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Single-cell RNA sequencing allows highly detailed profiling of cellular immune responses from limited-volume samples, advancing
prospects of a new era of systems immunology. The power of single-cell RNA sequencing offers various opportunities to decipher
the immune response to infectious diseases and vaccines. Here, we describe the potential uses of single-cell RNA sequencing
methods in prophylactic vaccine development, concentrating on infectious diseases including COVID-19. Using examples from
several diseases, we review how single-cell RNA sequencing has been used to evaluate the immunological response to different
vaccine platforms and regimens. By highlighting published and unpublished single-cell RNA sequencing studies relevant to
vaccinology, we discuss some general considerations how the field could be enriched with the widespread adoption of this technology.

1. Introduction

Vaccines are one of the most effective public health interven-
tions in history and have been extremely successful in
preventing illness and death from many infections. Much of
this success can be attributed to the discovery of disease-
causing agents and/or by the discovery of how to cultivate
these pathogens to allow large-scale production of attenuated
vaccines. While it is clear that effective vaccines induce
protective immunological memory, the precise mechanisms
by which this manifests are often poorly understood. More-
over, there are many diseases against which we have not
developed successful vaccines, often a result of not fully
understanding the “ideal” immune response and/or how to
induce this with vaccination. Currently used techniques, such
as ELISAs, ELISpots, flow cytometry, and growth inhibition
assays, broadly measure responses in the T cell or humoral
compartments after vaccination, but cannot agnostically
measure differences in response between single immune cells
[1–3]. Single-cell RNA sequencing (scRNA-seq) is a relatively
novel tool which provides the advantage of understanding

responses to vaccination at the level of the individual cell in
an unbiased manner.

RNA sequencing quantitatively profiles the cellular tran-
scriptome. Polyadenylated messenger RNA (mRNA) mole-
cules are often the target as the polyA tail is a convenient
handle to selectively target the protein-coding mRNA (as
opposed to other RNA types). In bulk RNA-seq studies,
many thousand cells may be pooled together, obscuring
heterogeneity. scRNA-seq (in contrast to bulk) allows the
dissection of previously unappreciated levels of heterogene-
ity. This is a major motivation for embarking in scRNA-seq
studies [4, 5]. Over 25 scRNA-seq techniques have been
developed in just over a decade, all essentially following five
steps: (1) single cell isolation, (2) cell lysis and RNA capture,
(3) RNA reverse transcription to cDNA, (4) cDNA amplifica-
tion, and (5) pooling and sequencing using library prepara-
tion, pooling, and next-generation sequencing techniques
[5]. Some of the most used scRNA-seq techniques include
Smart-seq2 [6], MARS-seq [7], 10x Genomics Chromium
[8], inDrop [9], and Seq-Well [10]. The precise differences
between these techniques have been discussed extensively by
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Kolodziejczyk and colleagues [11], with the major differences
relating to the resulting transcript data (including sensitivity,
accuracy, and transcript portion profiled), throughput,
single-cell isolation method, and sequencing platform.

The relative paucity of published reports of single-cell tran-
scriptomic responses in the context of vaccination suggests that
there remainsmuch to be learned from scRNA-seq. As with all
new techniques, there are difficulties in establishing robust,
scalable, and cost-effective protocols for the generation and
analysis of scRNA-seq data [12]. However, these obstacles are
countered by the opportunity to elucidate complex networks
of cell interactions and immune responses and the potential
to identify novel or unanticipated response profiles, which
have been beyond the scope of bulk RNA and other sequenc-
ing technologies. scRNA-seq can serve as the backbone for
several other “omics” technologies, where the transcriptome
can be profiled in the same cell as well as surface proteins
(CITE-seq and REAP-Seq) [13, 14], chromatin accessibility
(ATAC-seq) [15], and genomes (G&T-seq and DR-seq)
[16–18]. The combination of these technologies allows new
subpopulations to be revealed, which would not otherwise
be possible by the use of each alone [19, 20], although in-
depth discussion of these technologies is beyond the scope
of this review.

This review considers the applications of scRNA-seq in
prophylactic vaccine development, with a focus on infectious
diseases. We use examples from several diseases to demon-
strate the flexibility of the technology. We explore published
and unpublished literature to highlight existing applications
of this technology and provide recommendations and
predictions as to how vaccinology could be enriched with
its widespread adoption. To illustrate the adaptability of
scRNA-seq, we present the case study of COVID-19 vaccine
development and discuss the contribution unbiased tran-
scriptional profiling could make.

2. Profiling Immune Responses to Infections

Our understanding of the mechanisms underlying immune
responses in health and disease has important implications
for vaccine design. Previously, targeted techniques have
allowed us insights into specific parts of the immunological
system during development, during infection, and after infec-
tion. scRNA-seq allows the immune system to be studied in an
unbiased manner. Additionally, studying single cells allows
quantitation of the heterogeneity in systems and to resolve
time during dynamic processes. Studying the immune
response to infection can provide a window to understanding
the challenges that must be overcome by vaccination. This is
particularly relevant in diseases such as influenza or malaria
where natural infection does not engender complete protec-
tion [21, 22]. Here, we highlight uses of scRNA-seq for profil-
ing different components of the immune response in the
context of natural or artificial infection, as well as concurrent
sequencing of pathogen and host, and responses in the specific
context of controlled human infection studies.

2.1. Innate and Adaptive Responses to Pathogens. The partic-
ular innate cell types and pathways that trigger an effective

adaptive immune response have been the focus of recent
work by Blecher-Gonen et al. The authors used scRNA-seq
to characterise the initial 48 hours of the cellular response
to several fluorescently labelled inactivated pathogens [23].
As early as 24 hours after immunisation, relatively rare
antigen-carrying cells showed pathogen-restricted programs
of transcription. Fluorescent antigen-positive neutrophil and
monocyte populations were found almost exclusively in inac-
tivated Mycobacteria-immunised mice, whereas antigen-
positive macrophages were mainly found in inactivated
Candida-immunised mice. This analysis elucidates initial
pathways after inactivated vaccine administration and shows
that scRNA-seq can disentangle populations that vary widely
in lineage, activation status, and antigen uptake. Further work
is needed to identify whether these different innate pathways
do in fact correlate with natural or vaccine-induced protec-
tion. If they did, regimens could include adjuvants and use
specific platforms to trigger the type of innate activation that
has been identified to be protective. Indeed, scRNA-seq
would be a well-suited tool for this subsequent work.

Long-lived plasma cells are crucial to maintaining high
levels of antibodies long after infection and vaccination [24].
Lam et al. prospectively sorted subsets of plasma cells formed
in response to natural infections in mice and performed
scRNA-seq to define plasma cell transcriptional heterogeneity
[25]. In keeping with previous reports [26], approximately a
third of plasma cell transcriptomes were made up of kappa
light chain constant region transcripts. Despite there being
significantmetabolic differences in the subsets of plasma cells,
metabolic state did not appear to correlate with transcrip-
tional profile. Genes crucial for B cell longevity, including
CD28, BLIMP-1, and B-cell maturation antigen, were not
differentially expressed across plasma cells, regardless of
longevity. There were no stable changes in transcription
between long- and short-lived plasma cell subsets. Despite
glucose uptake being shown to be important for plasma cell
longevity and it being known that transcriptional changes
are essential for the establishment of metabolic programs in
plasmablasts [27], transcription does not seem to distinguish
mature plasma cell subsets further. Indeed, a multiomic tool
may assist in resolving these subsets—differences may be
accounted for at the protein level by translational control.
Analogous studies also need to be performed in humans to
determine whether plasma cells generated in response to
natural infection and vaccination behave similarly and
whether further transcriptional investigation is necessary.

