Hindawi Publishing Corporation
Cholesterol

Volume 2014, Article ID 639751, 19 pages
http://dx.doi.org/10.1155/2014/639751

Research Article

A Comprehensive In Silico Analysis of the Functional and
Structural Impact of Nonsynonymous SNPs in the ABCA1

Transporter Gene

Francisco R. Marin-Martin,' Cristina Soler-Rivas,’
Roberto Martin-Hern4andez,” and Arantxa Rodriguez—Casadoz’3

! Department of Production and Characterization of New Foods, Institute of Food Science Research (CIAL), UAM-CSIC,

Campus de Cantoblanco, 28049 Madrid, Spain

2 IMDEA Food Institute, Campus de Cantoblanco, 28049 Madrid, Spain
’ Nutritional Genomics of the Cardiovascular Disease and Obesity, IMDEA Food Institute, Carretera Cantoblanco 8,

28049 Madrid, Spain

Correspondence should be addressed to Arantxa Rodriguez-Casado; arantxa.rodriguez@imdea.org

Received 30 April 2014; Revised 7 July 2014; Accepted 24 July 2014; Published 19 August 2014

Academic Editor: Akihiro Inazu

Copyright © 2014 Francisco R. Marin-Martin et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Disease phenotypes and defects in function can be traced to nonsynonymous single nucleotide polymorphisms (nsSNPs), which are
important indicators of action sites and effective potential therapeutic approaches. Identification of deleterious nsSNPs is crucial to
characterize the genetic basis of diseases, assess individual susceptibility to disease, determinate molecular and therapeutic targets,
and predict clinical phenotypes. In this study using PolyPhen2 and MutPred in silico algorithms, we analyzed the genetic variations
that can alter the expression and function of the ABCALI gene that causes the allelic disorders familial hypoalphalipoproteinemia
and Tangier disease. Predictions were validated with published results from in vitro, in vivo, and human studies. Out of a total of
233 nsSNPs, 80 (34.33%) were found deleterious by both methods. Among these 80 deleterious nsSNPs found, 29 (12.44%) rare
variants resulted highly deleterious with a probability >0.8. We have observed that mostly variants with verified functional effect in
experimental studies are correctly predicted as damage variants by MutPred and PolyPhen2 tools. Still, the controversial results of
experimental approaches correspond to nsSNPs predicted as neutral by both methods, or contradictory predictions are obtained
for them. A total of seventeen nsSNPs were predicted as deleterious by PolyPhen2, which resulted neutral by MutPred. Otherwise,
forty two nsSNPs were predicted as deleterious by MutPred, which resulted neutral by PolyPhen?2.

1. Introduction

Nonsynonymous single nucleotide polymorphisms (nsSNPs)
are single base changes in coding regions that cause an amino
acid substitution in the correspondent proteins. These mis-
sense variants constitute the most identifiable group of SNPs
represented by a small (<1%) proportion [1]. The nsSNPs
might alter structure, stability, and function of proteins and
produce the least conservative substitutions with drastic phe-
notypic consequences [2-5]. Studies suggest that about 60%
of Mendelian diseases are caused by amino acid exchan-
ges [6]. Thousands of associations between Mendelian and

complex diseases reveal a phenotypic code that links each
complex disorder to a unique set of Mendelian loci [7]. Dis-
criminating disease-associated from neutral variants would
help to understand the genotype/phenotype relation and
to develop diagnosis and treatment strategies for diseases.
Nonetheless, the most important application is the evaluation
of functional effect and impact of genomic variation, relating
interactions with phenotypes translating the finding into
medical practices.

ATP-binding cassette transporter ABCA1 gene also known
as the cholesterol efflux regulatory protein (CERP) encodes
a 220kDa protein [8]. This protein is crucial for reverse
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F1GURE I: Predicted structure of ABCA1[21, 23,105]. The protein consists of 2261 amino acids and comprises 2 halves of similar structure. Each
half encodes a transmembrane domain containing 6 helices (1-6 and 7-12) and 1 nucleotide binding domain (NBD-1and NBD-2), where ATP
is bound and utilized as energy for substrate transport across the membrane. Each NBD contains 2 highly conserved peptide motifs known
as Walker A and Walker B, which are present in many proteins that use ATP and a Walker C signature unique to ABC transporters. ABCAl is
predicted to have an N terminus oriented into the cytosol and two large extracellular loops that are highly glycosylated and linked by cysteine
bonds (Y indicates the glycosylation sites, and S-S indicates predicted disulfide bonds).

cholesterol transport and is considered as an important target
in antiatherosclerosis treatment. ABCA1 mediates the efflux
of cholesterol and phospholipids to lipid-poor apolipopro-
teins (apoAl and apoE), which form nascent high-density
lipoproteins (HDL). ABCALI resides on the cell membrane
and has an extensive intracellular pathway, with rapid move-
ment of the transporter between the cell membrane and intra-
cellular vesicles [9]. ABCAL is present in higher quantities in
tissues that transfer or are involved in the turnover of lipids
such as the liver, the small intestine, and adipose tissue [10-
12]. As well, lipid export activity of ABCAl improves the
function of pancreatic cells and ameliorates insulin release
[13], reduces biliary cholesterol content protecting against
gallstone [14], and plays a key role in lipid homeostasis in
the lung [15]. Besides, evidence suggest a causal link between
ABCAL as cholesterol transporter and its antitumor activity
(16, 17], as well as its implication in brain cholesterol homeo-
stasis [15-20] founding lipid and myelin abnormalities in
schizophrenia and Alzheimer’s disease [18-20].

