
TECHNOLOGY REPORT
published: 02 February 2016

doi: 10.3389/fninf.2016.00002

Frontiers in Neuroinformatics | www.frontiersin.org 1 February 2016 | Volume 10 | Article 2

Edited by:

Arjen Van Ooyen,

VU University Amsterdam,

Netherlands

Reviewed by:

David V. Smith,

Rutgers University, USA

Michael Denker,

Forschungszentrum Jülich, Germany

*Correspondence:

Mary K. Askren

askren@uw.edu

Received: 14 October 2015

Accepted: 04 January 2016

Published: 02 February 2016

Citation:

Askren MK, McAllister-Day TK, Koh N,

Mestre Z, Dines JN, Korman BA,

Melhorn SJ, Peterson DJ, Peverill M,

Qin X, Rane SD, Reilly MA, Reiter MA,

Sambrook KA, Woelfer KA,

Grabowski TJ and Madhyastha TM

(2016) Using Make for Reproducible

and Parallel Neuroimaging Workflow

and Quality-Assurance.

Front. Neuroinform. 10:2.

doi: 10.3389/fninf.2016.00002

Using Make for Reproducible and
Parallel Neuroimaging Workflow and
Quality-Assurance
Mary K. Askren 1*, Trevor K. McAllister-Day 1, Natalie Koh 1, Zoé Mestre 2,

Jennifer N. Dines 1, Benjamin A. Korman 1, Susan J. Melhorn 3, Daniel J. Peterson 1,

Matthew Peverill 4, Xiaoyan Qin 1, Swati D. Rane 1, Melissa A. Reilly 1, Maya A. Reiter 1,

Kelly A. Sambrook 1, Karl A. Woelfer 1, Thomas J. Grabowski 1, 5 and Tara M. Madhyastha 1

1Department of Radiology, University of Washington, Seattle, WA, USA, 2Department of Clinical Psychology, University of

California, San Diego/San Diego State University, San Diego, CA, USA, 3Department of Medicine, University of Washington,

Seattle, WA, USA, 4Department of Psychology, University of Washington, Seattle, WA, USA, 5Department of Neurology,

University of Washington, Seattle, WA, USA

The contribution of this paper is to describe how we can program neuroimaging

workflow using Make, a software development tool designed for describing how to build

executables from source files. A makefile (or a file of instructions for Make) consists of

a set of rules that create or update target files if they have not been modified since

their dependencies were last modified. These rules are processed to create a directed

acyclic dependency graph that allows multiple entry points from which to execute the

workflow. We show that using Make we can achieve many of the features of more

sophisticated neuroimaging pipeline systems, including reproducibility, parallelization,

fault tolerance, and quality assurance reports. We suggest that Make permits a large

step toward these features with only a modest increase in programming demands

over shell scripts. This approach reduces the technical skill and time required to write,

debug, and maintain neuroimaging workflows in a dynamic environment, where pipelines

are often modified to accommodate new best practices or to study the effect of

alternative preprocessing steps, and where the underlying packages change frequently.

This paper has a comprehensive accompanying manual with lab practicals and examples

(see Supplemental Materials) and all data, scripts, and makefiles necessary to run the

practicals and examples are available in the “makepipelines” project at NITRC.

Keywords: neuroimaging pipelines, workflow, quality assurance, reproducibility

INTRODUCTION

Amajor problem in neuroimaging is generating and executing complicated sequences of processing
steps (workflows, or pipelines). Scientific rigor demands that these workflows be reproducible (in
the sense of being able to replicate published results using the same data and analytic methods,
Peng, 2009, 2011). The reality of neuroimaging requires they be parallelizable, fault-tolerant,
and easily modified. Although, the scale with which raw data sets can grow is typically limited
by the scanner capacity and the financial costs of studies, improvements to scanner acquisition
and to data processing algorithms require increasingly more storage, memory, and processing
power. To complete in a reasonable timeframe, many analyses require parallelization, demanding

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://dx.doi.org/10.3389/fninf.2016.00002
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2016.00002&domain=pdf&date_stamp=2016-02-02
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive
https://creativecommons.org/licenses/by/4.0/
mailto:askren@uw.edu
http://dx.doi.org/10.3389/fninf.2016.00002
http://journal.frontiersin.org/article/10.3389/fninf.2016.00002/abstract
http://loop.frontiersin.org/people/284426/overview
http://loop.frontiersin.org/people/311299/overview
http://loop.frontiersin.org/people/296467/overview
http://loop.frontiersin.org/people/306585/overview
http://loop.frontiersin.org/people/294577/overview
http://loop.frontiersin.org/people/296475/overview
http://loop.frontiersin.org/people/295623/overview
http://loop.frontiersin.org/people/295645/overview
http://loop.frontiersin.org/people/286057/overview
http://loop.frontiersin.org/people/284374/overview
http://loop.frontiersin.org/people/120938/overview

Askren et al. Neuroimaging with Make

more computing and memory resources than are typically
available on a standalone workstation, so pipelines must be
able to exploit a shared memory multiprocessor or a cluster. A
general purpose solution to this problem is not feasible at this
point, because standards for data analyses in this relatively young
field are constantly being challenged or improved by an active
methods community. Like others, our perspective is that we
should constantly evaluate novel methods and incorporate useful
additions into our pipelines. This often requires combining tools
from multiple software packages and tailored scripts. Practically,
this task is challenging because existing software packages were
developed largely in isolation from each other, which have their
own file structures, formats, and naming conventions.

This is the motivation for developing customizable
neuroimaging workflow systems (e.g., Nipype, Gorgolewski
et al., 2011, and LONI Pipeline, Rex et al., 2003) that allow
scientists to incorporate the best algorithms from multiple
standard packages as well as custom tools into a single workflow.
At the same time, many scientists who use neuroimaging in their
research are not skilled programmers, and rely primarily upon
mainstream software packages written by others, with limited
customizability (e.g., FSL and SPM graphical user interfaces, and
AFNI python scripts).

The contribution of this paper is to describe how we
can program neuroimaging workflow using Make, a software
development tool designed for specifying how to create
executable programs from source files. We show we can
achieve many of the features of more integrated neuroimaging
pipeline systems such as Nipype and LONI pipeline, including
reproducibility, parallelization, fault tolerance, and quality
assurance reports. The reason for considering this approach is
because it reduces the technical skill and time required to write,
debug, and maintain neuroimaging workflows, as compared
to workflow systems that incorporate layers of abstraction
(i.e., “wrappers”) around neuroimaging tools. This in turn
reduces the cost and time associated with scientific progress
in a dynamic environment, where pipelines are often modified
to accommodate new best practices or to study the effect
of alternative preprocessing steps, and where the underlying
packages change frequently.

This paper has an accompanying manual with lab practicals
and examples (see Supplemental Materials) and all data, scripts
and Makefiles necessary to run the practicals and examples are
available in the “makepipelines” project at NITRC.

PROGRAMMING SKILL VS. FLEXIBILITY

Because Linux is the most popular neuroimaging platform
(Hanke and Halchenko, 2011; Halchenko and Hanke, 2012;
Halchenko et al., 2014), most neuroimaging applications and
utilities run on Linux and can be called from bash scripts.
For some popular neuroimaging packages (e.g., FSL, AFNI) it
is necessary to be familiar with bash, both to run programs
and to make contact with existing documentation from the
software developers and other lab groups. At one extreme,
nonprogrammers can use graphical user interfaces provided by
the tools. At the other, sophisticated users can develop new

FIGURE 1 | Conceptual two dimensional space of pipeline tools. In one

dimension is customizability; how possible is it to modify the pipeline to include

new neuroimaging processing algorithms? In the second dimension is

programming ability. How much programming skill does it take to modify the

pipeline? Relative programming ability is estimated based on our collective lab

experience and current salaries for skills, where available (Dice.com., 2015).