Peripherally circulating CD8+ T cells have been associ-
ated with immune control of HIV [28]. Elite controllers of
HIV are people who, in the absence of antiretroviral therapy,
suppress viral replication (in contrast to chronic progres-
sors). Nguyen et al. compared the characteristics of HIV-
tetramer-specific CD8+ T cells in the blood and lymph nodes
of elite controllers and chronic progressors [29]. Weakly
cytolytic CD8+ T cells preferentially homed to B cell follicles
and vigorously suppressed replication of HIV in elite control-
ler lymph nodes. These CD8+ T cells upregulated expression
of numerous soluble factors and cytokines and downregu-
lated inhibitory receptors. The authors argued that these
features identified a CD8+ protective immune signature in
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EC. These results provide guidance for vaccine design,
towards the type of CD8+ T cell signature that may be neces-
sary for effective vaccine-induced protection.

MemoryCD4+T cells are required for long-lived immunity
and are induced by vaccination strategies, including against
malaria and influenza [30, 31]. Additionally, influenza-
specific CD4+ T cells correlate with protection against influ-
enza challenge in humans [32]. To this end, Ciucci et al.
profiled the transcriptional programs driving CD4+ T cell
heterogeneity and memory T cell development [33]. The
authors performed iterative scRNA-seq profiling of total T
cells, CD4+ T cells, and virus-specific CD4+ T cells at seven
days post lymphocytic choriomeningitis virus infection in
mice. By comparing the gene expression differences in clus-
ters, Ciucci et al. identified a specific T cell memory precursor
signature. The establishment of the memory precursor signa-
ture and generation of a long-lived CD4+ response required
the transcription factor Thpok. Knowledge of this signature
and the mechanistic importance of Thpok in early CD4+ T
cell memory could be used to predict longer term CD4+
responses induced by vaccination and, potentially, the gener-
ation or lack of vaccine-induced protection.

Rato and colleagues used scRNA-seq to investigate CD4+
T cell heterogeneity prior to HIV infection [34]. To explore
the basis of CD4+ T cell permissiveness to HIV infection,
they examined for the growth, and infection-permissiveness,
of primary cells by a pseudotyped HIV-based vector. The
main factor determining transcriptional heterogeneity was
the degree of response to TCR stimulation, or cellular activa-
tion, which, in turn, manifested in varying degrees of HIV
permissiveness. “HIV-permissive cells” identified prior to
infection allowed discovery of a gene signature that divided
populations into high- and low-permissive subsets. In a sim-
ilar study, single-cell viral RNA quantitation was performed
to demonstrate the correlation between cell gene expression
and HIV latency [35]. Analogous immunoprofiling analyses
could be performed in the context of vaccinated individuals
to determine whether HIV-permissive or HIV-resistant cells
are enriched and whether these populations correlate with
vaccine-induced protection.

2.2. Dual scRNA-seq of Pathogen and Host. scRNA-seq can be
deployed to simultaneously interrogate both pathogen and
host transcriptomes. Transcriptional profiling at high resolu-
tion has enabled an in-depth appreciation of the cellular
diversity in biological organisms and the number of tran-
scriptional states during infection. This can allow the inter-
pretation of immune responses to intracellular pathogens at
single-cell resolution, as bulk isolates are often heterogeneous
[36]. Host-pathogen scRNA-seq has been comprehensively
reviewed by Penaranda and Hung [37], but close consider-
ation of how dual scRNA-seq, the simultaneous scRNA-seq
analysis of a pathogen and its infected host, can be leveraged
for specific vaccinology uses is warranted.

Several groups have recently used dual scRNA-seq to
profile virally infected cells and draw insights from tran-
scriptome information [38–42]. O’Neal et al. revealed the
feasibility and value of West Nile Virus- (WNV-) inclusive
scRNA-seq as a method for single-cell transcriptomics and

WNV RNA detection [38]. There was extreme heterogeneity
in viral quantity and antiviral gene expression among in vitro
infected cells. The expression of IFN-stimulated genes in
single cells negatively correlated with intracellular viral
RNA abundance. Selecting vaccine adjuvants or platforms
to generate IFN-stimulated gene products may therefore be
a promising WNV vaccine approach. Similarly, Russell and
colleagues profile host and influenza virus mRNAs from a
variety of cell lines early after in vitro infection [39]. They
demonstrate astonishing differences in the transcriptional
load resulting from influenza infection between ostensibly
identical cells in spite of a relatively pure influenza inoculum.
These types of approaches could be implemented ex vivo in
the case of human challenge-compatible pathogens such as
influenza to provide insights into the cellular characteristics
associated with vaccine-induced protective immunity.

2.3. HumanChallenge Studies.Responses to infection can also
be interrogated in a more regulated setting using controlled
human infection models. These involve the direct inoculation
of an infectious agent in order to evaluate the subsequent
immune response and/or potential protective efficacy of inter-
ventions. Barton et al. have already discussed the use of tran-
scriptomics in controlled human infection models [43]. Here,
we discuss specific cases where scRNA-seq could be leveraged
for particular benefit in vaccine development.

In the context of malaria, Tran et al. set out to profile the
differences in the bulk blood transcriptome of challenge-
protected and challenge-nonprotected volunteers during
and after malaria immunisation [44]. The authors found
robust transcriptomic changes, four weeks after immunisa-
tion, that were unique to protected volunteers. These changes
included T cell, NK cell, protein synthesis, and mitochondrial
signatures. The authors detected similar signatures three
weeks after controlled human malaria infection (CHMI)
and hypothesised that ongoing T cell memory response and
clearance of antigen was driving this signal and mediating
protection frommalaria. scRNA-seq could extend these anal-
yses by characterising immune subsets associated with pro-
tection and by identifying TCR clones, across time points,
that share enrichment of hypothesised protective pathways
to determine if clones are maintained and if there is a clonal
dominance in protected individuals.

Mpina and colleagues assessed variations in NK, NKT,
and MAIT cell populations using samples from a CHMI
study of Tanzanian adults challenged with P. falciparum
parasites [45]. CHMI decreased MAIT cell frequencies dur-
ing blood-stage malaria and was followed by a “rebound”
increase in circulating MAIT frequency for up to 168 days
post CHMI. These cells showed distinct single-cell RNA
expression profiles at each time point suggesting that MAIT
cells respond to sporozoite challenge by day 9 and do not
return to baseline transcriptional in the time period exam-
ined. Although MAIT cells express an invariant α chain,
there are differences in the CDR3 junctions that allow track-
ing of cell clones. Interestingly, there were no changes in the
relative distribution of MAIT cell clones by day 28 after
CHMI. This paper demonstrates that the utility of scRNA-
seq is not only restricted to interrogating the adaptive
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immune response. Innate-like and innate cellular responses
are likely critical, and underappreciated, to adjuvant and
vaccine efficacy [46], as such scRNA-seq is a tool that can
unlock insights from human challenge models.

It is clear that scRNA-seq could provide valuable insights
for vaccine redesign and targeting in the context of controlled
human infection models. Indeed, owing to the relatively
common use of these models in malaria vaccine develop-
ment, most of the published analyses relate to this pathogen.
Investigation of other pathogens used in challenge models,
such as influenza, Salmonella typhi, and BCG [47–49], will
likely benefit from scRNA-seq adoption. There is likely to
be a vast number of blood samples that have already been
obtained in these types of studies, on which it is not possible
to perform scRNA-seq, for example, blood sampled in PAX-
gene Blood RNA Tubes or bulk RNA extracted from periph-
eral blood mononuclear cells (PBMC). CIBERSORTx [50],
MuSIC [51], Bseq-SC [52], and deconvSeq [53] are tools that
could be used to deconvolute bulk RNA-seq data derived
from these samples. Use of CIBERSORT [54] suggests that
P. vivax CHMI induces potent immunosuppression medi-
ated by dendritic cells and that this immunosuppression
conditions subsequent antimalarial immunity [55]. While
these tools are incredibly useful in situations where bulk
RNA has been isolated, they function by using known
single-cell transcriptional signatures and do not serve as
discovery tools for new pathways and cellular heterogeneity.
Thus, there is importance of implementing and comprehen-
sion of scRNA-seq techniques by vaccinologists.