Although the entire ABCA1 protein 3D-structure remains
unknown electron microscopic studies suggest a structural
model consisting of a transmembrane domain (TMD) and
a nucleotide-binding domain (NBD) (Figure 1) [14, 21, 22],
where an NBD-TMD dimer is the minimum unit required for
transport function [22, 23]. Also, X-ray structures are avail-
able for different domains in the C-terminus protein essential
for lipid efflux activity [24, 25]. Many variants disrupting
the normal ABCALI protein function result in modest or no
circulating HDL [26-32]. Cholesterol accumulated within
cells produces a toxicity that impairs cell function leading to
a diversity of phenotypes, from severe disease states to mild
impacts on health. In fact, the ABCAL1 variability is associated
with myocardial infarction, cancer, type 2 diabetes, and meta-
bolic syndrome [33]. Heterozygous states, nearly one-third of
them, are associated with hypoalphalipoproteinemia, known
as familial HDL deficiency syndrome (FHA). Two copies
cause a more severe syndrome Tangier disease (TD) [34-38]
described by reduced HDL-c plasma level (<5%), impaired
cholesterol efflux, and a trend to accumulate intracellular

cholesterol [34-43]. Indeed, loss of function of ABCAl muta-
tions in TD patients has a major impact on lipoprotein metab-
olism. A failure to acquire apolipoproteins leads to a rapid
catabolism of lipid-poor apoAl and accumulation of lipids in
macrophages, intestinal cells, platelet, and hepatocytes [34-
38, 44]. Compared with unaffected family members, hetero-
zygotes and homozygotes have a more prevalent, premature,
and severe atherosclerosis [42].

Because high levels of HDL-c are atheroprotective there is
considerable interest in developing agents that act to increase
ABCAL expression and thereby raise plasma HDL-c levels.
The nsSNPs are important indicators of action sites and
effective potential therapeutic approaches. Therefore, it is
crucial to identify deleterious nsSNPs to characterize the
genetic basis of diseases, assess individual susceptibility to
these diseases, determinate molecular and therapeutic tar-
gets, and predict clinical phenotypes. Beyond the genetic
level, a disease depends on the sequence and the structural
location of the nsSNPs of the protein. While the nsSNPs
occur all through the ABCAI gene, they tend to cluster in
the extracellular loops, the NBD, and the COOH-terminal
region (Figure 1). In fact, three structural motifs have been
functionally associated with disease: the ARA motif, an inter-
face between NBD and TMD that forms a partially buried
a-helix able to interact with the transmembrane helices, the
conserved-loop 1, a allosteric loop between the membrane
and globular domains, and the conserved-loop 2, an inter-
action surface for intracellular partners, critical in ATP-
binding.

Even though many of nsSNP (rare or common) found in
human ABCALI have been identified, mainly in the HapMap
project (http://hapmap.ncbi.nlm.nih.gov/), the molecular bases
relating these variants and the caused phenotypes have not
been studied in detail. To explore the effect of the large num-
ber of nsSNPs ABCA1 by experimental approaches would be
extremely time-consuming and with low statistical chance.
Alternatively, bioinformatic approaches, based on the bio-
physical severity of the amino acid exchange and the pro-
tein sequence and structural information, can offer a more
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FIGURE 2: Workflow for predicting the effect of nsSNPs on ABCAL protein. Gene specific variations were retrieved from the main variation
databases. Mutations were annotated and nsSNPs belonging to the canonical transcript were selected in order to run the algorithms for

functional prediction.

feasible phenotype prediction. As such, MutPred (mutation
prediction) [45] and PolyPhen2 (polymorphism phenotyping
2) algorithms [46], were used in this study to investigate the
impact of all known nsSNPs on ABCAI protein function.
Besides, based on the results of in vitro, in vivo, and human
studies of this gene in the literature we validated the predic-
tions made by reviewing the effect of the most critical nsSNPs
in ABCALI gene and its pathological consequences.