Customizability is estimated based on our lab experience.

algorithms to supplement or replace processing steps in higher
level scripting or compiled languages (e.g., MATLAB, Python,
C). In between, scientists may write scripts using bash and
other Linux utilities, or parallelize execution of neuroimaging
commands through MATLAB’s Parallel Computing Toolbox if
this resource is available through a user’s institution. There
is a tradeoff between programming ability and customizability
(see Figure 1)1. To allow combination of tools from a variety
of commonly available packages, systems such as Nipype
(Gorgolewski et al., 2011) and LONI pipeline theoretically
allow implementation of flexible, modular components without
knowing the particulars of each underlying tool. These systems
“wrap” components from other packages to provide a consistent
interface, data provenance, and parallelism. This allows creation
of canned pipelines that incorporate these features and can be
executed as easily as other pipelines that provide these features
within a specific software package (e.g., FSL’s FEAT, SPM’s batch).
However, the programming skill required to wrap new modules
and incorporate those into pipelines is still on par with the
difficulty of the wrapping language.

Make is a simple system that can be used for writing
and maintaining customizable pipelines that requires less skill
and time than any pipeline system that wraps the underlying
neuroimaging tools. Make is included in all standard Linux
distributions (and is available for OSX and all other UNIX-
based systems), so there is nothing additional to install. Make
requires no additional code, and thus programmer time, to wrap
neuroimaging packages. Wrappers require users who wish to

1We used salary for skills from the 2015 Dice Tech Salary report (Dice.com.,

2015) as a rough proxy for ability to approximately rank different programming

languages (Hunt and Madhyastha, 2012). Bash is an average of bash, shell, and

Linux.

Frontiers in Neuroinformatics | www.frontiersin.org 2 February 2016 | Volume 10 | Article 2

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Askren et al. Neuroimaging with Make

modify pipelines to understand the calling syntax of the packages
in addition to the language and software design of the wrapper.
While operating without wrappers means that the idiosyncrasies
of the underlying packages are not hidden from the user, the
calling syntax and program options of the underlying packages
are clearly exposed. This makes debugging specific steps easier,
because code can be cut and pasted into the shell. This also
helps when versions of the underlying programs change, because
wrappers do not have to be changed to accommodate version
changes in syntax. Anything that can be called from the shell can
be included in a makefile.

Using Make for neuroimaging workflow occupies an
important space in the tradeoff between customizability and
programming ability. As shown in Figure 1, it provides the
customizability and reproducibility available from a script in
addition to parallelism and fault tolerance. It represents only
an incremental increase in customizability and programming
ability from bash shell scripting, but a greatly advanced capacity
to process large data sets, and thus may address a need of the
larger neuroimaging community.

IMPLEMENTATION

Make refers to a development tool created for expressing a
directed acyclic dependency graph (Feldman, 1979). A makefile
(or a file of instructions for the progam make) consists of a set
of rules that create or update target files if they have not been

modified since their dependencies were last modified. Rules take
the form:

target: dependency_1 ... dependency_n

recipe

The target and dependencies are normally files, and the recipe
is a sequence of shell commands (where each line begins with
a TAB character) that are executed to produce the target file
from the dependencies. To understand the use of Make in
a neuroimaging example, consider the simple case of skull
stripping a T1 weighted image called T1.nii.gz. The skull
stripped file will be called T1_brain.nii.gz, following FSL
conventions. The command to perform this skull stripping in
FSL is called bet. We create a file, named Makefile, which
contains the following lines (Example 1A):

T1_brain.nii.gz: T1.nii.gz

bet T1.nii.gz T1_brain.nii.gz

Example 1A | Makefile for skull stripping.

import nipype.interfaces.fsl as fsl

mybet = fsl.BET(in_file=’T1.nii.gz’,

out_file=’T1_brain.nii.gz’)

result = mybet.run()

Example 1B | Nipype command for skull stripping.

class BETInputSpec(FSLCommandInputSpec):

in_file=File(exists=True,

desc=’input file to skull strip’,

argstr=’%s’, position=0, mandatory=True)

out_file=File(desc=’name of output skull stripped image’,

argstr=’%s’, position=1, genfile=True, hash_files=False)

outline=traits.Bool(desc=’create surface outline image’,

argstr=’-o’)

mask=traits.Bool(desc=’create binary mask image’,

argstr=’-m’)

skull=traits.Bool(desc=’create skull image’,

argstr=’-s’)

no_output=traits.Bool(argstr=’-n’,

desc="Don’t generate segmented output")

frac=traits.Float(desc=’fractional intensity threshold’,

argstr=’-f %.2f’)

vertical_gradient=traits.Float(argstr=’-g %.2f’,

desc=’vertical gradient in fractional intensity ’

’threshold (-1, 1)’)

radius=traits.Int(argstr=’-r %d’, units=’mm’,

desc="head radius")

center=traits.List(traits.Int, desc=’center of gravity in voxels’,

argstr=’-c %s’, minlen=0, maxlen=3,\

units=’voxels’)

threshold=traits.Bool(argstr=’-t’,

desc="apply thresholding to segmented brain image and mask")

mesh=traits.Bool(argstr=’-e’,

Example 1C | Continued

Frontiers in Neuroinformatics | www.frontiersin.org 3 February 2016 | Volume 10 | Article 2

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Askren et al. Neuroimaging with Make

desc="generate a vtk mesh brain surface")

_xor_inputs=(’functional’, ’reduce_bias’, ’robust’, ’padding’,

’remove_eyes’, ’surfaces’, ’t2_guided’)

robust=traits.Bool(desc=’robust brain centre estimation ’

’(iterates BET several times)’,

argstr=’-R’, xor=_xor_inputs)

padding=traits.Bool(desc=’improve BET if FOV is very small in Z ’

’(by temporarily padding end slices)’,

argstr=’-Z’, xor=_xor_inputs)

remove_eyes=traits.Bool(desc=’eye & optic nerve cleanup (can be ’

’useful in SIENA)’,

argstr=’-S’, xor=_xor_inputs)

surfaces=traits.Bool(desc=’run bet2 and then betsurf to get additional ’

’skull and scalp surfaces (includes ’

’registrations)’,

argstr=’-A’, xor=_xor_inputs)

t2_guided=File(desc=’as with creating surfaces, when also feeding in ’

’non-brain-extracted T2 (includes registrations)’,

argstr=’-A2 %s’, xor=_xor_inputs)

functional=traits.Bool(argstr=’-F’, xor=_xor_inputs,

desc="apply to 4D fMRI data")

reduce_bias=traits.Bool(argstr=’-B’, xor=_xor_inputs,

desc="bias field and neck cleanup")

class BETOutputSpec(TraitedSpec):

out_file=File(

desc="path/name of skullstripped file (if generated)")

mask_file=File(

desc="path/name of binary brain mask (if generated)")

outline_file=File(

desc="path/name of outline file (if generated)")

meshfile=File(

desc="path/name of vtk mesh file (if generated)")

inskull_mask_file=File(

desc="path/name of inskull mask (if generated)")

inskull_mesh_file=File(

desc="path/name of inskull mesh outline (if generated)")

outskull_mask_file=File(

desc="path/name of outskull mask (if generated)")

outskull_mesh_file=File(

desc="path/name of outskull mesh outline (if generated)")

outskin_mask_file=File(

desc="path/name of outskin mask (if generated)")

outskin_mesh_file=File(

desc="path/name of outskin mesh outline (if generated)")

skull_mask_file=File(

desc="path/name of skull mask (if generated)")

class BET(FSLCommand):

