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MicroRNAs (miRNAs) that belong to non-coding RNAs are verified to be closely
associated with several complicated biological processes and human diseases. In
this study, we proposed a novel model that was Similarity Network Fusion and
Inductive Matrix Completion for miRNA-Disease Association Prediction (SNFIMCMDA).
We applied inductive matrix completion (IMC) method to acquire possible associations
between miRNAs and diseases, which also could obtain corresponding correlation
scores. IMC was performed based on the verified connections of miRNA–disease,
miRNA similarity, and disease similarity. In addition, miRNA similarity and disease
similarity were calculated by similarity network fusion, which could masterly integrate
multiple data types to obtain target data. We integrated miRNA functional similarity
and Gaussian interaction profile kernel similarity by similarity network fusion to obtain
miRNA similarity. Similarly, disease similarity was integrated in this way. To indicate the
utility and effectiveness of SNFIMCMDA, we both applied global leave-one-out cross-
validation and five-fold cross-validation to validate our model. Furthermore, case studies
on three significant human diseases were also implemented to prove the effectiveness of
SNFIMCMDA. The results demonstrated that SNFIMCMDA was effective for prediction
of possible associations of miRNA–disease.

Keywords: miRNA, disease, miRNA–disease association, similarity network fusion, inductive matrix completion

INTRODUCTION

MicroRNAs (miRNAs) belong to small non-coding RNAs, which effectively control the expression
of their mRNA targets through RNA cleavage or translation repression (Ambros, 2004; Bartel,
2004; Ambros, 2001). In recent years, researchers have discovered various of miRNAs in many
living organisms (Bruce et al., 1993; Calin and Croce, 2006). The expression of a great quantity
of target genes is controlled by miRNAs, with the result that the whole miRNA pathway is an
important technique for gene expression control (Xu et al., 2004; Miska, 2005; Bartel, 2009). The
dysregulation of miRNAs results in progression of various diseases and conduces to developmental
defects (Meola et al., 2009). Hence, identifying miRNAs that are associated with diseases is helpful
in understanding the consequences of complex diseases and genetic causes. During the past few
years, traditional experiments have confirmed a large number of connections of miRNA–disease
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(Thomson et al., 2007; Mohammadi-Yeganeh et al., 2013).
Previous experimental methods such as polymerase chain
reaction can reveal the relationship between miRNA and disease,
but which are time-consuming and costly. Thus, revealing the
more unknown relationship between miRNAs and diseases need
effective experiment methods. Researchers have made every
effort to achieve effective and accurate prediction methods so
that future biological experiments will reliably obtain more
and more reasonable and valid relationship of miRNA–disease
(Han et al., 2014).

In the past period of time, a great deal of computation-
based algorithms and methods were developed to predict possible
relationship between miRNAs and diseases (You et al., 2017;
Chen et al., 2018a). Based on an assumption that miRNAs
with similar functions are highly likely to be related to
diseases that were phenotypic similar and vice versa (Zeng
et al., 2015), Jiang et al. (2010) established a novel model
that identified the feasible connections of miRNA–disease by
using hypergeometric distribution. However, the model had
the disadvantage that it only used local similarities between
two miRNAs with a large number of shared target genes. In
addition, Mørk et al. (2014) constructed an miPRD model
to infer the miRNA–protein connections and disease–protein
connections. Then, these connections were exploited to predict
the possible relationship between miRNAs and diseases. The
Jaccard similarity was first introduced by Chen et al. (2018) in
the model of BLHARMDA to recognize possible miRNA–disease
connections. The model of BLHARMDA also introduced the
system of KNN into the bipartite local model method.