2. Methods

Figure 2 shows the workflow designed to predict the nsSNPs
effect on ABCAl protein. ABCAl human gene variants
including SNPs, short insertions, and deletions were retrieved
from Ensemble Variation 72 database 3141. Mutations were
annotated using the SnpEff v3.2 toolbox [47] based on the
human genome assembly GRCh37.68. Only variants found
on the canonical transcript were considered for functional
effect prediction, for what we used two different algo-
rithms. PolyPhen2 (http://genetics.bwh.harvard.edu/pph2/)
algorithm uses a naive Bayesian classifier to predict allele
function based on a combination of sequence and structure-
based attributes (if available) [46]. It calculates the probability
for a given mutation to be benign, possibly damaging, or
probably damaging. Then, we used MutPred (http://mut-
pred.mutdb.org/) [45] based upon SIFT algorithm [48] and a
gain/loss of 14 predicted structural and functional properties.
The predicted mutation outcome is based on a random forest
(RF) classifier. The MutPred output includes the top 5 prop-
erty scores and a general score (RF) equal to the probability
of amino acid exchange is either deleterious or disease-asso-
ciated. The ROC curves for both methods were generated
using R programming language and the ROCR package
(Figure 3) by a variation dataset obtained from VariBench
(http://structure.bmc.lu.se/VariBench/) that contains muta-
tions affecting protein tolerance including a neutral set of

mutations comprising 17393 human coding nsSNPs and a
pathogenic set of 14610 missense mutations obtained by man-
ual curation from the PhenCode database.

Prediction accuracy accomplished by MutPred and Poly-
Phen2 depends on their specific criterion. Twelve structural
and six sequence-based properties were used in this study
(Table 1). About 28% of validated nsSNPs in the Human
Genome Variation Database are predicted to affect protein
function [49]. Similarly, about 25% of nsSNPs affecting pro-
tein activity was predicted by PolyPhen2 [49]. MutPred offers
classification accuracy with respect to human disease muta-
tions. Considering conservative thresholds on the predicted
disruption of molecular function, MutPred generates accu-
rate and reliable hypotheses on the molecular basis of disease
for about 11% of known inherited disease-causing mutations
[45].

Our MutPred and PolyPhen2 predictions were validated
by comparing them with previously obtained results from in
vitro, in vivo, and human studies of ABCALI gene in the data-
bases and literature. When a given nsSNP found experimen-
tally to be associated with a remarkable change of phenotype
such as altered transporting activity or a disease was predicted
by in silico methods as deleterious, it was considered that the
prediction on this nsSNPs was correct. The prediction was
defined as an error if such a deleterious nsSNP was predicted
as tolerant.

3. Results and Discussion

The importance of ABCAL in cholesterol efflux was demon-
strated by the identification of ABCAI mutations in TD and
FHA families [34-38]. This has produced extensive research
into the possibility to provide protection from atherosclerosis
by increasing ABCALI expression and thereby to raise plasma
HDL-c levels. The identification of the large number of alleles
for this transporter gene as target directly involved in HDL-c
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TABLE 1: Structural and functional properties used by MutPred and PolyPhen2.

PolyPhen2 MutPred

Sequence based properties
Bond annotation
Functional site annotation
Region annotation
PHAT score
PSIC score
SIFT score
Evolutionary attributes

Structural properties
Secondary structure
Solvent-accessible surface area
Phi-psi dihedral angles
Normalized accessible surface area
Change in accessible surface propensity
Change in residue side chain volume
Region of the phi-psi map (Ramachandran map)
Normalized B-factor
Ligand contacts
Interchain contacts
Functional site contacts
Molecular Recognition Fragments (MoRFs)
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FIGURE 3: ROC (receiver operating characteristics) curve comparing the performance of MutPred and PolyPhen2 methods in predicting
the outcome of nsSNPs. The dashed curve corresponds to MutPred predictions. As the area under the curve (AUC) for the MutPred method
predictions is larger than the areas over the curve (AOC) which corresponds to the PolyPhen2 predictions curve, we can confirm that MutPred
outperforms PolyPhen2 in predicting the outcome of nsSNPs. The dataset used for the performance comparison was obtained from Varibench

as stated in Methods section.

regulation constitutes a significant therapeutic strategy in
reducing the risk for atherosclerosis.

3.1. Accuracy of the Prediction of the Functional Impact of
nsSNPs. Out of a total of 3141 SNPs in ABCALI gene retrieved
from dbSNP, we found 233 nsSNPs, 126 sSNPs, 59 mRNA 3'-
UTR SNPs, 12 mRNA 5'-UTR SNPs, and 2543 intronic SNPs
(Figure 4). Among the 233 nsSNPs, MutPred (RF score >
0.5) predicted 122 (52.36%) as deleterious whereas PolyPhen2
(pph2_prob > 0.5) identified 97 (41.63%) as potentially dam-
aging and damaging. Then, once that MutPred was used to

predict the nsSNP disease-association probability, the dam-
aging probability of nsSNPs was validated by PolyPhen2. A
total of 80 (34.33%) nsSNPs were found to be deleterious by
both methods. Among these 80 deleterious nsSNPs, the 29
(12.44%) targeted (MAF/NA) that resulted with high path-
ological phenotype (probability > 0.8) are C1477R, W590L,
W5908S, A1046D, N1611D, M1091T, F2009S, N935H, R2081W,
R1068H, N935S, R1068C, D1099Y, D1099N, W1699C, W840R,
A937V, I1517R, C1660R, R1680W, P1065S, R1615P, T929I,
Y2206D, L1379E, T940M, GI216V, Y2178H, and R1680Q. As
shown in Table 2, a good correlation index was obtained
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FIGURE 4: Distribution of ABCA1 nonsynonymous SNPs (nsSNPs), synonymous SNPs (sSNPs), 3'-UTR and 5'-UTR, and intronic SNPs.