_cmd=’bet’

input_spec=BETInputSpec

output_spec=BETOutputSpec

def _run_interface(self, runtime):

runtime=super(BET, self)._run_interface(runtime)

Example 1C | Continued

Frontiers in Neuroinformatics | www.frontiersin.org 4 February 2016 | Volume 10 | Article 2

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Askren et al. Neuroimaging with Make

if runtime.stderr:

self.raise_exception(runtime)

return runtime

def _gen_outfilename(self):

out_file=self.inputs.out_file

if not isdefined(out_file) and isdefined(self.inputs.in_file):

out_file=self._gen_fname(self.inputs.in_file,

suffix=’_brain’)

return os.path.abspath(out_file)

def _list_outputs(self):

outputs=self.output_spec().get()

outputs[’out_file’]=self._gen_outfilename()

if ((isdefined(self.inputs.mesh) and self.inputs.mesh) or

(isdefined(self.inputs.surfaces) and self.inputs.surfaces)):

outputs[’meshfile’]=self._gen_fname(outputs[’out_file’],

suffix=’_mesh.vtk’,

change_ext=False)

if (isdefined(self.inputs.mask) and self.inputs.mask) or \

(isdefined(self.inputs.reduce_bias) and

self.inputs.reduce_bias):

outputs[’mask_file’]=self._gen_fname(outputs[’out_file’],

suffix=’_mask’)

if isdefined(self.inputs.outline) and self.inputs.outline:

outputs[’outline_file’]=self._gen_fname(outputs[’out_file’],

suffix=’_overlay’)

if isdefined(self.inputs.surfaces) and self.inputs.surfaces:

outputs[’inskull_mask_file’]=self._gen_fname(outputs[’out_file’],

suffix=’_inskull_mask’)

outputs[’inskull_mesh_file’]=self._gen_fname(outputs[’out_file’],

suffix=’_inskull_mesh’)

outputs[

’outskull_mask_file’]=self._gen_fname(outputs[’out_file’],

suffix=’_outskull_mask’)

outputs[

’outskull_mesh_file’]=self._gen_fname(outputs[’out_file’],

suffix=’_outskull_mesh’)

outputs[’outskin_mask_file’]=self._gen_fname(outputs[’out_file’],

suffix=’_outskin_mask’)

outputs[’outskin_mesh_file’]=self._gen_fname(outputs[’out_file’],

suffix=’_outskin_mesh’)

outputs[’skull_mask_file’]=self._gen_fname(outputs[’out_file’],

suffix=’_skull_mask’)

if isdefined(self.inputs.no_output) and self.inputs.no_output:

outputs[’out_file’]=Undefined

return outputs

def _gen_filename(self, name):

if name == ’out_file’:

return self._gen_outfilename()

return None

Example 1C | Nipype wrapper for skull stripping.

Having created this file, the command make will perform the
operations necessary to skull strip the T1 image if it happens
to be newer than T1_brain.nii.gz, or if T1_brain.nii.gz does not
exist. Although, this is a simple example, multiple rules can be
included in a makefile that, if chained together, form a directed

acyclic dependency graph that can be arbitrarily complex. By
comparison, we illustrate the equivalent workflow in Nipype,
a wrapper-based workflow (Example 1B). Note that calling a
module is similarly straightforward, albeit abstracted from the
original command. However, creating a wrapper (Example 1C),

Frontiers in Neuroinformatics | www.frontiersin.org 5 February 2016 | Volume 10 | Article 2

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Askren et al. Neuroimaging with Make

which is required to add any new tool to a workflow, requires
substantial knowledge of the wrapping language and the
workflow conventions (e.g., InputSpec, TraitedSpec classes) in
addition to understanding the syntax of the underlying command
line tool.

Example 2 shows a slightly more complicated makefile that
uses the skull stripped T1 to perform hippocampal segmentation
(using FSL’s FIRST) and to generate a quality assurance image
using FSL utilities (overlay and slices). Note that some
targets (such as skstrip and qa) do not correspond to actual
files, and are denoted in the first line of Example 2 as “phony”
targets. These targets will always be created if their dependencies
do not exist. We also notice that the target clean is phony
but has no dependencies. It will always be created, allowing us
a simple way to remove our work by typing make clean. We
can specify multi-line recipes, written in the shell of our choice
(here, bash) or simply call programs from other neuroimaging
packages. As in the recipe for hippo.csv in Example 2 and in
other examples, we make heavy use of bash shell programming
and utilities such as awk and sed to manipulate the output of
commands. However, recipes can also be executable scripts in
other languages.

.PHONY: skstrip first qa clean

SHELL=/bin/bash

qa: skstrip first QA/rendered_hippo.png

skstrip: T1_brain.nii.gz

T1_brain.nii.gz: T1.nii.gz

bet $< $@

first: first_all_fast_firstseg.nii.gz hippo.csv

first_all_fast_firstseg.nii.gz : T1_brain.nii.gz

run_first_all -s "L_Hipp,R_Hipp" -b -d -i T1_brain.nii.gz -o first

hippo.csv: first_all_fast_firstseg.nii.gz

rh=‘fslstats $< -u 54 -l 52 -V| awk ’{print $$2}’‘ ;\

lh=‘fslstats $< -u 18 -l 16 -V| awk ’{print $$2}’‘ ;\

echo $$lh $$rh > hippo.csv

QA/rendered_hippo.nii.gz: first_all_fast_firstseg.nii.gz

mkdir -p QA;\

overlay 1 1 T1_brain.nii.gz -a first_all_fast_firstseg.nii.gz 1 10 $@

QA/rendered_hippo.png: QA/rendered_hippo.nii.gz

slices $< -o $@

clean:

rm -rf first∗ T1_brain_to_std_sub∗ hippo.csv QA

Example 2 | A more complicated Makefile for hippocampal segmentation.

The dependency graph for the QA target is shown in Figure 2.
Note that the dependency graph is created automatically from
the specification of the rules, unlike Nipype and LONI Pipeline,
which require the user to describe all the connections in
a graph. If you add a rule, the dependency graph will be
automatically modified. The programmer does not need to
specify the dependency graph; it is generated automatically from
the individual inputs and outputs of specific steps. Therefore, it
is easy to break the workflow into individual rules as shown here
for development, testing, and reuse.

Because Make is organized around the concept of a
dependency graph, the primary arguments that control its
execution are targets to build and variables that parameterize
its execution. In this way it is possible to specify that only a
specific part of the dependency graph should be executed, or that
a specific subject or session should be used.

After nearly 40 years, Make is still widely in use and is
the basis of many derivative systems, ranging from simple
reimplementations that support new features to new build
systems that address limitations of Make. For example, makepp
is a drop-in replacement for Make that supports generation
of dependency graphs (Pfeiffer and Holt, 2013) as shown in

Frontiers in Neuroinformatics | www.frontiersin.org 6 February 2016 | Volume 10 | Article 2

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Askren et al. Neuroimaging with Make

FIGURE 2 | Dependency graph of the “qa” target defined in the Makefile in Example 2. Rectangles represent files, and ellipses represent phony targets (that

are defined for convenience and do not correspond to actual files). Yellow shaded rectangles are programs installed on the system that are part of the default Linux

distribution or FSL utilities, and are important for provenance but not dependency checking.

Figure 2. CMake is a popular cross-platform make system that
addresses the issue that people may want to build software across
systems that run different operating systems and have different
commands (Martin and Hoffman, 2013). Snakemake is a Python-
compatible workflow system (with a Python-like syntax) based
on the logic of Make (Köster and Rahmann, 2012). FreeSurfer
supplies a -make option to run via a standard makefile. Any
variant of Make can be used as described in this paper to support
neuroimaging workflow. However, most Linux platforms come
supplied with a version of GNU Make released by the Free
Software Foundation, which is stable, robust, and excellently
documented. The examples in this paper and in the manual (see
Supplemental Materials) all work with GNU Make version 3.8.1.
The newest version of GNUMake (version 4.1 as of this writing)
supports additional useful features, but it may not be available on
all systems.

