaluated during one of the most dynamic

and biologically productive seasons of the year.

Surface model currents are compared with a high frequency

radar data, owned by the Spanish Merchant Navy, at three

locations off Vigo (latitude 42uN and longitudes 9uW, 9.75uW and

10.5uW). Given the importance of atmospheric forcing for the

ocean model to adequately reproduce the circulation, the surface

wind provided by the WRF atmospheric model is compared with

wind measurements at University of Aveiro weather station. Then,

in order to assess model ability to reproduce coastal blooms, the

onset and evolution of a strong upwelling/coastal bloom event

(13th to 26th of July) is shown, comparing modeled sea surface

temperature and chlorophyll concentration fields in the model

with satellite observations (OSISAF-EUMETSAT Ocean & Sea

Ice Satellite Application Facility and IFREMER optimised

interpolation of MODIS, SeaWiFS and MERIS observations,

respectively). To better evaluate the model skill for surface

temperature and chlorophyll along the four months, and at

different locations within the domain, time series comparing model

results and satellite data are presented for two latitudes (42uN and

38uN) in three locations for each latitude, corresponding to middle

shelf, off the shelf break and open-sea (same longitudes as used for

currents comparison at 42uN). Finally, the model skill in the whole

domain is further explored by plotting model bias of SST and

chlorophyll which allow to evaluate whether the model is over-or

underestimating the observations.

Table 1. Parameter values of the NPZD model.

Parameter Value Units

Light attenuation in seawater 0.04 m21

Light attenuation by chlorophyll 0.024 m21 (mg Chla m23)21

Initial slope of the P-I curve 1.0 mg C (mg Chla W m22 d)21

C:N ratio for phytoplankton 6.625 mol C (mol N)21

Maximum Cellular chlorophyll:C ratio 0.03 mg Chla (mg C)–1

Half-saturation for phytoplankton NO3 uptake 1.5 mmol N m23

Zooplankton half-saturation constant for ingestion 1.0 mmol N m23

Maximum zooplankton growth rate 0.9 d–1

Zooplankton assimilation coefficient 0.75 n.d.

Phytoplankton mortality (to detritus) rate 0.03 d–1

Zooplankton mortality (to detritus) rate 0.1 d–1

Zooplankton specific excretion rate 0.1 d–1

Detrital mineralisation to NO3 rate 0.05 d–1

Sinking velocity for phytoplankton 0.5 m d–1

Sinking velocity for detritus 5 m d–1

doi:10.1371/journal.pone.0037343.t001

Table 2. River inputs of nitrate and chlorophyll.

River Nitrate (mg l21) Chlorophyll (mg l21)

Navia 0.1 0.1

Eume 6.4 0.1

Tambre 23.2 0.1

Ulla, Ulmia 13.3 0.1

Verdugo 4.4 0.1

Minho 34.7 2.0

Lima 11.8 2.4

Cavado 33.2 0.9

Douro 88.5 5.4

Vouga 44.4 0.1

Mondego 2.3 5.0

Tejo 21.0 8.5

Sado 21.3 9.6

Mira 10.6 0.9

Guadiana 5.2 0.1

doi:10.1371/journal.pone.0037343.t002

Iberian BGQ Operational System
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Due to the lack of reliable observational data other than satellite

chlorophyll and SST for the time period under study, we do not

further explore model skill assessment methods [42,43]. For the

same reason, neither concentration of nitrate or the vertical

structure of the variables was analysed in the current study.

Surface Wind and Currents
The surface wind measured at Aveiro University weather

station (the location is indicated in Figure 2 as x, near the Vouga

river mouth) is displayed in Figure 3A. The wind field, upwelling

favourable, is typical of the summer season for Western Iberian

region, with predominance of northerly winds [44]. The most

intense event is observed between 13 and 28 of July, with wind

intensity higher than 5 m s–1 during most of the days. Figure 3B

shows the ocean model forcing wind, generated by the WRF

atmospheric model, interpolated at the same location. In general,

the modeled wind is more intense than the observed one and the

wind inversion after the relaxation is also more prominent.

The comparison of modeled and observed surface currents at

the latitude 42uN is shown in Figure 4. (the three comparison sites

are indicated in Figure 2). The data shown has been filtered with a

low-pass filter with sub-diurnal cutoff frequency. In the shelf

(Figure 4A, 4B), the model reproduces correctly the intensity and

direction of the current field, which is dominated by an

equatorward flow in response to the upwelling favourable wind

forcing, with presence of typical velocities of 0.2 m s21, and

maximum values of about 0.35 m s–1 associated to the peak of

wind forcing by day 22nd of July. In the vicinity of the shelf break

(Figure 4C, 4D), the southward tendency is also present in the

observations and model results, but the model presents in general

higher intensities. In the open-ocean (Figure 4E, 4F) the mesoscale

variability is very high and the model cannot reproduce the

observed eddy activity.