FIGURE 5: Scatter plot shows the correlation between the predictions made by PolyPhen2 (x-axis) and MutPred (y-axis) for 233 amino acid
substitutions on ABCAL. The diagonal line represents a perfect correlation (=1) between both prediction methods for every mutation. The
overall correlation of the predictions made by both methods is high (0.57). The majority of mutations classified as pathogenic by PolyPhen2
with the highest score (=1) are also classified as pathogenic by MutPred but within a score range between 0.51 and 1.

between the scores observed from the evolutionary-based
approach MutPred and the structural-based approach Pol-
yPhen2. As shown in Figure 5, the overall correlation of
the predictions made by both methods is high (~0.57). The
majority of mutations classified as pathogenic by PolyPhen2
with the highest score (=1) are also classified as pathogenic
by MutPred but within a score range between 0.51 and 1. The
prediction accuracy depends not only by limitations of the in
silico algorithms such as false positive error and interference
of redundant motifs but also by the phenotype data from
experimental studies [3].

Equally important is to consider the incorrect predictions
in order to know the limitations of both algorithms and to
suggest how they might be improved. Where MutPred pre-
dicts P2150L variant as deleterious, PolyPhen2 indicates a
benign amino acid exchange. Conversely, MutPred predicted
P85L to be probably damaging, while PolyPhen2 indicates it
as neutral. Conflicting results were observed for a few other
nsSNPs included in Table 2. A total of seventeen deleterious
nsSNPs predicted by PolyPhen2 resulted neutral by Mut-
Pred. In contrast, forty two deleterious nsSNPs by MutPred
result neutral by PolyPhen2. We have observed (Figure 5,
Table 2) that some mutational characteristics of nsSNPs such
as Cl477F, R666Q, P1475S, G616V, Q2210H, V1806M, and
V304M show high PolyPhen2 values but very low MutPred

scores due, at least in part, to loss or gain of catalytic resi-
dues and disorder and gain of ubiquitination and phosphor-
ylation to the protein. On the other hand, some mutational
characteristics of nsSNPs included T459P, A2028V, T774P,
Q1279K, N1185K, D917N, E1005K, C887F, D1289N, QI188K,
D462G, MI10121, R965C, S1I181F, A255T, D457E, R496W,
R1341T, R1925Q, R230C, L1848, R999L, and K1974R with low
PolyPhen2 values but high MutPred scores produce, however
loss of solvent accessibility and of disorder, gain of phospho-
rylation, and both loss and gain of molecular recognition
features (MoRFs) binding, loss and gain of methylation, and
loss and gain of helix structure. Both, loss and gain of catalytic
residues are actively involved in human inherited disease.
Also, the small ubiquitin—a 76 residue [3-grasp protein—is
about 95% conserved from yeast to human. Overall, both gain
and loss of a phosphorylation site in a target protein may be
important features for predicting cancer-causing mutations
and may represent a molecular cause of disease for a number
of inherited and somatic mutations. Changes in secondary
structure impair large functional alterations, as well as the
solvent accessibility degree. Therefore, inaccurate predic-
tions occurred at these sites could be explicated not only
for the limited effects of genetic variant but also for gene-
environment interactions. Since the MutPred is based on a
predicted structure of the protein under study rather than
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a solved structure as PolyPhen2 and considering the fact
that nowadays the ABCALI protein structure is only partially
solved, it makes sense to prioritize the MutPred predictions.
This fact was confirmed after evaluating the performance of
both methods using a curated nsSNPs dataset with known
outcome as a benchmark as shown in Figure 3. We have also
observed that mostly, nsSNPs with verified functional effect
in experimental studies are correctly predicted as damage
variants by MutPred and PolyPhen?2 tools. Still, controversial
experimental data are obtained for those nsSNPs predicted as
neutral by both of these methods.