3. Vaccine Evaluation

The evaluation of the immune response to vaccination in both
the preclinical and clinical phases is central to the prediction
of success in disease protection. Antibody titres are correlates
of protection for many, if not most, vaccines and vaccine can-
didates [62]. These can be measured with minimal sample
preparation and equipment, and as a result, we rely heavily
on titres as correlates of protection. Antibodies, however, are
not always sufficient for protection. Cellular immunity can kill
or suppress intracellular pathogens and may synergise with
antibodies. T cell responses are indispensable and probably
understudied as correlates of protection. Assessment of B
and T cell clonality induced by vaccines, vaccine-induced cell
phenotypes, and transcriptional signatures associated with
protection are all important avenues of investigation that
can be achieved through scRNA-seq. Here, we focus on exam-
ples of scRNA-seq used as a tool for comparison of vaccina-
tion routes and regimens, applications for BCR and TCR
analyses, and also comment on cancer vaccines.

3.1. Comparing Vaccine Regimens and Responses. Immuno-
genicity of vaccines is modulated by a number of factors
including vaccine antigen, vaccine platform, and adjuvant.
scRNA-seq allows the impacts of these to be investigated with
a high degree of specificity. scRNA-seq can also be used to
characterise the heterogeneity in response to different
vaccine regimens. Sheerin et al. performed comparative tran-
scriptomics of the response to the capsular group Bmeningo-

coccal vaccine (4CMenB), administered concomitantly with
other vaccines and on its own, and the response to its constit-
uent antigens or several comparator antigens in mice ([63];
Table 1). The authors found neutrophil-specific genes were
enriched at 24 hours following 4CMenB vaccination using
bulk RNA-seq. To resolve whether concomitant immunisa-
tion resulted in differential transcriptional activity of neutro-
phils, scRNA-seq was performed on neutrophils isolated
from 4CMenB+ routine vaccines or routine vaccines-only
immunised groups. Here, scRNA-seq has been used to char-
acterise the specific innate immune receptor genes involved
in different vaccine regimens providing mechanistic insight
into differences in reactogenicity.

Vaccine human challenge studies (VHCS), a subset of
controlled human infection models discussed above, involve
the direct evaluation of vaccine efficacy by administration of
an infectious agent to human volunteers after vaccination.
Since the inception of VHCS such as those by Theodore
Woodward in the 1940s [64], the means to evaluate vaccines
have expanded past vaccine efficacy, clinical symptoms, and
antibody titres. To date, however, there have been no pub-
lished studies utilising scRNA-seq in the context of VHCS.
This technique could be used to dissect the heterogeneity of
cellular responses in participants with full, partial, or absent
vaccine-induced protection after infectious challenge. Addi-
tionally, monitoring alterations in the single-cell gene expres-
sion profile of the challenge microbe itself could significantly
improve understanding of host-pathogen interactions.
Dunachie et al. performed whole transcriptome profiling of
two groups receiving different malaria vaccine combinations
[65]. The transcriptomes of stimulated PBMCs from three
participants fully protected frommalaria showed enrichment
of modules associated with IFN induction and antigen
presentation. This was conserved across vaccine regimens
and suggests a common vaccine-induced protective pathway.
scRNA-seq could extend these analyses by dissection of the
particular cell types that contribute to these modules and
their relative contributions.

In addition to effects modulated by vaccine regimen, plat-
form, and immunisation route, there is ample evidence to
suggest that gene expression following immunisation can be
affected by adjuvant selection. Transcriptomic evaluation of
nonhuman primates (NHP) and human responses to vaccine
adjuvants, with and without vaccination, has largely been
restricted to bulk and/or microarray analyses [66–69]. Using
an NHP model to compare responses against the HIV Env
antigen with eight different adjuvants, Francica et al. [70]
demonstrated using microarrays with whole blood RNA that
TLR4 or 7 agonists had differential effects on the upregula-
tion of inflammatory and IFN genes. Furthermore, these
gene signatures correlated across all adjuvant groups with
antibody Fc functionality. Such comparative adjuvant studies
in NHPs can support downselection of candidates for trans-
lation to humans and provide better targeting of pathogen-
specific immune responses. There are thus opportunities for
scRNA-seq approaches to further our understanding of
adjuvant mode of action, which remains limited, and its
association with immunogenicity and/or efficacy. Specifically,
combining single-cell technologies with serial tissue sampling
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may allow superior insight into immune cell activation at the
site of immunisation and in the draining lymph nodes, events
which can be difficult to capture using other technologies.

3.2. BCR and TCR Analyses. For many pathogens, our under-
standing of protective epitopes is incomplete. In the study of
B cells, peptide arrays and phage displays are methods that
have been used for the discovery of linear epitopes [71, 72].
The search for T cell targets has frequently focused on
HLA-A∗02-restricted epitopes, prevalent in individuals of
Caucasian ancestry [73]. Epitope discovery relies on the iden-
tification of short peptide sequences within the longer
peptide product of the pathogen that evoke an immune
response. This can be determined experimentally using func-
tional assays such as interferon gamma ELISpot to identify T

cell responsiveness to different peptide sequences or compu-
tationally using peptide binding prediction algorithms
(reviewed in [74, 75]).

scRNA-seq methods have the potential to improve anti-
gen screening and selection, by providing a more accurate
picture of the immune response generated by vaccines with
different antigenic make-ups. The development of algorithms
that reconstruct T cell receptor sequences from single-cell
data allows parallel analysis of the T cell transcriptome and
TCR clonotype in multimer sorted antigen specific cells
[76, 77]. Redmond et al. describe single-cell TCRseq, a bioin-
formatic pipeline which identifies mRNA reads that align to
genes coding for the variable (V) and constant (C) regions
of the T cell receptor (TCR), to reconstruct paired alpha
and beta TCRs. Eltahla et al. describe an alternative

Generating, curating, and characterising single-cell datasets of well-known pathogen isolates at various stages of infection will allow
exploration of pathogen diversity and plasticity, which will ultimately aid in the identification of vaccine targets. The transcriptional
variation of several malaria parasite species has been interrogated using scRNA-seq [56]. Transcriptomes derived from 10 life-cycle
stages of a rodent malaria species, P. berghei, demonstrated 20 gene modules that encode proteins sharing related roles and that are
cotranscribed in the parasite life cycle. This work allowed for the deconvolution of human disease-causing species of the malaria par-
asite isolated from clinical samples. The close grouping of functionally related genes and the downselection of proteins whose genes are
not expressed in humans provide hope for better prioritisation of genes to develop vaccines. For example, targets for preerythrocytic
malaria vaccines might be found in the gene expression data for the cluster that includes the well-studied circumsporozoite protein, the
target of the RTS, S vaccine. Therefore, this is a clear example where systematic scRNA-seq can support applied research efforts in the
identification of new targets for vaccine and drug development. This is especially the case in situations where widespread genetic
knockdown/out screening is limited.

International collaborations including the Human Cell Atlas [57] and TCGA [58] are progressing, allowing comprehensive scRNA-seq
profiling of a diverse range of cells. Szabo and colleagues used scRNA-seq of more than 50,000 T cells frommultiple healthy tissues and
peripheral blood to develop a reference map of T cell activation and homeostasis in various sites. The authors projected the single-cell
expression profiles of tumour-associated T cells derived from several different human cancers onto the map of healthy T cell activation
conditions. In doing this, the authors provide insights into the activation states of T cells in tumours, for example, tumour-associated T
cells contain activated CD8+, but are devoid of activated CD4+, T cell states. This and other such reference maps could be used to mea-
sure and compare T cell activation in tissues and blood following vaccination.