Organizing Neuroimaging Projects to Work
with Make
The use of consistent file and directory naming conventions
is critical for any scripted data analysis, as it is for Make. We
typically create a directory for each project that contains (1)
subdirectories for scripts and programs specific to the analysis
(bin), (2) masks, templates and makefiles (lib), (3) auxiliary
behavioral data (data), and (4) one or more sessions of subject
imaging data. Figure 3 shows the directory structure for a
project called Udall, for which each subject was imaged on
three occasions. We use symbolic links (files that reference
other files) to create the illusion that the data are organized by
subject/timepoint, and by timepoint/subject. This can be seen

in Figure 3 by observing that /project_space/Udall/
subjects/SUBJECT/session3 is the same directory
as /project_space/Udall/subjects/session3/

SUBJECT. This organization is convenient for longitudinal
analyses. By creating links to subject and session-level makefiles,
it is possible to build targets for both a single subject/timepoint,
and across all subjects at a single timepoint (by calling Make
recursively within each subject directory). This use of Make
limits the depth of directory trees that researchers have to
keep track of while exposing parallelism of processing multiple
subjects (see Supplemental Materials: Setting up an Analysis
Directory for more details). However, symbolic links can be
confusing for users and system managers and it may not be
necessary to expose the single subject/timepoint organization. In
this case it is possible to copy subject and session-level makefiles
and avoid additional complexity. In practice both approaches
work successfully.

Parallel Execution
Most neuroimaging pipelines are inherently parallelizable—
even if the processing of a single scan cannot be parallelized,
typically the subject-specific processing of most data does not
depend upon other subjects. This type of processing is called
“embarrassingly parallel” (Moler, 1986; Foster, 1995) because
of this lack of dependency, and is well suited to running
on multiple cores in a single shared memory multiprocessor,
or on clusters of computers that are grouped together with
a scheduler such as the Sun Grid Engine (now Open Grid
Scheduler). Because a dependency graph expresses inherent
parallel structure, a single makefile is a parallel program that

Frontiers in Neuroinformatics | www.frontiersin.org 7 February 2016 | Volume 10 | Article 2

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Askren et al. Neuroimaging with Make

FIGURE 3 | Example directory structure for use with Make. Symbolic links are typeset in red with arrows to the files they point to.

can be easily executed on either a multicore machine (using
the -j flag to specify the number of cores to use) or on a
cluster using qmake, an Open Grid Scheduler-supplied utility.
When working with thousands of subjects, after performing
QA and adjusting critical steps in the pipelines, redeploying
make will automatically parallelize only the remaining work,
based on dependency analyses of which targets need to be
regenerated.

Fault Tolerance
Fault tolerance is an additional feature Make provides that is
not natively supported by scripting languages. Because Make
builds and executes recipes based on a dependency graph, when
a step in the processing pipeline fails (e.g., due to a cluster node
going down during a long running job, a hard drive filling up, a
computer running out of memory, or a failure to complete a step
correctly due to corrupted inputs) it can be re-executed with the
same command line and will recreate only those dependencies
that still need to be updated.

As a concrete example, consider the following bash script
that runs multiple subject level GLM analyses in parallel using
FSL’s FEAT program. Parallelism is provided by FSL’s fsl_sub
program and enabled by setting the FSLPARALLEL environment
variable. Because the cluster machines have limited memory,
sometimes some arbitrary number of these analyses will fail (Note
that by default FEAT will append a+ to the output directory if it
already exists but we assume the .fsf configuration file specifies
overwriting it instead).

\#!/bin/bash

export FSLPARALLEL=true

for subject in ‘cat subjects‘

do

if [-f ${subject}/firstlevel.feat/

stats/cope5.nii.gz]

then

feat ${subject}/firstlevel.fsf

fi

done

Fault tolerance is implemented here explicitly by checking for
the existence of the final cope (number 5), so that the script can
be rerun until all jobs have completed. An alternative approach
would be to edit the script to include only the subjects who need
to be reprocessed. Because coding workflow for fault tolerance is
normally an afterthought, the latter approach is frequently used
in scripts, leading to errors and inconsistencies in the processing
of the data.

In contrast, a makefile to do this task would be written as
follows:

subjects=$(shell cat subjects)

all: $(subjects:=/firstlevel.feat/stats/

cope5.nii.gz)

%/firstlevel.feat/stats/cope5.nii.gz:

<dependencies>

feat $*/firstlevel.fsf

Frontiers in Neuroinformatics | www.frontiersin.org 8 February 2016 | Volume 10 | Article 2

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Askren et al. Neuroimaging with Make

As above, the subjects are obtained from the file called subjects.
The main target all uses the subject names to construct the
lists of copes to be created. A single recipe asserts that
the cope depends upon some optional set of dependencies
(here these are not specified and indicated by a placeholder
in italics). Although, missing from the bash script, these
dependencies could be used to specify that the FEAT analysis
should be rerun if any of the dependencies (e.g., regressors,
fMRI input file, or.fsf file) changes. The same makefile
can be used to execute in parallel (with any degree of
parallelism required to allow sufficient memory for the jobs) or
sequentially. Finally, no explicit test is required to rerun the FEAT
analysis if the cope does not exist; fault tolerance in Make is
implicit.

Writing Self-Documenting Makefiles
One of the advantages of using makefiles is that phony targets
can be defined that allow underlying neuroimaging calls to
be conceptually named or grouped. For example, in Example

2, the phony target “skstrip” will run bet to perform skull
stripping, and the phony target “transforms” will create all the
necessary transformation matrices using flirt, epi_reg, or
convert_xfm. Writing makefiles in this way makes it easier
for people who are new to neuroimaging to understand and work
with the pipelines. Documenting these targets is helpful, and
our first approach was to create a target that produces a “usage”
message for the makefile. However, we quickly discovered that it
is also easy to fail to keep documentation up to date as new targets
are added, removed, or modified.

One solution to this problem is to define a macro that can
be used to annotate targets of interest with a descriptive help
message. In this way, the help message and the target are close
together in the makefile, so that it is easier to keep the help
up to date. The target depends upon the help message being
displayed, if requested. This has been implemented in a help
system described by Graham-Cumming (2015), that produces a
list of targets and their corresponding line numbers in specific
makefiles. For example, processing of a single subject involves
several piplines (e.g., for registration, structural analysis, resting
state preprocessing, and functional connectivity analysis). Each
of these can pipelines is cleanly written in its ownmakefile. To see
this implemented in real example, see Supplemental Materials:
Processing Data for a Single Testsubject.