3.2. Functional Assessment of ABCAI Variants. Disease-caus-
ing variants are under strong selective constraints, which
determines if mutation frequency will increase, decrease, or
change randomly during evolution. Most alterations are dels-
eterious and so are finally removed during purifying selec-
tion. Benign mutations can sweep through the population
and become fixed contributing to species differentiation. The
ABCALI gene is highly conserved between species. Human
ABCALI is 95.2% identical to mouse, 85.3% to chicken, 25.5%
to drosophila, 21.6% to C. elegans, and 10.2% identical to
fugu. In humans, there is an abundance of common nsSNPs
that disrupt sites highly conserved across species and likely
to be deleterious [50]. The information of nsSNPs can be
used to outline the migration patterns of ancient humans
and the ancestry of modern humans. Causal nsSNPs in single
gene disorders are sufficient to impart large effects. Instead,
complex traits are due to a much more complicated system
of causative mechanisms that in aggregate increase the prob-
ability of disease. Genome-wide association studies reveal
common genetic variants effects (common disease/common
variant hypothesis) in complex traits. However, where com-
mon nsSNPs account for a relatively slight heritability of
the traits, rare variants might produce large effects on the
phenotype (rare variant/common disease hypothesis). The
frequency range includes alleles that are exceptionally rare
and even unique to an individual genome to be extremely
common. Most deleterious nsSNPs are retained at low-
population frequencies due to negative selection. Thus, vari-
ants with large effect tend to be rare and those that exert
weak effects are more common. It is worthy to note that rare
alleles can also have weak effect or no effect. A specific locus
may contain numerous rare alleles, so there may be many
rare variants with large effect and a few common variants
with weak effects. Although it has not yet been possible to
determine whether other variables are associated with spe-
cific nsSNPs frequencies, variants within metabolic genes are
not randomly distributed along the human population but
follow diverse ethnic and/or geographic-specific patterns. It
has been reported [51] that a significant proportion (~16%)
of individuals with low HDL-c from the general popula-
tion has the rare sequence of 25 variants in ABCAI gene
(Table 2, MAF < 0.01). However, consistent with MutPred
and PolyPhen2 only nine of them, N1800H, W590L, S1731C,
Cl1477R, D1706N, R1615P, R638Q, T2073A, and A16707T, are
predicted as functionally impaired. Some deleterious muta-
tions from some other genes have reached intermediate to
high frequencies. Specifically, the ancestral APOE4 allele,

Cholesterol

remains higher in populations like Pygmies (0.41), Khoi San
(0.37), Papuans (0.37), some Native Americans (0.28), Lapps
(0.31) and aborigines of Malaysia (0.24), and Australia (0.26)
[52]. The exposure of APOE4 to the current environmental
conditions could have rendered it a susceptibility allele for
cardiovascular and Alzheimer diseases. However, the predic-
tion for variant within ABCA1 gene indicates lack of harmful
alleles to MAF > 0.01. Therefore we have evaluated and
contrasted the predictions made for nsSNPs (rare/common)
most widely studied for their role in cholesterol pathway by
reviewing the effect of the most significant nsSNPs in ABCAL1
gene and its pathological consequences.

3.2.1. Accurate Prediction of the Functionally Deleterious nsS-
NPs in the ABCAI Gene. The N1800H ABCALI has been fully
characterized showing a complete lack of protein function
in terms of cholesterol efflux and HDL production [53, 54].
Unlike the WT (wild-type), which is found at the endoplas-
mic reticulum and plasma membrane, N1800H is accumu-
lated intracellularly [54]. Even similar physicochemical prop-
erties (polar, medium size) of exchanged residues the N1800OH
nsSNP, located between transmembrane domains [54], is a
critical site for protein function. Scores from in silico meth-
ods predict the N1800H variant as highly deleterious.

The W590L was never studied, but the W590S ABCA1
variant affecting the same position is extensively known [54].
Distribution of W590S is identical to WT [55] as well as
apoAl binding activity [54-57]; however it shows defective
lipid transport [54, 56, 58, 59]. Since multiple alignments
often show a leucine residue in this position, it could be
assumed that W590L had a similar behavior or even a lower
impact than W590S on the protein function. Both W590S
and W590L were predicted as deleterious nsSNPs with loss
of functionality.

Studies indicate that S1731C variant alters the activity of
ABCAL protein [27, 51, 60]. This allele is present in French-
Canadian families with low HDL-c levels [27] but not in sub-
jects with normal [60] or high [51] HDL-c levels. Compared
with WT, heterozygous show decreased ~60% the cholesterol
efflux activity [27, 51, 61]. Interestingly, some but not all fam-
ilies harboring S1731C also carried the 2144X stop mutation
[60] able to produce the most severe effects on HDL-c levels
and on cholesterol efflux [62]. These data along with our in
silico predictions indicate that conserved S1731C is highly
likely to affect protein function.