Equally, new scRNA-seq reference maps following vaccination could provide vaccine-induced signatures that are known to correlate with
long-lived protection from disease and/or infection. For example, one could envisage a viral vector response reference map, where the
immunological responses to several virally vectored vaccines are profiled. More importantly, vaccination is almost exclusively performed
in young children and early adolescence [59]. Adult, paediatric, and neonatal immune systems respond differently to infectious and
inflammatory insults. It is therefore crucial to understand early life immune systems and develop appropriate transcriptomic reference
atlases separately from that of adults. More broadly, there are scientific and ethical imperatives to be as globally inclusive as possible in
the generation of these atlases, as failure to do so will only continue the trend of genetic studies involving and benefiting those of European
descent [60, 61].

Box 1: scRNA-seq reference atlases.

Table 1: Summary of prophylactic vaccinology publications using scRNA-seq.

Reference Cell type Species Vaccine pathogen scRNA-seq method

Afik et al. 2017. Nucleic Acids Res. [78] CD8+ T cells Human Yellow fever Smart-seq

Upadhyay et al. 2018. Genome Med. [80] Plasmablasts Human; Rhesus Influenza; SIV Smart-seq

Neu et al. 2019. J Clin Invest. [92] Plasmablasts Human Influenza Smart-seq/Spec-Seq

Cirelli et al. 2019. Cell. [81] B cells Rhesus HIV Smart-seq

Waickman et al. 2019. Nat Commun. [87] CD8+ T cells Human Dengue 10X

Sheerin et al. 2019. Sci Rep. [63] Neutrophils Mouse Neisseria meningitidis serogroup B 10X

Darrah et al. 2020. Nature. [133] T cells Rhesus Tuberculosis Seq-Well
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computational method, VDJ puzzle, to reconstruct TCR
sequences from scRNA-seq data. They show that this method
can identify TCR clones that are not detected by single-cell
PCR of the same sample and can link this analysis to the tran-
scriptome of a cell. These algorithms can be paired with
vaccine-reactive cell identification by fluorescent probes con-
jugated to vaccine antigens. For example, vaccine-reactive T
cells were identified following a single dose of a yellow fever
vaccine and were characterised by scRNA-seq with TCR
sequence linkage [78].

Methods using the transcriptome to identify vaccine-
responsive T cells without knowing their epitope specificity
have also been developed, which allows a broad understanding
of the T cell repertoire in response to vaccination. Fuchs et al.
used scRNA-seq to identify a genetic signature of virus-
responsive cells by performing scRNA-seq on dye-labelled
antigen-specific cells [79]. They identified key genes that are
differentially expressed in virus-responsive cells compared to
unresponsive cells and show the combined expression of
TNFRSF9, XCL1, XCL2, and CRTAM can be used to identify
antigen-specific T cells from an undifferentiated T cell popula-
tion. This enables identification of antigen-responsive cells
without the need to sort populations by fluorochrome-
labelled multimer prior to sequencing. Further studies of vac-
cine responses in controlled trials couldprovide better evidence
upon which to select the most immunogenic vaccine epitopes.

Upon antigen stimulation, B and T cells proliferate and
undergo clonal expansion; the BCR or TCR sequences are
effectively a “clonal barcode.” This can provide information
on antigen specificity and cell ancestry. A great strength of
scRNA-seq is the ability to obtain unbiased transcriptome
and V (D) J gene transcript usage information from the same
cell. With the advent of new scRNA-seq workflows, a prolif-
eration of bioinformatics tools to analyse these data has
necessarily occurred. BALDR, an example of such a bioinfor-
matic pipeline, is able to reconstruct the paired heavy and
light chain immunoglobulin gene sequences from scRNA-
seq data derived from Illumina short reads ([80]; Table 1).
Upadhyay and colleagues applied BALDR to single plasma-
blasts, splenic germinal centre B cells, and memory B cells
following vaccination of rhesus macaques with an HIV
vaccine. The reconstruction accuracy was 100% for the plas-
mablasts and >80% for the other cell populations, demon-
strating that even in rhesus macaques, a species with poor
annotation of the immunoglobulin loci, BALDR can recreate
paired antibody sequences. This tool has broad applications
in vaccinology and has already been used in the preclinical
assessment of HIV vaccines ([81]; Table 1).

In a similar fashion, TraCeR [82] and other tools [76–78]
allow for the reconstruction of full-length, paired T cell
receptor sequences from T cell scRNA-seq data. These
methods, however, are limited by either their reliance on
the plate-based Smart-seq2 method, Illumina short-read
sequencing, the need for a large number of sequencing reads
[83], or a failure to integrate switching diversity and alterna-
tive mRNA splicing involving the 3′ end of immunoglobulin
heavy chain mRNA [84]. Repertoire and Gene Expression by
Sequencing (RAGE-Seq) provides a means to sequence full-
length antigen receptor transcripts with Oxford Nanopore

sequencing and link this with short-read transcriptome
profiling at single-cell level [85]. This can also be applied to
droplet-based scRNA-Seq workflows. As the availability of
commercial assays to analyse antigen receptors—such as
10x Genomics V (D) J library preparation kits—becomes
more available, cost-effective, and user-friendly, antigen
specificity and ancestry of T and B cells following will be
more effectively understood.

In the context of dengue virus (DENV) vaccination,
approaches centred solely on B cell-mediated protection have
limitations [86]. CD4+ T cells are required to generate and
maintainB cell responses andCD8+T cells are critical for elim-
inating infected cells. Waickman et al. use scRNA-seq to assess
the diversity and long-lived nature of CD8+ T cell responses to
an experimental tetravalentDENVvaccine ([87]; Table 1). The
investigators followed T cell responses from acute activation to
memory time points and compared the overlap of TCR clono-
types. By looking at the occurrence of T cells with an expanded
TCRclonotype andby enumerating the presence of theseTCRs
at late time points, the authors were able to identify a memory
precursor subset of CD8+ T cells. These memory precursors
had enrichment of cellular metabolism and proliferation gene
pathways. Waickman and colleagues demonstrate the ability
of scRNA-seq as a tool to accurately and longitudinally track
vaccine-antigen-specific T cells across time to identify corre-
lates of T cell-mediated immunity with single-cell resolution.
Importantly, scRNA-seq is used in combination with flow
cytometry asmeans for both validation of discoveredmarkers
and further hypothesis testing.

Using scRNA-seq data, it is possible to predict cell tra-
jectories, that is, to computationally order cells along puta-
tive trajectories, by inferring how much progress an
individual cell has made through a given process (such as
cell differentiation). The above analyses by Waickman
et al. could be extended by using pseudotime tools such
as Monocle [88], Slingshot [89], or others (which are
benchmarked by Saelens et al. [90]) to infer a trajectory
of T cell differentiation. One could then infer as to whether
further differentiation is correlated with shared or “public”
TCR clones. RNA velocity [91], a high-dimensional vector
predicting the future state of an individual cell at a scale
of hours, could also be used to infer the directionality of
these cell state progression trajectories.

Pairing TCR sequence and transcriptome information
allows the discovery and exploration of new cell populations.
Afik and colleagues performed scRNA-seq on Yellow Fever
Virus (YFV) vaccine-reactive and other CD8+ T cells ([78];
Table 1). Unexpectedly, YFV-specific cells were found across
two clusters: one containing effector memory CD8+ T cells
and one containing naive CD8+ T cells, thus defining
“naïve-like” and “effector memory-like” YFV-specific CD8+
T cells. Combined TCR-transcriptome analysis revealed that
the CDR3 sequence was longer in naive-like compared to
memory-like cells for both alpha and beta TCR chain. In
addition, the authors compared scRNA-seq transcript abun-
dance to protein level by reviewing index sort flow cytometry
data, demonstrating the utility of coupling scRNA-seq with
other omics technologies. This is an example of how the
heterogeneity in the T cell compartment can be investigated
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following vaccination and accounted for by cell state and
TCR properties.