Example 4 (discussed in detail later) is a makefile to perform
registrations. To document the transforms target in Example 4,
one would modify it as follows:

transforms: $(call print-help, transforms,

Create resting state to MNI transformations)

xfm_dir xfm_dir/MNI_to_rest.mat

We refer the reader to a detailed online description of how
the help system is implemented (Graham-Cumming, 2005).
However, to summarize, we add a “help” dependency to each
target that we wish to document. This takes the form of the
call function to Make shown above. When the user types
“make help,” all help messages will be printed. If Example 4 is
located in the Makefile xfm.mk, the help message for target

transforms (highlighted) would appear along with other
target help messages written for other targets (to execute several
subject-level processing pipelines) as shown below. This helps
people find the targets that are defined by multiple makefiles in
separate files.

resting.mk:20: rest -- "Run resting

state preprocessing pipeline"

xfm.mk:3: transforms -- Create resting

state to MNI transformations

fcconnectivity.mk:6: Connectivity --

"Perform subject-level seed-based

connectivity analysis"

QA.mk:10: qa -- Create QA report

Makefile:42: all -- Do skull stripping &

etiv & HC volume calculation

Makefile:55: robex -- Alternate skull

stripping with ROBEX

Makefile:61: freesurferskullstrip --

Alternate skull stripping with FreeSurfer

Makefile:71: etiv -- Estimation of ICV

using enigma protocol

Makefile:100: flex -- Run flex for white

matter hyperintensity quantification

Makefile:142: clean -- Clean up everything

from all makefiles

Debugging
Debugging makefiles has a reputation for being rather difficult.
There are probably several reasons for this. Make has unusual
syntax, requiring recipes to be prefaced by TAB characters, and
it does not cope well with indiscriminate white space. It has a
very different model of execution than scripts (variables are, by
default, evaluated at time of use, and targets within a makefile
are not executed sequentially). Use of pattern substitution can be
difficult. Finally, when executing in parallel, the output messages
of multiple jobs are interleaved, making it difficult to interpret
these outputs from Make.

On the positive side, makefiles are naturally broken down into
targets that can be tested individually. We encourage building
of a makefile by adding and testing one target at a time. Once
Make frameworks have been developed, most problems lie in
debugging the neuroimaging commands. Because recipes are
simply shell scripts, it is easy to cut and paste recipes into the
command line to test them.

We document common causes of errors ormisunderstandings
(See Supplemental Materials: Troubleshooting Make). Other
strategies that are useful are the use of the “-n” option, which
prints out commands without executing them, and the “-p”
option, which prints the database of rules (including the result
of pattern substitution). The most recent version of GNU Make
(4.1) has a -trace option, which describes why given lines are
executed. It also has a -output-sync option to synchronize
the output of recipes that are executed in parallel on multiple
cores, a source of confusion in debugging problems that show
up during parallel execution and not sequential execution. These

Frontiers in Neuroinformatics | www.frontiersin.org 9 February 2016 | Volume 10 | Article 2

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Askren et al. Neuroimaging with Make

are useful features for debugging, even if this is not the primary
version of Make installed on the system.

QUALITY ASSURANCE AND DATA
PROVENANCE

Established neuroimaging software packages often include
information describing which steps and associated options were
applied to the data as well as images andmetrics for assessing data
quality at various stages (e.g., FSL’s FEAT reports). Unfortunately,
these systems are necessarily limited to accounting for steps
applied within that specific package, limiting their utility when
the user incorporates methods from different packages or custom
algorithms into a single pipeline. Options are available for
wrapper-dependent workflow systems (e.g., MacKenzie-Graham
et al., 2008), but are less likely to be routinely employed by
users who are executing a range of commands via bash or
MATLAB scripts. There are likely multiple ways to address this
problem for custom pipelines, but we describe the system we
have implemented using a combination of RMarkdown (Rstudio,
2015) and Make.

QA/Structural.html: $(TEMPLATES)/Structural.Rmd QA/images/T1_brain.gif \

QA/images/csf.gif QA/images/gm.gif QA/images/wm.gif

sed -e ’s/SUBJECT/$(SUBJECT)/g’ $(word 1,$\^) > QA/Structural.Rmd ;\

R -e ’library("rmarkdown");rmarkdown::render("QA/Structural.Rmd")’

Example 3 | Creating a QA report.

Quality Assurance
The ability to quickly identify problems in data acquisition or
processing is important for ensuring reliable results. This is
generally accomplished by a combination of viewing selected
images (e.g., skullstripping, image segmentation, registration)
and examining metrics (e.g., motion parameters, global intensity
changes). Tools exist in standard neuroimaging software
packages to generate both images (e.g., FSL’s slicer) and
metrics. To reduce the burden of generating quality assurance
(QA) reports (thus increasing the likelihood that QA will be
incorporated into workflow), we generate most images and
metrics using these existing tools, then aggregate them into
reports with R Markdown (Figure 3).

Workflow for QA occurs in two stages. The first is to generate
QA metrics and images. For example, in Example 2, FSL’s
slices is used to create a .png image of the segmented
hippocampus overlaid on a limited set of axial, sagittal, and
coronal slices of the subject’s T1 image. The second stage is
to incorporate such images into a single HyperText Markup
Language (HTML) report with a script or using R Markdown,
as shown in Example 3. Here, QA images for a skull-stripped
brain and tissue parcellation are used to generate the report
QA/Structural.html. The sed utility is used to replace the generic
SUBJECT variable in the R Markdown file with the actual subject

identifier so that we know which subject we are looking at. Next,
a command to R renders the document. These reports are then
checked by research staff.

R Markdown is a simple authoring format that allows writing
text as well as executing chunks of code from a range of languages
including R, bash, HTML, and Python. Output is similarly
flexible (e.g., .html, .pdf, .doc). For the purposes of QA, we prefer
an HTML report over a PDF, because the HTML reports allow
embedding of videos (e.g., of timeseries data) and doesn’t require
the user to control pagination. The flexibility of R Markdown
allows generation of QA reports that best suit a given project.
One the one hand, it may be desirable to generate a single report
showing the data quality for each subject as they are acquired
to immediately identify potential problems. On the other hand,
for the simultaneous processing of a large, open dataset (e.g.,
from the Autism Brain Imaging Data Exchange (ABIDE) or
Alzheimer’s Disease Neuroimaging Initiative (ADNI)), it may be
more sensible to create a report that aggregates data from a single
modality for many subjects at once.We incorporate RMarkdown
intoMake workflows by specifying the script, images, andmetrics
as dependencies of a QA report target.

Data Provenance
Provenance, which is the metadata describing how a dataset
was acquired and altered through subsequent manipulation,
is critical for ensuring reproducibility and allowing for
comparison of study results, combination across datasets, and
data sharing. Standards have been proposed for neuroimaging
data provenance (Keator et al., 2015) but have not been widely
implemented even for tools included in standard software
packages. At a minimum, data provenance must be sufficient to
allow for replication of data collection, processing, and analysis.
Because this standard is the same as the standard for methods
reporting in a publication (Poldrack et al., 2008; Carp, 2012), we
currently implement a basic form of data provenance as an auto-
generated methods section with appropriate references, much in
the way that a processing methods description is generated by
FSL FEAT for more basic analyses (see Figure 4).

Our methods generator makefile acquires raw MRI
acquisition parameters (e.g., repetition time TR, echo time
TE) pertinent to reporting by calling a bash script that
automatically pulls these parameters from the raw PAR/REC (a
Philips-specific file format) data and stores them in a comma
separated value (CSV) file. Similarly, the versions of tools
(e.g., FSL) as indicated by their installation directories and
options for the implemented MRI preprocessing tools (e.g.,

Frontiers in Neuroinformatics | www.frontiersin.org 10 February 2016 | Volume 10 | Article 2

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Askren et al. Neuroimaging with Make

FIGURE 4 | Data provenance of resting state processing with R markdown.

smoothing kernel size), are pulled from the makefiles for specific
processing streams and additionally stored in this CSV file. We
can then write an R Markdown methods file that documents
the processing streams and is parameterized by the values
in this CSV file. The makefile renders this R Markdown file,
automatically filling in the parameter values and generating
an HTML output report. Although the R Markdown methods
file must be changed by hand when pipelines change, minor
revisions to software versions will be automatically noted as
data are collected for a project. The flexibility of the Make/R
Markdown-based system allows for updating the fields included
as provenance when mainstream software packages are updated
to be compliant with recommended standards.