S1506L, Q597R, and C1477R variants are linked to TD
and FHA and found in tumor cancer [54]. Normal function
of ABCAL inhibits tumor growth in human cancer cells [54].
However, although expressed to similar levels as WT, these
alleles show deficient cellular cholesterol efflux and HDL pro-
duction and do not decrease tumor growth [17]. The three are
located intracellularly but C1477R is also found in membrane
[54], which indicates that membrane localization is essential
but not sufficient for apoAl binding [54, 63]. In fact, ApoAl
binds to ABCALI protein oligomers but not with monomers
[64]. Thus, conformation changes in binding sites might be
produced by these nsSNPs found as deleterious by our in
silico analysis.
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The R587W reaches the cell surface but reduces the
apoAl binding efficiency ~50% [56]. Others studies indicate
that this allele is mainly retained intracellularly decreasing
cholesterol efflux and apoAl binding ~75% [54]. Severe HDL
deficiency [34] and premature CVD is caused by R587W [65].
This variant is highly conserved during evolution, and the in
silico analysis predicts it as strongly damaging and disease-
associated. Besides to be related with TD, the R587W as well
as W590S variants are linked to AD. As the WT, these mutants
significantly reduce Ap-peptide synthesis ~45% [66], but
increase by ~2-fold (R587W) and by 25% (W590S) amyloid
precursor protein intracellular domain, a major cytotoxic of
AD [66].

The A1046D, localized between conserved motifs [54,
67], shows an intermediate phenotype caused by its lim-
ited presence in the plasma membrane. This variant shows
reduced apoAl binding efficacy, poor HDL-c, and folding
protein alteration. Both in silico methods predict A1046D as
a functional residue with a probability to be deleterious very
close to 1.

According to literature, N1611D is associated to probable
atherosclerosis [62, 68]. The mutated protein expression was
comparable to WT although cholesterol efflux from the cells
was markedly reduced. Our theoretical results indicate very
high probabilities of this nsSNP being deleterious, which
indicate an adverse and potential harmful effect on ABCA1
function.

The M109I1T variant exerts a dominant-negative impact
on ABCALI function with severe phenotype observed in sub-
jects carrying this variant [42, 54, 62]. It is retained intracel-
lularly preventing the protein from reaching the membrane
[54]. In heterozygous, M1091T is lowered by 50% HDL and
inhibits apoAl binding and cholesterol efflux [54]. From
evolutionary path, the inherited residue at this position has
been methionine. Among related homologues ABCA2 and
ABCA4 share a methionine at this position, while ABCA7
substitutes a leucine. Consistent with this fact, ABCAI and
ABCA7 are functionally divergent, with ABCA?7 easing the
efflux of phospholipids but not cholesterol [69]. Despite the
modest conservation at this position, located in a critical clus-
ter at the C-terminal region, in silico data suggest a severe-
negative impact.

The F2009S is conserved between human and mouse,
that along with the exchange from large size and aromatic (F)
to small size and polar (S) explicates its reduced cholesterol
efflux, low HDL-c, and apoAl levels [70]. The functional effect
produced by F2009S variant is consistent with our prediction
made by PolyPhen2 and MutPred indicating a deleterious
mutant.

The N935S variant is found intracellularly [54] in subjects
without risk of premature atherosclerosis but with extremely
low levels of HDL and signs of severe dementia and amyloid
depositions in the brain [71, 72]. This variant was predicted as
deleterious by the used methods.

R1068H mutation is located within the first ATP-binding
domain. It is identified in TD homozygous [73]. Since the
R1068H mutation is likely to produce a dysfunctional protein,
one would expect it to be associated with FHA in the het-
erozygous state [73]. Residue R1068 is located in an a-helix
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of the Walker B motif in the NBD, vulnerable to interaction
with D1092 and E1093 [74]. Homology modeling of the
ABCAL protein showed that the RI068H mutation disrupts
the conformation of NBD. Functional studies of R1068H
showed a lack of cholesterol eftflux activity due to defective
transference to the plasma membrane, mainly caused by
impaired oligomerization [74]. The in silico analysis predicts
a high possibility for R1I068H to be damaging. Besides, a dif-
ferent mutation of this position, R1068C, predicted as a del-
eterious by our methods, has been reported in a compound
heterozygote with almost no HDL [31].

D1099Y is located at possible interaction site and exchan-
ges the medium size and acidic residue to the large and
aromatic tyrosine. Surface residues not at defined interfaces
are usually preserved. Still, a moderate to highly conserved
domain on the surface of the structure includes this nsSNP,
which is associated to familial HDL deficiency [70, 75] and
predicted as deleterious in our analysis.

The W1699C, located within the transmembrane domain,
is accumulated within the cytoplasm and a small proportion
reaches the plasma membrane [76]. It introduces a cysteine
residue, which stimulates the formation of a new disulphide
bridge able to disrupt the ABCALI protein structure prevent-
ing its oligomerization and transference to the plasma mem-
brane. Probably, W1699C retains some residual functions,
as shown by the plasma HDL-c levels found in members
carrying this mutation which were not as low as might be
expected in carriers [76]. In silico analysis with PolyPhen2
and MutPred indicate a deleterious effect of this nsSNP on
ABCALI function.