3.3. Evaluating Vaccination in High-Risk Populations. Immu-
nocompromised individuals are at risk of higher acquisition
and complication rates of many vaccine-preventable infec-
tious diseases such as seasonal influenza, respiratory syncytial
virus (RSV), and bacterial pneumonia. In parallel, immuno-
logical responses to vaccination are often less efficient com-
pared to healthy adults [98–101].

Optimising vaccine immunogenicity in immunosup-
pressed populations is paramount, but heterogeneous
underlying mechanisms of immunosuppression make this
challenging. Causes of altered immune states range from
pathological conditions (including primary immune deficien-
cies and/or acquisition of chronic viral infection with HIV or
cytomegalovirus (CMV)) to physiological states (including
neonates, pregnant, and older persons) and iatrogenic immu-
nosuppression following organ transplant or treatment for
autoimmune conditions. With respect to pathological condi-
tions, coinfections may further complicate vaccination, for
example, HIV with hepatitis B or hepatitis C virus.

Study of the immune response at the cellular level in con-
ditions of immunosuppression has demonstrated the
nuances of vaccination responses. For example, the contribu-
tion of humoral and cellular responses to both influenza and
RSV vaccination is altered in older compared to younger
adults [102–105]. Contrastingly, CMV infection is associated
with attenuated vaccine responses across age groups [106–
108]. scRNA-seq is ideally placed to discover how these
observations fit together, by profiling heterogeneous cell pop-
ulations in detail. Clusters of cellular functional networks can
be identified, which may in turn uncover key transcriptional
drivers that can be targeted to optimise vaccine responses.

scRNA-seq could be utilised in the study of alternative
vaccine regimens in the context of high-risk populations, to
evaluate changes in immunogenicity. For example, adjuvant
and increased dose influenza vaccines have been trialled in
multiple settings of immunosuppression including older
persons and transplant recipients (whose immunosuppres-
sive regimen can vary) [98]. Detailed immunological profiling
has not been conducted comparing, head to head, the response
to a given vaccine in these different groups. scRNA-seq would
be especially useful at discovering common signatures of
immunologically successful vaccination regimens, especially
in less common settings such as organ transplantation.

3.4. Personalised Cancer Vaccines. Cancer vaccines are differ-
ent from those protecting against infectious diseases in many
ways; most notably that they can be used in therapeutic and
personalised capacities [109]. Samples from tumour biopsies
or resections are composed of a variety of cell types including
tumour, immune, and mesenchymal cells. This assortment of
cell types can confound bulk RNA-seq data. Single-cell tech-
niques can tackle this challenge.

Single-cell transcriptomic profiling can be incorporated
into neoepitope selection and vaccine manufacture workflows.
Petti and colleagues performed matched whole-genome
sequencing and droplet-based scRNA-seq on samples from
patients with acute myeloid leukaemia [110]. They were able
to discriminate between tumour and wild-type cells, identify
abnormally differentiated tumour cells, and discover
mutation-associated transcriptional profiles. In doing so,
the authors identified surface markers that could be used to
purify and analyse subclones for downstream studies. The
approach developed in their paper could theoretically be
applied to any cancer type. In this case, scRNA-seq can
narrow personalised cancer vaccine workflows to mutations

Recently, efforts to produce and characterise monoclonal antibodies (mAb) have made impressive progress. mAbs with broadly neu-
tralising activity against specific antigens largely act through their Fab fragment specificities.

Our comprehension of the way antibody specificities interact with B cell function has remained limited due to the intricacies of poly-
clonal antibody responses. Neu et al. developed the Spec-seq protocol to tackle this challenge ([92]; Table 1). Spec-seq permits mAb
production and transcriptional profiling from the same cell. This involves modifications to the Smart-seq2 scRNA-seq method [93]
and the harmonisation of twomAb generation techniques [94, 95]. The authors apply Spec-seq to analyse plasmablasts following influ-
enza vaccination, characterising differences in transcriptome according to BCR isotype and vaccine reactivity. IgA vaccine-reactive cir-
culating plasmablasts were compared with IgG vaccine-reactive and IgA vaccine-nonreactive populations. The authors suggest that
imprinting following initial B cell activation results in transcriptional similarities among clonally related plasmablasts. Total and
IgA plasmablasts cluster in tSNE projections by their ability to bind the vaccine, suggesting transcriptional modules correlated with
vaccine reactivity. These data highlight an unexpectedly high degree of transcriptional specialisation within plasmablasts, demonstrat-
ing that these cells are not terminally differentiated antibody-secreting cells. Spec-seq is a robust technique that allows the profiling of
the transcriptome and mAbs of hundreds of cells.

With improvements in droplet-based scRNA-seq methods, the scale (thousands of single cells) and order of events (BCR sequence and
transcriptome information first, mAb generation thereafter) could be changed. Rather than characterising every mAb “blind” (i.e.,
without any prior information on its cell of origin), mAbs could be selected on the basis of transcriptome information and clonal family
position in a hope to only generate and characterise high affinity/avidity candidates. Combining this with fluorescence-assisted cell
sorting (FACS) to isolate vaccine antigen-specific B cells could provide a powerful new workflow to produce monoclonal antibodies
against specific pathogens. An example of this type of workflow is put forward by Goldstein and colleagues [96] and is already being
put to use for mAb development in priority diseases (see Box 3) [97].

Box 2: scRNA-seq as a starting point for monoclonal antibody production.
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of expressed genes. This approach, albeit using bulk RNA-
seq, has already gained traction in the field of melanoma
vaccines [111, 112]. CITE-seq uses scRNA-seq in addition
to oligonucleotide-labelled antibodies to allow simultaneous
protein and transcriptome measurement at a single-cell level
[13]. This technique may further enhance neoantigen discov-
ery pipelines, by providing insight into protein expression
given dynamic ranges of transcription [113].

Recognising that therapeutic responses are varied in
pathologically identical tumours and even in genetically
homogeneous cancer cells [114], scRNA-seq provides the
ability to discern which cells respond favourably to vaccines.
Single-cell sequencing has already been used in the optimisa-
tion of targeted drug treatment against metastatic renal cell
carcinoma [115]. The authors’ approach was able to identify
the most effective drug combination for multiple subpopula-
tions of tumour cells. Such approaches could potentially be
used in patient xenograft models to determine the most
effective and personalised vaccine combinations. Ott et al.
analysed the transcriptome of neoantigen-reactive CD4+ sin-
gle T cells using HLA class II tetramers before and after vac-
cination [112]. The main gene expression changes reflected
transitions from naïve to effector and memory states. These
changes included repression of genes promoting homeostatic
survival of naïve T cells and upregulation of genes involved in
Th1 fate polarisation. Therefore, implementation of scRNA-
seq in evaluation of cancer vaccine responses is feasible and
has already begun.