Coastal Bloom Event, 13th to 26th July 2011
The general trend on chlorophyll concentration simulated along

the considered period was that expected for a typical summer

situation in the Iberian upwelling region. Successive coastal

blooms appeared associated with upwelling pulses, and were more

persistent in the northwest coast around Galicia and in the

proximity of Cape Roca. In several occasions the bloom occupied

the coast from North to South.

We selected the period 13th to 26th July, characterised by strong

northerly wind, upwelling favourable, that led to the onset and

evolution of a conspicuous coastal bloom, to evaluate model

performance reproducing this kind of blooms. Surface tempera-

ture and chlorophyll in the model were compared with satellite

observations (Figures 5 and 6). Surface temperature shows a

distinctive band of cold, upwelled water near the coast which was

narrower and more restricted to the North coast in the satellite

images than in the model. Two filaments with origin in Cape Roca

and Cape S. Vicente appeared in the model, and some evidence of

their presence was also observable in the satellite (e.g. days 23rd

and 24th). As for the phytoplankton bloom, the increase in

chlorophyll concentration along the coast (up to about 6 mg m23)

appeared at about the same time in the model and in the satellite,

around 13th of July. The trend was particularly well reproduced in

the region between 40uN and 42uN, where the concentration

reached 10 mg m23, whereas in the southwest coast (37uN to

39uN), the concentration in the model was higher than in

observations (highest values around 6 and 2 mg m23, respectively).

In contrast, the model was not able to reproduce the high inner

shelf chlorophyll concentration along the South coast of Portugal

and the Gulf of Cadiz (36uN to 37uN). The bloom situation

continued on the next days, spreading offshore with increasing

chlorophyll concentration. By day 23th, the bloom seemed to

decrease on satellite observations, and then it intensified again

(24th to 26th). This decrease was not observed in the model and the

bloom continued extending offshore and along the coast. As a

consequence, at the end of July, the bloom was more intense and

spread farther offshore in the model than in the satellite

observations. This is probably related with a slower relaxation of

the upwelling winds in the model than in the real ocean.

SST and Chlorophyll Time Series
The model skill for sea surface temperature and chlorophyll was

investigated comparing time series between the model and the

satellite at six points within the domain (Figures 7 and 8). The

comparison sites are indicated in Figure 2 and represent different

zones: middle shelf; offshore vicinity of shelf brake; and offshore

zone, for two latitudes, in the northern and southern part of the

domain (42uN and 38uN). At both latitudes, the modeled shelf

surface temperature was lower than temperature from satellite

during most part of the analysed period, with typical bias higher

than 1uC (Figure 7A and Figure 8A). At the offshore sites the

model had a better skill reproducing both the low and high (event

Figure 3. Wind measured by the Aveiro University automatic weather station (a) and ocean model forcing wind at the same
location (b). The site is indicated in Figure 2 as x close to the Vouga river mouth.
doi:10.1371/journal.pone.0037343.g003
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scale) variability of the surface temperature (Figure 7C, 7E and

Figure 8C, 8E). The relatively colder waters near the coast may be

associated with several factors including over-mixing and inability

of the model to re-stratify after strong wind events, deficient

parametrisation of air-sea heat fluxes and wind-stress. However,

the mixing parametrisations we have used are the ones that are

standard and recommended in the majority of ROMS applica-

tions. The K-Profile Parameterization, KPP model, described in

detail in Large et al. [45], is fully tested for most of the mesoscale

applications. It can be argued that near the coast other mixing

schemes could perform better, but they usually require additional

local information. On the other hand, the colder bias near the

coast have been reported in several upwelling systems studies, and

attributed to the lack of resolution of the wind stress field near the

coast, in which the wind curl is not properly resolved (e.g.,

[46,47]). A recent comparison across different upwelling systems

[48] shows that the bias is common to all upwelling systems and

that in part there is a warm tendency of SST data bases.

The surface chlorophyll comparisons show that the relatively

simple biological model is able to reproduce many of the observed

features, mainly in terms of variability. At 42uN the model

simulated the main episodes of chlorophyll concentration

variability, namely the shelf blooms by the end of July and

beginning of August (Figure 7B). Chlorophyll concentration in

both peaks was similar in the model and in satellite observations.