3.2.2. Controversial Results for Prediction of the Neutral nsS-
NPs in the ABCAI Gene. The mutant RI897W that induces a
change from basic (R) to aromatic (W) is predicted function-
ally neutral in this analysis. This variant was identified in the
mother and the brother of an FHA patient, who had plasma
HDL levels in the lower range of the normal values [77].
Both the D1289N and P2150L variants identified in TD
patients are considered as disease causative [42, 78, 79]. Fur-
ther experimental evidences disagreeing with these results
suggest that both could be nonfunctional variants [51, 54, 80].
Indeed, they showed a lipid transport activity, apoAl binding,
and distribution similar to WT [54, 80]. Interestingly, P2150L
is only found in patients who also harbor a second variant,
the deleterious R587W described above [54]. Besides, TD
patients with D1289N variant were homozygous for a second
mutation R2081W that could cause the shown pathological
phenotype [79]. R2081W is missed at the plasma membrane
and instead accumulated intracellularly [54]. Our results
suggest that mutations R2081W and R587W are highly dele-
terious. For DI289N and P2150L variants, PolyPhen2 predicts
a neutral impact on protein function contrary to MutPred
predictions that indicates a high probability for these mutants
to be deleterious. The positions 1289 and 2150 are con-
served among all ABCALI orthologs but with the close-related
ABCA7 and ABCAA4. Since conservation patterns in ABCAI
protein endure for a relatively short time in evolutionary path,
it is hard to determine if the conservation at these positions
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is due to functional constraint or simply reflects random
chance. Along with experimental data, this suggests that
R2081W is a major responsible of ABCA1 protein dysfunction
found in TD patients.

The rare R219K polymorphism is located on an N-
terminal extracellular loop, which mediates ABCALI protein
interaction with apoAl [39, 56, 58, 59]. Despite high number
of case-control studies conducted to investigate the func-
tionality of R219K variant the results have been inconclusive
[60, 81-83]. While some reports suggest an association of
R219K is with risk of CVD [84], other research indicates a
decreased atherosclerosis progression in general population
[60, 85]. Conversely, large prospective studies found no asso-
ciation with HDL-c levels or atherosclerosis susceptibility
[82, 86]. A meta-analysis indicates that R219K polymorphism
is protective against CVD in Asians but not in Caucasians
[87]. Unexpectedly, the K219 allele was associated with a
decreased risk of myocardial infarction [18, 60, 84]. Also, this
variant has effect on triglycerides [60] but not with HDL-c
[84] or with apoAl levels [85]. Otherwise, a study indicates
that blood lipid levels do not seem to be R219K dependent
[88]. Whether this variant confers major susceptibility to
CVD is for clarification. The association of R219K variant
to risk of AD has been studied in diverse ethnic groups
[18-20, 89, 90]. Although conflicting results were noted, a
study observed a protective dependence in delaying the risk
of late-onset AD [18]. Equal to other cases, experimental
results inconclusive and contradictories result prediction of
the R219K polymorphism was predicted to be neutral in our
in silico analysis.

Some studies [60, 91-93] but not all [39, 94] indicate that
I883M variant severely increases the risk of atherosclerosis
and AD [20]. The I883M has been reported as a milder
phenotype with a significant reduction of HDL-c and choles-
terol efflux (~70% of WT) [51]. In contrast, others studies
[28, 60, 82, 83, 88] did not find any difference in lipid levels
in I883M carriers. Studies among different healthy people
[95, 96] as well as population with T2D [97] correlated the
1883M variant with higher HDL-c concentration. Also, a
stepwise regression approach identified I883M as one the key
predictors of ischemic heart disease, whereas additive effects
were found for V771M/I883M and I883M/El1172D pairs
[82, 98]. As well, several studies have reported associations
between V825I/I1883M and increased plasma HDL-c levels
[39, 67, 99]. Despite the controversial experimental results on
the influence on cholesterol efflux activity observed of this
polymorphism, our data predict that the 1883M variant is
functionally neutral. Interestingly, both alleles are found in
the human population and the minor allele, methionine, is
likely to be the ancestral allele at this position. Along with
the human ABCAlorthologs, murine aligns valine at this
position and the chimpanzee sequence aligns methionine.
This divergence could explain why a simple conservation-
based approach predicts the I883M change as neutral.

The R1851Q variant exchanges the large size and basic
arginine (R) residue to medium size and polar glutamine
predicted deleterious by MutPred and neutral by PolyPhen2.
R1851Q occurs within the extracellular loop proximal to the
transmembrane [68, 100]. Heterozygotes states show low
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HDL-c and apoAl levels compared with those related to WT
protein.

The R230C variant, found in Native American groups
but not in European, Asian, or African individuals, has
been associated with low levels of HDL-c and apoAl [101].
These results are confirmed after adjusting for gender, BMI,
and waist circumference [102]. Besides, the C230 allele is
associated with obesity, metabolic syndrome, and T2D in
Mexican population [101]. Still, R230C may have conferred
resistance against certain infectious diseases [101]. R230C
has been reported as a rare variant causing FHA in an Oji-
Cree individual [67]. MutPred predicts a high probability of
functional impairment of R230C, while that the PolyPhen2
program predicts the variant as neutral. Other facts that
suggest functionally damage are (1) R230C occurs at the first
extracellular loop, where TD and FHA mutations are clus-
tered; (2) the arginine at position 230 is conserved between
species; and (3) very different nature of residues involved;
whereas arginine is basic and hydrophilic, the hydrophobic
cysteine is vulnerable to disulfide bond.