Single-cell sequencing must overcome a number of chal-
lenges prior to its wholesale adoption in the field of cancer
vaccines. These hurdles are present in many scRNA-seq
experiments but have specific consequences in cancer
vaccine discovery. A major difficulty is “drop-out.” This hap-
pens when a transcript or an allele in a heterozygous muta-
tion is not captured or amplified and can occur at 10–50%
of mutation sites [5, 116]. While there are computational
models that can correct for this drop-out [117], this is of crit-
ical importance in cancer vaccinology as it may be impossible
to determine whether a cell is truly wild type for a given
mutation. Partial transcript coverage is confined to end-
biased platforms such as the 10x Genomics Chromium plat-
form. Coverage decreases nonlinearly across the length of a
transcript, so some variants are much more easily detectable
than others. The utility of scRNA-seq to detect expressed
mutations is therefore dependent on the specific mutational
composition of the tumour and sample in question. As a
result, scRNA-seq will likely perform better in mutation
detection for cancers with high mutation burdens [110].
The increase in throughput of techniques such as G&T-seq,
allowing simultaneous transcriptomic and genomic profiling
from single cells, could potentially circumvent some of these
hurdles to scRNA-seq adoption in cancer vaccine workflows.

4. Challenges Associated with the
Uptake of scRNA-seq

The wholesale adoption of scRNA-seq in vaccinology is
limited by hurdles relating to analysis, technical issues, and
the experimental questions that can be asked with the tech-

nology (see Appendix A for further considerations). For
further discussion of the challenges in driving scRNA-seq
and other single-cell techniques forward, we direct you to
the review by Lähnemann and colleagues [128].

While there is increasing development of computational
tools and reference databases [129, 130], it will become pro-
gressively more difficult to compare studies based on primary
analyses of raw data. It is impractical to suggest that a single
analysis pipeline could satisfy the needs of all primary analy-
ses; however, there is a huge potential for studies performing
secondary analyses on multiple published raw datasets. This
is of particular relevance when considering comparisons of
vaccine regimens, screening for correlates of vaccine-
induced protection, and evaluating adjuvants. This will
necessitate open data access and thorough annotation of
experimental methods and parameters.

There are several challenges related to the scRNA-seq
technology itself. Every scRNA-seq protocol begins with the
preparation of a single-cell suspension of the tissue of inter-
est. When making inferences from scRNA-seq experiments,
there are two inherent assumptions related to this step. These
are that (i) the cellular composition of the suspension is a
faithful representation of the original tissue and (ii) sample
preparation results in insignificant (or no) transcriptional
changes. Enzymatic, as well as mechanical, dissociation can
result in biases of cellular representation as certain cells
may be more sensitive to enzymes or dissociation [131].
The latter assumption has also been challenged [132]. Several
sources have suggested that isolation of nuclei and their use
for single-nucleotide RNA-seq could help to mitigate both
of these challenges [131, 133, 134] (see Appendix A).

By beginning reverse transcription using a poly (T)-oli-
gonucleotide, the majority of scRNA-seq technologies use
the mRNA polyA tail to synthesise the first strand of cDNA.
Challenges with this approach include an inability to capture
nonpolyadenylated microRNAs and regulatory RNAs [135],
although techniques have been developed to overcome these
hurdles [136]. This is of particular relevance in vaccinology
as miRNAs are important in B cell antibody affinity matura-
tion, may modulate infection susceptibility and vaccine
responses, and can be used as immune modulators and adju-
vants [137]. Additionally, scRNA-seq is estimated to detect
30% of mRNA molecules present in a cell, while other
approaches such as seq-FISH detect >80% of targeted tran-
scripts in situ, with recent iterations sure to increase this
coverage [20, 138]. However, seq-FISH can be difficult to
adopt in nonspecialist laboratories due to the microfluidic
and microscopic expertise needed. In time, improvements
in the sensitivity of conventional scRNA-seq methods and/or
increased usability of in-situ hybridisation based scRNA-seq
methods will undoubtedly lead to greater insights.

Ultimately, most cell-cell and extracellular cell-pathogen
interaction is protein-mediated. For scRNA-seq, inferences
about cell-cell interactions occurring between receptor-
ligand pairs can be made using repositories of ligands, recep-
tors, and their interactions, such as CellPhoneDB v2.0 [139].
This, and other methods [140], can be used to characterise
communication among cells in homeostatic as well as
pathological conditions. In many scRNA-seq studies, the
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transcriptome is used as an index of protein expression; how-
ever, several discrepancies limit comparisons that can be
made (see Figure 2 in [141]). For example, the differences
in half-lives of mRNA and the proteins they encode, intracel-
lular trafficking, and posttranslational modifications all have
the potential to alter the function of cells that ostensibly have
comparable mRNA levels [141, 142]. Technologies such as
CITE-seq, REAP-seq, and Ab-seq complement restrictions
of solely RNA-based analyses. Combination techniques also
present us with an opportunity to understand the dynamics
of these systems as we can take advantage of the very different
half-lives of the measured molecules; RNA levels can change
at a timescale of seconds, while proteins can persist for days.
Furthermore, this highlights scRNA-seq as a high-yield
adjunct to be used in conjunction with more conventional
vaccinology techniques, rather than a panacea.

The spatial position of cells in tissues strongly influences
function, yet there remains no truly single-cell, unbiased,
spatial transcriptomics approach. Several approaches, how-
ever, are reaching cellular resolution (e.g., Slide-seq with
10μm voxels) and/or are extremely highly multiplexed

(e.g., SeqFISH+ which can measure up to 10,000 genes in
single cells) [143–146]. The coming single-cell spatial tran-
scriptomic approaches may be of particular use in the evalu-
ation of vaccines that are mediated by site-specific immunity,
for example, through lung tissue-resident memory T cells
following tuberculosis vaccination [147].

5. Conclusion and Recommendations

Profiling the immune response to both natural and artificial
pathogen exposure by scRNA-seq has advanced our ability
to identify favourable immunological profiles. The capability
of scRNA-seq to concurrently examine the global gene
expression, antigen-specificity, clonality, and individual copy
number variants (CNVs) and infer the developmental trajec-
tory of immune cells offers a powerful toolbox to appraise
host responses to vaccine candidates. Certain areas have
not yet been tackled by scRNA-seq, including critical
confounders of immunogenicity such as coinfections and
age, vaccine platforms, and adjuvants. In addition, we were
unable to find any studies primarily using scRNA-seq to

In December 2019, a cluster of patients with pneumonia of unknown cause was linked to a seafood wholesale market inWuhan, China,
later confirmed to be associated with infection with a new beta-coronavirus, now known as SARS-CoV-2 [118, 119]. As of 9 June 2020,
over 7,131,261 cases of and 406,807 deaths due to the COVID-19 pandemic have occurred, with over 188 countries affected. Public
health measures required to limit transmission have been drastic and are unlikely to be completely lifted without a vaccine (or highly
efficacious prophylaxes and therapeutics). scRNA-seq can contribute to COVID-19 vaccine design, development, and evaluation.

Using Existing Reference Atlases
Understanding how the virus interacts with the host has been aided by the COVID-19 Cell Atlas (http://www.covid19cellatlas.org).
This collaborative has investigated the virus’s tropism by plotting the expression of genes encoding viral entry proteins in previous
scRNA-seq datasets [120, 121]. SARS-CoV-2 entry genes have the highest expression in nasal goblet and airway ciliated cells [120].
Using these data to infer cell susceptibility to infection could aid in vaccine design: it would be reasonable to consider intranasal/mu-
cosal and/or inhaled administration routes for COVID-19 vaccines. This would be in the hope of inducing local, site-specific immunity
stopping the virus from entering the vasculature and organs. Indeed, Wen et al. used scRNA-seq to show that IgA, a secretory immu-
noglobulin, was overrepresented in early COVID-19 responses, compared to healthy controls, and may have been associated with a
reduced recovery time [122].

Profiling Cellular Immunity to Tailor Vaccine Responses
A logical next step would be to generate a high-resolution multiomic cell atlas of the host immune response to COVID-19 infection in
the periphery and in lung tissue [123]. Liao et al. profiled bronchoalveolar lavage immune cells in COVID-19 patients [124]. Moderate
cases were characterised by the presence of highly clonally expanded CD8+ T cells with tissue-resident features. These data suggest that
SARS-CoV-2-specific tissue-resident memory T cells (TRM) enable control of the virus, protecting against disease progression. Fur-
ther investigation is necessary to see whether TRM-targeted vaccination is a safe and efficacious strategy against SARS-CoV-2.