USAGE EXAMPLES

Over the last several years we have created pipelines to perform
basic subject-level processing of structural, functional, diffusion,
and perfusion data using Make, in addition to group level
analysis and complex reporting. These incorporate tools from
FSL, AFNI, Nipype, FreeSurfer, SPM, ANTs and many other
neuroimaging software packages, and custom programs written

in shell, MATLAB, Python and R. Examples of these pipelines
are documented in the manual (see Supplemental Materials),
and accompanying code and examples are available in the
“makepipelines” package on NITRC. A sample of these examples
is highlighted below.

Registrations
Registrations are especially suited for execution with makefiles,
because a registration process across several types of images
involves multiple steps that can normally be calculated
individually (in parallel) and concatenated. It is easy to
describe this dependency relationship in Make. The syntax of
registration commands and the order of arguments can be
difficult to remember, but these are abstracted by targets in
the makefile. Interim registrations need to be checked and may
be hand-corrected, in which case make will regenerate only
what needs to be updated following modification. Example

4 (See Supplemental Materials: Testsubject Transformations
for a detailed description) is an example of a makefile to
create resting state to standard MNI space transformations.
Figure 5 shows the dependency graph generated for this
example.

Frontiers in Neuroinformatics | www.frontiersin.org 11 February 2016 | Volume 10 | Article 2

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Askren et al. Neuroimaging with Make

.PHONY=clean_transform tranforms

transforms: $(call print-help,transforms,Create resting state to MNI\

transformations) xfm_dir xfm_dir/MNI_to_rest.mat

xfm_dir:

mkdir -p xfm_dir

xfm_dir/T1_to_MNI.mat: xfm_dir T1_skstrip.nii.gz

flirt -in T1_skstrip.nii.gz -ref $(STD_BRAIN) -omat $@

rest_dir/rest_mc_vol0.nii.gz: rest_dir/rest_mc.nii.gz

fslroi $< $@ 0 1

xfm_dir/rest_to_T1.mat: rest_dir/rest_mc_vol0.nii.gz T1_skstrip.nii.gz

mkdir -p xfm_dir ;\

epi_reg --epi=rest_dir/rest_mc_vol0.nii.gz --t1=T1.nii.gz \

-t1brain=T1_skstrip.nii.gz --out=xfm_dir/rest_to_T1

xfm_dir/T1_to_rest.mat: xfm_dir/rest_to_T1.mat

convert_xfm -omat $@ -inverse $<

xfm_dir/MNI_to_T1.mat: xfm_dir/T1_to_MNI.mat

convert_xfm -omat $@ -inverse $<

xfm_dir/MNI_to_rest.mat: xfm_dir/T1_to_rest.mat xfm_dir/MNI_to_T1.mat

convert_xfm -omat xfm_dir/MNI_to_rest.mat \

-concat xfm_dir/T1_to_rest.mat xfm_dir/MNI_to_T1.mat

clean_transform:

rm -rf xfm_dir

Example 4 | Registering fMRI data to standard space using FSL utilities.

Conditional Processing
Often different processing or analysis methods may be desirable
based on data type or on the availability of ancillary data (e.g.,
physiologic data). Make is well-suited to handling workflows
which require different actions under different circumstances.
Of course, many programming languages allow for conditional
logic. However, a conditional in Make can be used to specify
different dependencies for a target. When the makefile is read,
the conditional will be evaluated and the dependency graph will
include only the necessary components.

In Example 5 (explained in greater detail in Supplemental
Materials: DTI Distortion Correction with Conditionals), the
final target, “tensor” (highlighted in blue), requires creation of a

distortion corrected image called “sdc_mec_diffusion.nii.gz.”
The recipe required for generating the distortion corrected data
is chosen automatically by Make depending on whether a field
map image or an acquisition parameters text file is present, as
reflected by the variable SDC_METHOD (in red). This variable
is queried later in the corresponding conditional set of rules (also
highlighted in red). It is worth noting that the evaluation of the
conditional takes place before any commands are run, because
Make first needs to construct the dependency graph. This means
that if files are created or deleted during a single invocation of
Make, it may affect the behavior of the commands that are called,
but it won’t change whether they are executed, or the sequence in
which they are executed, unless it causes an exit due to an error.

SDC_METHOD = $(shell if [-f fieldmap.nii.gz] ; then echo FUGUE; \

elif [-f acqparams.txt] ; then echo TOPUP; \

else echo FALSE ; fi)$

mec_diffusion.nii.gz: raw_diffusion.nii.gz bval bvec brain_mask.nii.gz

echo "0 1 0 0.072" > temp_acqparams.txt ;\

Example 5 | Continued

Frontiers in Neuroinformatics | www.frontiersin.org 12 February 2016 | Volume 10 | Article 2

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Askren et al. Neuroimaging with Make

for i in ‘seq 1 $(NUM_DIFFUSION_VOLS)‘; do echo 1 >> temp_index.txt;

done ;\

eddy --imain=raw_diffusion.nii.gz --mask=brain_mask.nii.gz --index=

temp_index.txt --acqp=temp_acqparams.txt --bvecs=bvec --bvals=bval

--out=mec_diffusion --niter=$(EDDY_ITERATIONS) -verbose ;\

rm temp_acqparams.txt temp_index.txt

topup_results_movpar.txt: raw_diffusion.nii.gz acqparams.txt

fslroi raw_diffusion.nii.gz S0_images.nii.gz 0 2 ;\

topup --imain=S0_images --datain=acqparams.txt --

config=$(PROJECT_DIR)/lib/b02b0_$(TOPUP_MODE).cnf --out=topup_results

--fout=field_est --iout=unwarped_S0_images --verbose

ifeq ($(SDC_METHOD),TOPUP)

sdc_mec_diffusion.nii.gz: raw_diffusion.nii.gz topup_results_movpar.txt index.txt

eddy --imain=raw_diffusion.nii.gz --mask=brain_mask \

--acqp=acqparams.txt --index=index.txt --bvecs=bvec \

--bvals=bval --topup=topup_results \

--out=sdc_mec_diffusion.nii.gz -niter=$(EDDY_ITERATIONS) -verbose

else ifeq ($(SDC_METHOD),FUGUE)

sdc_mec_diffusion.nii.gz: mec_diffusion.nii.gz fieldmap.nii.gz

fugue --loadfmap=fieldmap.nii.gz --dwell=$(ECHO_SPACING) \

-i mec_diffusion.nii.gz -u sdc_mec_diffusion.nii.gz \

--unwarpdir=$(UNWARP_DIRECTION) -v

else

$(error ERROR: neither fieldmap for FUGUE nor acquisition parameter file for

TOPUP were found)

endif

tensor: sdc_mec_diffusion.nii.gz brain_mask.nii.gz bvec bval

dtifit -k sdc_mec_diffusion.nii.gz -r bvec -b bval \

-m brain_mask -o dti

Example 5 | DTI Distortion Correction with Conditionals.

Integration of Software Packages
One of the strongest motivations to write one’s own workflow
is to be able to use the best tools available for any task, even
if some of those tools are found in other software packages.
The challenge is making tools from different packages work
together seamlessly when one is necessarily introducing an edge
case that the developers of the software packages could not
have anticipated. In Example 6 (explained in more detail in
Supplemental Materials: Using ANTs Registration with FEAT),
a directory created by FSL’s feat for a first-level (timeseries)
analysis is modified to allow for running a follow-up higher level
feat analysis in standard space without relying on FSL tools for
registration from functional to standard space. To accomplish

this with registrations calculated using the ANTs package, ANTs
is used to move the statistic images from the first level feat

into standard space, and then output files are created using the

naming conventions of the FSL package. This allows later FSL

processing to continue without error. An interesting feature of

this example is that it includes aMake function written to identify

all of the available statistic (cope, varcope) images without having

to specify them explicitly. The variable number of statistics

images are identified and rules to Make are created when Make
is run. With this method, Make can be allowed to parallelize
registration of the statistic images which do not depend on each
other.