The model peak in August lasted longer, most probably as a

consequence of the model difficulty to represent the relaxation of

the upwelling (Figure 3). A third bloom appeared in early autumn

(end of September) that was not captured by the model in the shelf

(Figure 7B), but it was captured next to the shelf brake (Figure 7D).

Figure 4. Observed and modeled surface currents at three locations along the latitude 42uN at the longitudes 9uW (a and b), 9.75uW
(c and d) and 10.5uW (e and f). These locations are shown in Figure 2 as triangles.
doi:10.1371/journal.pone.0037343.g004

Iberian BGQ Operational System
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In general, chlorophyll concentration in the model was of the same

order as satellite values, except for the most offshore location

(10.5uW) at the end of the period, when model values tended to be

systematically lower (Figure 7F).

For the latitude 38uN (Figure 8) the model also shows some

sensitivity to the event at the end of July, but giving much higher

chlorophyll concentrations than the observed ones. The model

simulated blooms in the shelf (Figure 8B) and near the shelf brake

(Figure 8D) that were considerably higher than in the satellite

observations (or even non-existent in the satellite). This behaviour

is believed to be a consequence of the stronger modeled upwelling

in the southern coast, which is reflected in lower temperatures with

a bias of near 2uC at the shelf until middle of August (Figure 8A). It

is worth noting that the southern shelf is considerably narrower

than the northern shelf (Figure 2), which may play a role in this

difference due to the lower numerical discretization of the shelf in

this region, and hence higher sensitivity to wind forcing accuracy.

Conversely, the chlorophyll peaks observed offshore in early

autumn were not properly captured in the model (Figure 8D 8F).

Still, the model shows evidences of being able to reproduce the

slowly varying base concentration, around 0.2 mg m23.

SST and Chlorophyll Model Bias
The model bias (MB) indicates whether the model is overesti-

mating or underestimating the observations, being the model

results as better as MB is closest to zero. For each grid point, it was

calculated as:

MB~
Snt

t~1(Mt{Dt)

Snt
t~1Dt

where Mt and Dt are the modeled and observed values at time

index t, respectively. Figure 9 shows the model bias of sea surface

temperature and chlorophyll for the domain. There is a systematic

negative bias of temperature over the western shelf, as expected,

because of the higher intensity of modeled wind than measured

(Figure 3), leading to higher upwelling and lower surface

temperatures extending offshore, beyond the shelf break. The

bias of chlorophyll was lowest in the inner shelf and the offshore

region around Galicia. Higher differences are found throughout

the western outer shelf and in general near the model domain

boundaries. In some regions, like the shelf off Asturias (northern

coast) and the outer shelf and slope around 40.5uN, modeled

chlorophyll concentration was three times higher than satellite

values. The chlorophyll bias in the outer shelf is supposed to be

related with the negative bias in temperature, i.e., higher

upwelling. Near the boundaries, the differences reflect the usage

of climatological boundary conditions biogeochemical variables,

which vary very slowly and are very often in disagreement with

reality.

Figure 5. Sea surface temperature from model (upper panel) and from satellite observations provided by OSISAF (lower panel,
processed by Meteo-France/CMS-Lannion in the framework of the OSISAF project). Snapshots between 13th and 26th July 2011 are
depicted, illustrating one episode of upwelling intensification and coastal bloom (next Figure).
doi:10.1371/journal.pone.0037343.g005
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Discussion

A ROMS based operational hydrodynamic system was imple-

mented covering the Portuguese and Galician coast. The ocean

model has high horizontal and vertical resolution (about 3 km and

60 s-levels) and is running since November 2008. It uses monthly

climatological lateral boundaries provided by a climatological run

of a larger scale model with about 10 km of horizontal resolution

(see Figure 1). The surface is forced with realistic momentum,

temperature and salinity fluxes modeled by a local implementation

Figure 7. Observed and modeled (in black) sea surface temperature (a, c and e) and chlorophyll (b, d and f) at latitude 42uN and
longitudes 9uW, 9.75uW and 10.5uW (locations indicated as triangles in Figure 2. The satellite observations are distributed by OSISAF and
by IFREMER. Note the different vertical scales for chlorophyll. Each data points is the average of the data inside a circle of radius 7 km. Error bars are
the corresponding standard deviations.
doi:10.1371/journal.pone.0037343.g007

Figure 6. Same as previous figure but showing the chlorophyll coastal bloom. Chlorophyll observations are provided by IFREMER and
obtained from OC5 optimised interpolation of MODIS, SeaWiFS and MERIS observations.
doi:10.1371/journal.pone.0037343.g006
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of the atmospheric model WRF. The main rivers of the region are

included in the model as monthly climatological means. Also

included is the Peliz et al. [22] Gibraltar inflow/outflow

parametrisation.