BCR Analyses to Support mAb Development
Using scRNA-seq to understand humoral immunity and guide vaccine-mediated antibodies against SARS-CoV-2 has shown partic-
ular promise. Wen and colleagues profiled PBMC of convalescing COVID-19 patients [122]. The BCR repertoire contained a number
of highly expanded clones, notably biased usage of IGV genes and high pairing frequencies of IGHV3-23-IGHJ4 genes. Several groups
have already reported the rapid identification of SARS-CoV-2-neutralising antibodies through scRNA-seq [97, 125]. Investigation of
these antibodies is worthwhile as it can assist in identifying sites of vulnerability on SARS-CoV-2, antigen/epitope prioritisation and,
eventually, rational design and redesign of a vaccine.

Research on COVID-19 is evolving quickly; many studies have not yet been peer reviewed and there have been concerns about the
robustness of the peer review process of studies that have [126, 127]. Even if scRNA-seq has significant potential to aid in getting a
vaccine to licensure, time will tell whether these and other studies provide proof of concept for using scRNA-seq in outbreak pathogen
vaccine development.

Box 3: COVID-19 vaccine development using scRNA-seq.
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better understand adverse events following vaccination, or
any other vaccine safety metrics, with the exception of one
study discussed above [63].

scRNA-seq is now a widespread research tool; the num-
ber of diseases and areas of research in which it is being
applied is growing. Improvements in the scale of adoption,
robustness and ease of use of reagents, instrumentation,
and computational tools mean that scRNA-seq will continue
to be used more. The utility of this tool in vaccine design and
development is contingent on the particular questions which
are being asked (see Appendix A).

Beyond the anticipated improvements in system effi-
ciencies and the increased availability of reagents, what is
the best way that scRNA-seq can be applied systematically
in vaccine design, development, and evaluation? This will
depend on specific hypothesis-driven, experimental, and
analytical considerations. In Box 3, we present the specific
case study of COVID-19 vaccine development to demon-
strate the potential of this technology, and in Box 4, we

illustrate more general applications of scRNA-seq in vac-
cine development and evaluation. Ultimately, scRNA-seq,
and its integration with other single-cell systems, will elu-
cidate further information that can be used to drive
favourable responses following therapeutic and/or prophy-
lactic vaccination. The context provided by information
from classic measurements, such as growth inhibition
assays, antibody levels, and cytokine secretion, and con-
trolled human infection studies can further enhance the
value of the observations that are made. The generation
of integrated datasets is computationally intensive but
can provide comprehensive characterisations of vaccine
responses by increasing the power of statistical calculations
or capturing a greater amount of heterogeneity in systems.
These insights can be used to identify novel populations,
previously unappreciated correlates, and biomarkers of
favourable and protective immune responses for use in
the systematic and streamlined assessment of vaccine
candidates.

Hypothesis generation: areas in vaccinology that lend themselves to investigation by scRNA-seq
(i) Cellular responses to various adjuvants and vaccines
(ii) Transcriptional and antigen-specific responses to adjuvants and vaccines
(iii) Site-specific immunity induced by vaccinations (for example, at mucosal surfaces following HIV vaccination, in the liver follow-

ing liver-stage malaria vaccination, or in the lungs following tuberculosis vaccination [147])
(a) Spatial transcriptomics, soon to provide resolution at the single-cell level, could also be used

(iv) Single-cell transcriptomic signatures associated with neutralising antibody responses
(v) The accordance between protective transcriptional signatures in vaccine human challenge studies in nonendemic and endemic

countries

Experimental design: exploit the technology and make the most of precious samples
(i) Assess the need for scRNA-seq as the primary experimental technique and contemplate whether the question can be answered by

established techniques (e.g., ELISAs, ELISpots, and flow cytometry)
(ii) Consider using bulk RNA-seq as an adjunct to scRNA-seq (e.g., bulk RNA-seq on all samples, with scRNA-seq on a subset to

allow computational deconvolution)
(iii) Tailor the particular type of scRNA-seq to the experimental question (e.g., will alternative splicing be of interest? Use full-length

transcript profiling if so)
(iv) Longitudinal gene expression and TCR/BCR profiling to track antigen-specific clones
(v) Define heterogeneity of cellular response in protected individuals
(vi) Generate monoclonal antibodies from TCR/BCR sequences for rational vaccine redesign
(vii) Use scRNA-seq as “backbone” to other technologies (e.g., G&T seq/CITE-seq)
(viii) Combine scRNA-seq with flow cytometry/FACS and/or magnetically assisted cell separation to isolate rare or specific cell

types [148]
(ix) Multiplex samples according to genotype to reduce sample preparation time, reagent and sequencing costs, and batch effects

[149, 150]
(x) Preserve leftover cells either by sorting into a plate or by preserving in fixative for later use (for example, in the reanalysis of an

interesting sample)

Analytical considerations: bioinformatic requirements/suggestions
(i) Plan with, budget, and include bioinformaticians who are capable of working with scRNA-seq data from study conception

onwards
(ii) Use freely available packages that are regularly maintained. See Table 1 in the review by Zeng and Dai [129] for a list of com-

putational tools for scRNA-seq analyses
(iii) Upload data files to Gene Expression Omnibus [151] with as much metadata as possible (and not contravening human subject

guidelines, if using human samples) as both processed and raw data
(iv) Consider submission of data to other relevant databases such as Human Cell Atlas and/or TCGA
(v) Consider analysing a similar published dataset with the experimental dataset to increase statistical power and/or to ensure a

novel pipeline reproduces results in a previously published study
(vi) Make freely available the code which relates to bespoke analyses

Box 4: Recommendations for the implementation of scRNA-seq in vaccine research
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Appendix

A. Experimental Considerations for scRNA-
seq in Vaccinology

(1) Research question considerations

(a) Ample consideration of the particular research
question to be answered is required for any
experimental design, but in particular scRNA-
seq experiments

(b) Potential questions that can be asked in scRNA-
seq experiments

(i) Does vaccination result in previously
uncharacterised single-cell states?

(ii) What is the temporal sequence of cellular
processes taking place after vaccination?

(iii) How does T cell and/or B cell clonal diver-
sity change in response to vaccination?

(iv) What are the transcriptional differences
among vaccine reactive/antigen-specific cells?

(v) To what extent are vaccine-induced tran-
scriptional changes reflected at the cellular
(bulk vs. single-cell sequencing) and pro-
tein level (transcriptomics vs. proteomics)?

(vi) What are the single-cell transcriptional
differences in vaccine response between
vaccines A and B?

(vii) What is the single-cell transcriptional
profile in peripheral lymphocytes (or organ)
given a particular vaccine platform (e.g.,
virus-like particles), regardless of the anti-
gen that is delivered?

(c) Other specific experimental considerations will
influence experimental design

(i) Breadth vs. depth

(1) Are lowly expressed genes of particular
interest? For transcripts that are lowly
expressed (e.g., transcription factors),
full length sequencing approaches may
be better than 3′ methods [152]. In this
case, the amount of sequencing should
also be considered such that “saturation”
is reached; that is, further sequencing
does not lead to the discovery of more
unique transcripts

(2) Are rare cell types to be profiled? Increas-
ing cell number and maintaining read
depth relatively low allows more power
to detect rare cell populations (that may
exist at<1% in frequency) [5]. It has been
suggested that to estimate several

important gene characteristics, the most
favourable sequencing depth is around
one read per cell per gene [153]. Alterna-
tively, enrich the cell type of interest by
using FACS, followed by scRNA-seq
and use methods such as GateID to
predict “nonintuitive” gating strategies
based on scRNA-seq data [154]

(ii) Will comparisons be made between different
conditions (e.g., prime alone vs. prime-
boost)?