Frontiers in Neuroinformatics | www.frontiersin.org 13 February 2016 | Volume 10 | Article 2

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Askren et al. Neuroimaging with Make

FirstLevelReg: FirstLevelFeats $(allupdatereg)

define make-cope

Tapping/%.feat/reg_standard/stats/$(notdir $(1)): Tapping/%.feat/stats/$(notdir $(1))

xfm_dir/T1_to_mni_Warp.nii.gz xfm_dir/T1_to_mni_Affine.txt xfm_dir/%_to_T1_ras.txt

mkdir -p ‘dirname $$@‘ ;\

export ANTSPATH=$(ANTSpath) ;\

$(ANTSpath)/WarpImageMultiTransform 3 $$(word 1,$$^) $$@ -R

$(STD_BRAIN) $$(word 2,$$^) $$(word 3,$$^) $$(word 4,$$^)

endef

$(foreach c,$(allupdatereg),$(eval $(call make-cope,$c)))

Example 6 | Registration of feat outputs with ANTs.

FIGURE 5 | Dependency graph for Example 5. Rectangles represent files, and the ellipse represents a phony target (not an actual file). Yellow shaded rectangles

are programs installed on the system that are part of the default Linux distribution or FSL utilities, and are important for provenance but not dependency checking. To

simplify the graph we do not include full paths to these programs as we did in Figure 2.

DISCUSSION

None of the individual tools described in this paper are
novel. The novelty is that we demonstrate how they may
be used in combination to quickly implement sophisticated
and dynamic neuroimaging workflow, with a supporting
manual, lab practicals, and data and examples downloadable
from NITRC. The simplicity of using a build system to

track workflow has been described for spike train analysis
(Denker et al., 2010) and anecdotally noted in several blog
postings as a feature for reproducible science (Butler, 2012;
Hyndman, 2012; Bostock, 2013; Hambley, 2013; Jones,
2013). This has driven development of several Make-like
systems geared toward specific types of data analysis (e.g.,
Drake, Factual, 2015, Nextflow, Tommaso, 2015). Instead
of designing a new neuroimaging workflow system we

Frontiers in Neuroinformatics | www.frontiersin.org 14 February 2016 | Volume 10 | Article 2

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Askren et al. Neuroimaging with Make

have chosen to illustrate what can be done with existing
technologies.

It should be noted that although usingMake to track workflow
helps scientists to be able to reproduce their findings in the sense
of obtaining the same results using the same data and software,
nothing about Make will help to improve reproducibility in
the sense of conducting new experiments on different data
(Collaboration, 2015). However, because workflows can be coded
using Make and shared across UNIX systems with minimal
software installation effort, like scripts, they can contribute to
sharing and replicating identical processing steps on different
data sets.

SPM and FSL provide graphical user interfaces for codified
analyses that offer limited flexibility. Within FSL, tools like
FEAT allow the user to select from pre-specified processing
and analyses steps to be applied in a specific recommended
order, and basic shell scripts can be used to modify output
from these GUIs to generalize across subjects. Similarly,
within the SPM GUI, individual steps can be selected
and combined within the batch system to create simple
MATLAB scripts. These systems are useful for the introductory
user; however, they lose some of their appeal when the
scientist wants to combine tools from multiple packages or
introduce custom packages in the middle of the pre-specified
workflow.

We argue that there is a lack of workflow options that
exist just beyond scripting, for people who want to do a more
conceptually sophisticated analysis, or even a simple analysis on
a very large scale. With the availability of large open datasets,
there is a growing market for both types of people. When
workflows must be frequently modified and are expected to scale,
minimizing the complexity of code that must be understood
and edited to make these changes is important. This is the use
case addressed by this paper. Our target audience is people
who can become familiar with basic coding principles, but
who either lack the skills or the interest for extensive software
development.

One of the advantages of Make as a workflow solution for
this audience is that it does not wrap or abstract the details of
neuroimaging command arguments, except by defining phony
targets. When standards are established, implementing layers
of abstraction (while preserving performance) improves ease
of use, in terms of skill required and time to implement,
debug, and maintain workflows. Wrappers can also be used
to add additional checks for correctness of inputs and calling
conventions. However, in a dynamic neuroimaging environment,
every time a new version of a wrapped package is released
there is the potential for many things to break, and individual
users must wait for the person maintaining the wrappers to
fix them. Including a new package means having to wrap
it (and maintain it) to interoperate with everything else.
Therefore, the decision of how much abstraction a workflow
system should provide should ultimately be based upon a
cost-benefit analysis of the cost of the additional time and
software expertise needed to maintain it (dependent upon
the frequency of changes to pipelines and the underlying

abstracted software layers) compared to the benefits of providing
such abstractions (in terms of ease of use and improved
functionality).

Make is not without limitations. It is necessary to be
willing to code to use it; it does not have a graphical user
interface for designing dependency graphs (such as LONI
pipeline). However, complicated syntax is not required for many
examples that afford the parallelization and fault tolerance not
provided by a shell script, and more sophisticated features
can be mastered by copying existing examples. It relies upon
file timestamps, so it cannot transparently operate on web
resources (e.g., images stored in XNAT databases) without
first downloading the files. To handle large analysis directories
it is necessary to select specific output files that represent
late-stage products to “stand-in” for the analysis. Reliance
upon the file system is a potential performance problem
for neuroimaging applications as parallelism scales and a
common file system becomes a bottleneck. However, some
file output is necessary for fault tolerance. We envision that
some optimization of existing neuroimaging applications will
ultimately be necessary to use I/O more intelligently in a parallel
environment. Because none of the neuroimaging applications
are wrapped, provenance cannot be tracked by the wrappers
themselves and must be handled elsewhere. We have described
the use of R Markdown to generate provenance reports.
Although cluster parallelism is seamless with qmake and SGE,
a parallel scheduler-enabled version of Make does not exist
for all cluster environments. We rely upon recursive Make
to descend into subject directories and call itself to conduct
subject-level processing. Much has been written on the pitfalls
of recursive Make (Miller, 1997); however, the problems with
descending into multiple build directories stem primarily from
an inability to control dependencies between directories. We
assume each subject is individual and fully exchangeable with
others; therefore these criticisms do not apply to our use of
Make.

GNU Make is open source and these features could
be modified, or potentially addressed by use of one of
the many other featureful build systems based on Make.
In fact, in 1979 Feldman noted that more complex file
comparisons than simple timestamps could be implemented
to expand functionality. However, to make such modifications
we would begin to sacrifice the stability and reliability of
GNU Make. Having a stable workflow system is a necessity
when neuroimaging applications and practices are constantly
being changed as the science progresses. We suggest that
Make represents a large step toward scientific goals of
reproducibility, parallel execution and fault tolerance, with
only a modest increase in programming demands over shell
scripts.

AUTHOR CONTRIBUTIONS

MA, TM, ZM, MR: Conception and development of technology.
TMD, NK: Substantial editing of supplemental manual. All:

Frontiers in Neuroinformatics | www.frontiersin.org 15 February 2016 | Volume 10 | Article 2

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Askren et al. Neuroimaging with Make

Conception and design, drafting and revising, individual
examples, and final approval.

ACKNOWLEDGMENTS

This research was supported by grants from the National
Institutes of Health 1RC4NS073008-01, P50NS062684, the
Eunice Kennedy Shriver National Institute of Child Health

and Human Development grant no. P50HD071764, NIMH
5R01MH104313, and NIMH PA-13-302.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fninf.
2016.00002

REFERENCES

Bostock, M. (2013).Why Use Make. Available online at: http://bost.ocks.org/mike/

make/

Butler, P. (2012).Make for Data Scientists. Available online at : http://bitaesthetics.

com/posts/make-for-data-scientists.html

Carp, J. (2012). The secret lives of experiments: methods reporting in the

fMRI literature. Neuroimage 63, 289–300. doi: 10.1016/j.neuroimage.2012.