The operational system is totally automatic and runs system-

atically daily analysis and three days forecasts. This implementa-

tions relies on the OOFe (Operational Ocean Forecast Python

Engine) described in [37].

More recently, on 10th June 2011, a 4-component nitrogen

based biogeochemical model was initiated operational as a module

of the ocean model. The rivers are considered a source of nitrates

and chlorophyll with input concentrations constant along the year.

The modeled ocean and biological state variables of the first

four months of the coupled hydrodynamic and biogeochemical

model were compared with observations for validation. The

observations consisted in radar measured surface currents, wind

Figure 8. Same as Figure 7 but for the latitude 38uN.
doi:10.1371/journal.pone.0037343.g008

Figure 9. Model bias of sea surface temperature (a) and chlorophyll (b) for the period 10th June 2011 to 10th October 2011.
doi:10.1371/journal.pone.0037343.g009
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from a weather station and satellite sea surface temperature and

chlorophyll.

The model reproduced adequately the wind-forced circulation

over the shelf, typical of the western Iberia summer season.

Namely the surface currents, the broad spatial and temporal

variability of the upwelling circulation and consequent sea surface

temperature. However, the consistent temperature deficit, reach-

ing 2uC is an indication of overestimated upwelling. This arises

from the difficulty of the atmospheric model to properly resolve

the wind field near the coast. Such overestimation leads to artificial

surplus of nutrients within the euphotic layer, and consequent

overestimation of the intensity and duration of the phytoplankton

bloom. It is worthy to note that the model has no relaxation of sea

surface temperature, a numerical resource frequently used in long

term simulations, to assure convergence to the correct seasonal

pattern.

In the northern shelf the model was able to simulate the main

blooms observed by the satellite along the upwelling season, and

gave similar chlorophyll concentrations, although showing differ-

ences in the duration of the most intense coastal bloom. On the

other hand, model results in the southern shelf tended to

overestimate observed blooms. The main differences between

model and satellite have hydrodynamic origin, namely the more

intense upwelling and slower wind relaxation in the model.

Nevertheless, in general, the base concentration and variability of

surface chlorophyll is reasonably reproduced by the NPZD model.

It is important to note that satellite observations can neither be

taken as the ‘‘real value’’ in the ocean, since they have associated

errors.

A more thorough validation of the model would require further

comparisons of model data with high quality in situ measurements

(buoys and sampling stations), which are not easily available.

Comparisons for a longer time period are also needed. Though,

work is underway to cope with the limitations of the current

validation.

By providing information about the model skill, the comparison

with observations gives clues about possible steps to improve the

operational system. Among the future developments, the most

important for the coastal and shelf regions, is to have a better

representation of the wind field. The local WRF solutions should

be improved, namely through optimisation of modelling para-

metrisations and data assimilation. Ensemble forecasts and

assimilation of observations are currently in phase of test and

implementation. The rivers have great impact on the shelf

dynamics and the use of climatological monthly discharges is

certainly an important limitation of the model. Another important

limitation in the rivers is the use of constant concentration of

nutrients (although the total amount of nutrients varies with river

flux). Attempts to estimate at least seasonal patterns should be

addressed. This can be done with ensemble Kalman filter

optimisation techniques, for instance. The complexity of the

biogeochemical model can also be increased to include more

variables that may improve model results. Currently tests are

underway adding a second subgroup of nitrates (ammonia) and

subdividing the detritus in small and large size.

Because of the use of climatological lateral boundaries, the

model lacks the ability to reproduce the eddy mesoscale features

away from the continental shelf. Some operational eddy-resolving

global models with data assimilation are available (like HYCOM,

http://www.hycom.org, and MERCATOR http://www.

mercator-ocean.fr) and our regional model can be offline nested

in the nowcasts and forecasts of such models (e.g., [49]). Also

modifying boundary information for the biogeochemical variables,

by using data from a global of large-scale parent model, may

improve the model results offshore. The results obtained so far

with the operational oceanic and biogeochemical implementation

are satisfactory and encourage the continuation of the work. The

limitations detected incentive improvement efforts, which are

currently being studied and tested. In the meantime, results of the

oceanic and biogeochemical models are already available online at

the web page of the operational system, http://neptuno.fis.ua.pt/

oof. Also available are some satellite observations, for comparison.

The full model input/output data sets are free to be accessed by

any end user through OPenDAP, at the same web address.
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