(iii) What are the qualities and expression levels
of the marker genes of cell types of interest?
Transcriptional bursting can result in sub-
stantially different transcript quantities and
apparent gene expression levels [155]

(iv) What is the overall budget of the project?
Cost/cell profiled is an often-used metric
for budgeting scRNA-seq experiments

(v) What facilities and expertise are available?

(vi) Has technical and experimental advice
been sought by nonconventional means
(consider the active scRNA-seq community
on Twitter (particularly #scRNAseq and
#scQA), ResearchGate, medRxiv, bioRxiv,
EMBI-EBI training (https://www.ebi.ac.uk/
training), and the Galaxy platform
(https://usegalaxy.org/))

(2) Sample preparation and processing considerations

(a) Processing samples up to the point where
scRNA-seq can be performed is a process that
can greatly affect the outcome of the experiment

(i) Are there unchangeable constraints on
sample collection/processing times? What
effects, if any, will these have on the results?

(ii) Do samples have to be processed immedi-
ately or is there a window where gene expres-
sion will not be affected, without specific
preservation?

(iii) Will the samples be preserved (e.g., flash
frozen, fresh frozen, or formalin-fixation
and paraffin-embedding) [156]?

(b) scRNA-seq usually requires mechanical or enzy-
matic dissociation of samples to produce a single-
cell suspension. Certain factors will affect this
process

(i) How fragile/robust are the samples?

(ii) How well is the tissue dissociated?

(iii) Which single-cell isolation procedure will be
used (e.g., microdissection, reverse emulsion
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droplets, FACS into plates, and/or nanowell
isolation)?

(iv) Are there preexisting protocols in the pub-
lished literature that describe isolation
techniques from the sample of interest
(consider published, preprint, and com-
mercial (e.g., 10x Genomics technical
notes) literature)?

(v) Will the cells be preserved (e.g., cryopres-
ervation using DMSO, methanol fixation,
or storage in commercially available for-
mulations to preserve cells and their
RNA) [157]?

(vi) Can a method be used that does not dissoci-
ate tissue (e.g., Slide-seq) as a baseline to
check for dissociation effects? This will likely
add extra cost and require additional techni-
cal expertise

(c) Once cells (or nuclei) are in a suspension, the
starting point for RNA capture is achieved

(i) Which is more apt and feasible to answer
your specific research question, nuclei or
cells isolated from the sample [134]?
Nuclei-derived transcripts have a higher
intronic/exonic read ratio as they contain
proportionally more pre-mRNAs and there
is potential that a narrower time period is
profiled as mRNAs in the cytoplasm may
have existed for longer

(ii) What are the characteristics of the cells of
interest (e.g., size and adherability)? Volume
can vary widely cell-to-cell, this affects the
absolute number of transcripts and can be
reflected in the detected number of genes
per cell [158]. Adherability of a cell may
affect processes before sequencing, such as
FACS

(iii) What quantity of input material (cells or
nuclei) is there?

(d) Assessing RNA quality. Before embarking on
costly library preparation for every sample, it is
important to ensure that the RNA has not signif-
icantly degraded:

(i) RNA quality is typically measured using the
RNA Integrity Number (RIN) algorithm
[159]. This test is performed by isolating
RNA from a sample of interest (typically
bulk or 10s-100s of cells) and performing
RNA microcapillary electrophoresis. The
algorithm uses multiple features from the
resultant electropherogram trace to score
quality of the RNA from 1 (most degraded)
to 10 (least degraded-highest integrity)

(ii) Is there enough of the sample to produce a RIN
score test on each sample? If the site, conditions,
or timing of sample collections is variable, it
may lead to differences in RNA degradation
between samples (and batch effects, discussed
below). If a RIN score step can be built into
each experiment before embarking on library
preparation, then it can prevent spending
money on low-quality samples

(3) Replicates, scale, sequencing, and batch considerations

(a) Batch effects

(i) Batch effects are random technical artefacts
which occur during handling/processing. If
batches correspond to different biological
conditions, then it is largely impossible to
determine what differences are biological
vs. artefacts

(ii) Avoid batch effects by

(1) sorting cells from different biological
conditions into different wells of the
same plate

(2) using genetic variants to post hoc assign
sequenced cells back to their genetically
unique donor

(3) using the expression of an inserted
genetic construct (not recommended)

(4) using barcoded antibodies (Cell Hash-
ing) to label samples after dissociation,
but before cell-capture step, to multiplex
samples [13, 160]

(iii) Batch effects may be corrected by a number
of bioinformatics tools and/or packages
[161, 162]

(b) Experiment scale

(i) How many cells will be tested largely
depends on the level of heterogeneity of the
sample and on the number of available cells

(ii) Plate-sorted single cells are limited in the
amount that can be handled compared to
microfluidic platforms, which enable studies
with several thousands of cells (Figure 1)

(c) Method of amplification

(i) Either exponential PCR-based amplification
or linear in vitro transcription (IVT) amplifi-
cation is usually used. IVT incorporates less
PCR bias and erroneous bias as it is based
on an unamplified RNA template [164]

(d) Transcript position
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(i) Some protocols provide full-length transcript
data, whereas others amplify only the 3′ or 5′
ends of the transcripts

(ii) Non-full-length transcript methods allow
increased throughput of cells, while full-
length transcripts are advantageous if splice
variants are important, looking to detect
genetic variants or when studying species
that have poorly annotated genomes

(e) Sensitivity

(i) This is the ability of an assay to capture an
mRNA molecule from a single cell within the
final library. Low sensitivity protocols have a
disproportionate effect on weakly expressed
genes (e.g., genes encoding cytokines)

(ii) If weakly expressed genes are to be evaluated,
consider higher sensitivity methods or con-
sider “clean-up” procedures such as rRNA
removal [165]

(f) Ultimately, theparticular protocolmust bedecided
on an individual experiment basis. It is also impor-
tant to note that while scRNA-seq methods have
greater sensitivity than bulk RNA-seq methods,
bulk methods have higher accuracy [166]

B. Review Search Strategy

We performed an initial scoping review of the literature using
MEDLINE/PubMed to identify major themes present in the
vaccinology literature. Thereafter, we performed predefined
searches in the context of the vaccinology themes we identi-
fied: controlled human infection studies, correlates of protec-
tion, profiling the immune response to infection, cancer
vaccines, understanding host-pathogen interactions, com-
paring vaccine regimens and responses, adjuvants, animals
as models for human diseases and natural infections of
livestock, antigen screening/selection, and effects of coinfec-

tion on vaccination. Predefined searches included using
MeSH terms: “Sequence Analysis, RNA”, “Vaccinology”,
“Vaccines.” In January and February 2020, we searched for
published literature in MEDLINE/PubMed and Embase and
for preprint/not yet peer-reviewed literature in bioRxiv,
medRxiv, Wellcome Open Research and arXiv. Further
searches were conducted using free text to expand our capture
of scRNA-seq (e.g., (“scRNA-seq” OR “single cell sequencing”
OR “single cell RNA sequencing”)), vaccine (e.g., (vaccin∗OR
immunis∗ OR immuniz∗)) and theme-specific studies (e.g.,
(“vaccine correlate∗” OR “correlate of protection” OR “corre-
lates” OR “correlate of vaccine protection”)).

After performing the searches, we refined the scope of
our review to include only scRNA-seq studies—as opposed
to those exclusively considering bulk RNA-seq—performed
in humans or animal models of human disease published
after 2015, unless they were considered sufficiently relevant
to the narrative of our review.
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