The variants, R1901S that induces a change from large
size and basic (R) to small size and polar (S); Q2196H that
exchanges residues with similar physicochemical property
(medium size, polar); and E284K that exchanges a medium
size and acidic (E) to large size and basic (K), are predicted
to be deleterious by MutPred and neutral by PolyPhen2. The
R1901S and Q2196H variants occur within the C-terminal
domain, close to the NBD, and E284K was located in the
first extracellular loop, all of them associated to FHA [76].
The A594T, 1659V, T1512M, and R2004K polymorphisms
display different degrees of mislocalization to the plasma
membrane and slight impacts on cholesterol efflux [103].
These nsSNPs were identified in low-HDL subjects [29]. The
A594T, 1659V, and T1512M were predicted to be functionally
neutral and the R2004K mutation possibly damaging [29].
Finally, the novel mutation (P85L) in ABCAI was identified
in one family with low HDL but was not detected in over
400 chromosomes of healthy subjects [104]. Our in silico
prediction indicated this variant as possible damaging by
MutPred and neutral by PolyPhen2.

4. Conclusion and Future Directions

The practice of medicine, including health promotion and
disease prevention, is primarily based on phenotype-based
approaches. Most of them are proximal phenotypes achieved
through biochemical markers. Finding genetic determinants
of the phenotypes could not only clarify biological and
functional consequence of variants but also might translate
and extend to clinical phenotype. This focus would consider
the large locus heterogeneity and numerous nongenetic
factors to contribute to the phenotype. Since high levels
of HDL-c are atheroprotective, there is extensive interest
in developing agents that enhance ABCAI expression and
thereby raise plasma HDL-c levels. Amino acid exchange
variants are crucial indicators of action sites and effective
potential therapeutic approaches. In fact, nsSNPs represent
disease modifiers capable of altering drug/nutrient response
and potential targets vulnerable to environmental factors.
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Evaluation of 233 nsSNPs (rare or common) found in
ABCAL transporter indicates that the rare 29 (12.44%) of
them resulted to be highly deleterious with a probability >0.8.
From 20 sequence variants found in about 16% of individuals
with low HDL cholesterol only nine of them, DI1706N,
R1615P, W590L, C1477R, N1800H, R638Q, T2073A, A1670T,
and S1731C, were predicted by MutPred and PolyPhen2 as
functionally impaired. We have observed that mostly nsSNPs
with verified functional effect in all experimental studies
made are correctly predicted as damage variants by MutPred
and PolyPhen2 tools. However, controversial experimen-
tal data are obtained for those nsSNPs predicted as neutral
by both methods. Presumably clinical phenotype is the
result of the additive effects and interactions among multiple
alleles with different effect degree. Multiple rare alleles in
ABCAL contribute to plasma HDL-c levels in the general
population.

Predicting the phenotypic consequence of nsSNPs using
computational algorithms provides a better understanding
of genetic differences in susceptibility to diseases and drug/
nutrient response. These methods predict whether an amino
acid altering mutation is deleterious or disease-causing
based on physicochemical properties, population frequency,
protein structure, and cross-species conservation. How-
ever, computational prediction tools are generally based on
machine learning algorithms, which need to be trained before
classifying a mutation as either neutral or deleterious. A
major obstacle of these approaches is the lack of experimen-
tally validated and impartial data sets. A further complication
is that mutations in highly conserved sequences do not
always produce phenotypes that are easily noticeable. Besides,
knowledge of protein structure is crucial to accurately pre-
dict functional nsSNPs and understand their linkage with
disease. Severe limitation arises thus when protein 3D-struc-
ture is not available as the ABCAI case. Thus, an accurate,
efficient, and generally applicable approach is needed to
establish a genotype/phenotype correlation. Whole genome
sequencing is likely to become a commodity that could be
readily available at a reasonable cost and be easily accom-
modated into the decision making tree of health care of
every individual. The challenging task will be to identify
variants that are disease-causing or likely disease-causing
and develop strategies to prevent and attenuate the evolving
phenotype. Likewise, various complementary studies, genetic
and biological, would be necessary to discern the asso-
ciated alleles from the true disease-causing variants. More-
over a better understanding of genome components, such
as functional, large intergenic noncoding RNAs, small non-
coding RNAs, and primary transcripts, would be essential. An
integrated approach that utilizes genomics, transcriptomic,
proteomics, and metabolomic would be expected to facili-
tate identification and characterization of the mechanisms
involved in the pathogenesis of the phenotype.
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