07.004

Collaboration, O. S. (2015). Estimating the reproducibility of psychological

science. Science 349:aac4716. doi: 10.1126/science.aac4716

Denker, M., Wiebelt, B., Fliegner, D., Diesmann, M., and Morrison, A. (2010).

“Practically trivial parallel data processing in a neuroscience laboratory,” in

Analysis of Parallel Spike Trains, Vol. 7, eds G. Sonja and R. Stefan (Carp, ON;

New York, NY Dondrecht, Heidelberg, London: Springer), 413–436.

Dice.com. (2015). Dice Tech Salary Report. Available online at: http://marketing.

dice.com/pdf/Dice_TechSalarySurvey_2015.pdf

Factual, I. (2015). Drake. Available online at: https://github.com/Factual/drake

Feldman, S. I. (1979). Make—a program for maintaining computer programs.

Software 9, 255–265. doi: 10.1002/spe.4380090402

Foster, I. (1995). Designing and Building Parallel Programs. Boston, MA: Addison-

Wesley.

Gorgolewski, K., Burns, C. D., Madison, C., Clark, D., Halchenko, Y. O.,

Waskom, M. L., et al. (2011). Nipype: a flexible, lightweight and extensible

neuroimaging data processing framework in python. Front. Neuroinform. 5:13.

doi: 10.3389/fninf.2011.00013

Graham-Cumming, J. (2005). Self-Documenting Makefiles. Available online at:

http://www.cmcrossroads.com/article/self-documenting-makefiles

Graham-Cumming, J. (2015). The GNUMake Book. San Francisco, CA: No Starch

Press.

Halchenko, Y. O., and Hanke, M. (2012). Open is not enough. Let’s take the next

step: an integrated, community-driven computing platform for neuroscience.

Front. Neuroinform. 6:22. doi: 10.3389/fninf.2012.00022

Halchenko, Y. O., Hanke, M., and Alexeenko, V. (2014). “NeuroDebian: an

integrated, community-driven, free software platform for physiology,” in Paper

presented at the Proceedings of The Physiological Society (London).

Hambley, L. (2013). GNUMake, Still Great for Workflow Control. Available online

at: http://lee.hambley.name/2013/01/07/gnu-make-still-great-for-workflow-

control.html

Hanke,M., andHalchenko, Y. O. (2011). Neuroscience runs onGNU/Linux. Front.

Neuroinform. 5:8. doi: 10.3389/fninf.2011.00008

Hunt, E., and Madhyastha, T. M. (2012). Cognitive demands of the workplace.

J. Neurosci. Psychol. Econ. 5, 18–37. doi: 10.1037/a0026177

Hyndman, R. J. (2012). Makefiles for R/LaTeX Projects. Available online at: http://

robjhyndman.com/hyndsight/makefiles/

Jones, Z. M. (2013).GNUMake for Reproducible Data Analysis. Available online at:

http://zmjones.com/make/

Keator, D. B., Poline, J.-B., Nichols, B. N., Ghosh, S. S., Maumet, C.,

Gorgolewski, K. J., et al. (2015). Standardizing metadata in brain

imaging. Front. Neurosci. Conference Abstract: Neuroinformatics 2015.

doi: 10.3389/conf.fnins.2015.91.00004

Köster, J., and Rahmann, S. (2012). Snakemake—a scalable bioinformatics

workflow engine. Bioinformatics 28, 2520–2522. doi: 10.1093/bioinformatics/

bts480

MacKenzie-Graham, A. J., Van Horn, J. D., Woods, R. P., Crawford, K. L., and

Toga, A. W. (2008). Provenance in neuroimaging. Neuroimage 42, 178–195.

doi: 10.1016/j.neuroimage.2008.04.186

Martin, K., and Hoffman, B. (2013). Mastering CMake. Kitware, Inc. Available

online at: http://www.kitware.eu/products/img/CMakeBook_SearchInside.

pdf

Miller, P. (1997). Recursive make considered harmful. Australian UNIX and Open

Systems User Group Newsletter 19, 14–25.

Moler, C. (1986). “Matrix computation on distributed memory multiprocessors,”

in Hypercube Multiprocessors, ed M. Heath (Philadelphia, PA: Society for

Industrial and Applied Mathematics), 181–195.

Peng, R. D. (2009). Reproducible research and Biostatistics. Biostatistics 10,

405–408. doi: 10.1093/biostatistics/kxp014

Peng, R. D. (2011). Reproducible research in computational science. Science 334,

1226–1227. doi: 10.1126/science.1213847

Pfeiffer, D., and Holt, G. (2013). Makepp. Available online at: http://makepp.

sourceforge.net

Poldrack, R. A., Fletcher, P. C., Henson, R. N., Worsley, K. J., Brett, M., and

Nichols, T. E. (2008). Guidelines for reporting an fMRI study. Neuroimage 40,

409–414. doi: 10.1016/j.neuroimage.2007.11.048

Rex, D. E., Ma, J. Q., and Toga, A. W. (2003). The LONI pipeline processing

environment. Neuroimage 19, 1033–1048. doi: 10.1016/S1053-8119(03)

00185-X

Rstudio (2015). R Markdown. Boston, MA: Rstudio.

Tommaso, P. D. (2015). Nextflow. Barcelona Center for Genomic Regulation

(CRG); Comparative Bioinformatics group. Available online at: http://www.

nextflow.io/

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Askren, McAllister-Day, Koh, Mestre, Dines, Korman, Melhorn,

Peterson, Peverill, Qin, Rane, Reilly, Reiter, Sambrook, Woelfer, Grabowski and

Madhyastha. This is an open-access article distributed under the terms of

the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) or licensor

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 16 February 2016 | Volume 10 | Article 2

http://journal.frontiersin.org/article/10.3389/fninf.2016.00002
http://bost.ocks.org/mike/make/
http://bost.ocks.org/mike/make/
http://bitaesthetics.com/posts/make-for-data-scientists.html
http://bitaesthetics.com/posts/make-for-data-scientists.html
http://marketing.dice.com/pdf/Dice_TechSalarySurvey_2015.pdf
http://marketing.dice.com/pdf/Dice_TechSalarySurvey_2015.pdf
https://github.com/Factual/drake
http://www.cmcrossroads.com/article/self-documenting-makefiles
http://lee.hambley.name/2013/01/07/gnu-make-still-great-for-workflow-control.html
http://lee.hambley.name/2013/01/07/gnu-make-still-great-for-workflow-control.html
http://robjhyndman.com/hyndsight/makefiles/
http://robjhyndman.com/hyndsight/makefiles/
http://zmjones.com/make/
http://www.kitware.eu/products/img/CMakeBook_SearchInside.pdf
http://www.kitware.eu/products/img/CMakeBook_SearchInside.pdf
http://makepp.sourceforge.net
http://makepp.sourceforge.net
http://www.nextflow.io/
http://www.nextflow.io/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	Using Make for Reproducible and Parallel Neuroimaging Workflow and Quality-Assurance
	Introduction
	Programming Skill Vs. Flexibility
	Implementation
	Organizing Neuroimaging Projects to Work with Make
	Parallel Execution
	Fault Tolerance
	Writing Self-Documenting Makefiles
	Debugging

	Quality Assurance and Data Provenance
	Quality Assurance
	Data Provenance

	Usage Examples
	Registrations
	Conditional Processing
	Integration of Software Packages

	Discussion
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