Obviously, the authenticity of global network similarity
measures is superior to that of local network similarity measures
(Köhler et al., 2008; Zhang et al., 2014). Considering this fact,
Chen et al. (2012) constructed the novel RWRMDA model
to infer unknown connections of miRNA–disease. Compared
to local network similarity measures, RWRMDA discovered
that global network similarity was more valid to find the
potential relationship between miRNAs and diseases. Therefore,
the performance of previous local network-based methods
was worse than RWRMDA model. However, the RWRMDA
model was unsuitable for new diseases that did not associate
with miRNAs. Random walk method had been proposed by
many researchers so as to effectively solve this problem. Liu
et al. (2016) put forward an unused method that implemented
the random walk algorithm to seek miRNAs associated with
diseases. The method was to construct a heterogeneous graph by
integrating various similarities of diseases and miRNAs. Then,
the random walk with restart method in the heterogeneous
graph is applied to seek unknown connections between miRNAs
and diseases. Luo and Xiao (2017) established a heterogeneous
network, which was made up of the similarity of miRNA, disease
semantic similarity, and verified connections of miRNA–disease.
Different from the method of Liu et al. (2016), they applied the
imbalanced bi-random walk method to look for diseases that
related to miRNAs. Furthermore, Chen et al. (2016b) presented
the WBSMDA, which integrated the various of similarities of
miRNA and disease, respectively. This model also could reliably
obtain the possible relationship of miRNA–disease. Another

model HGIMDA was also presented by Chen et al. (2016a).
The heterogeneous graph was generated by combining the
verified miRNA–disease association network and the processed
similarity networks of miRNA and disease in HGIMDA. It
was important that an iterative equation was used in the
model for the accurate prediction of potential miRNA–disease
association. The model of HGIMDA performed better than
previous methods, but the problem was the choice of parameters
that was still not well resolved. For the purpose of inferring
feasible and reasonable relationship of miRNA–disease, an
identification medium was proposed by Yu et al. (2017). The
medium changed the methods of maximizing information flow
in existence, which consisted of functional similarity of miRNA,
semantic similarity, and phenotypic similarity of disease. The
verified connections and unknown connections of miRNA–
disease were all adopted into a phenome–miRNAome network
in this method. The NCMCMDA (Chen et al., 2020) model
integrated neighborhood constraint with matrix completion
algorithm to change the recovery task into an optimization
problem. This model applied the fast iterative shrinkage-
thresholding algorithm to recover missing interactions between
miRNAs and diseases.

Recently, considerable amount of models that based on
machine learning was gradually applied to expose the potential
relationship of miRNA–disease. Xu et al. (2014) introduced
a new method that prioritized novel disease-related miRNAs
based on the miRNA target-dysregulated network (MTDN). In
this model, the SVM classifier was constructed to extract the
feature of network topologic information, which could effectively
identify positive associations from negative associations of
miRNA–disease. However, because negative samples were hard
to obtain, the sets of negative samples were usually obtained
by removing the pairs of positive sample sets from all
pairs of miRNA–disease. In addition, Chen and Yan (2014)
constructed the novel model of RLSMDA to infer potential
miRNAs that were related to diseases. The association scores
of miRNA–disease were effectively calculated by the model
of RLSMDA. Therefore, RLSMDA could provide prediction
score to new disease. Different from MTDN, RLSMDA could
avert using negative miRNAs diseases associations, which could
improve experimental efficiency and get more accurate results.
The RBMMMDA (Chen et al., 2015) method was developed
according to the restricted Boltzmann machine. RBMMMDA
used the two-layer undirected graph to obviously represent the
relationship of miRNA–disease. The two-layer undirected graph
contained visible layer and hidden layer. RBMMMDA could
gain new connections of miRNA–disease with the corresponding
scores. Furthermore, another model named RKNNMDA (Chen
et al., 2017) started to apply KNN method to deal with miRNAs
and diseases. The support vector machine ranking model was
also implemented in this method to handle these KNNs obtained
by KNN method. The last ranking result of feasible connections
between miRNAs and diseases was obtained by the weighted
voting in this model. The disadvantage of this model was that
miRNAs might associate with more known diseases owning
to the bias. The BHCMDA (Zhu et al., 2020) model utilized
biased heat conduction (BHC) algorithm to predict unknown
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connections between miRNAs and diseases through combining
miRNA similarity matrix, disease similarity matrix, and miRNA–
disease association matrix. The probabilistic matrix factorization
(PMF) algorithm was used in IMIPMF (Ha et al., 2020) model to
infer potential miRNA–disease interactions. The PMF was widely
used in recommender systems, so it could effectively make use
of all information to recommend miRNAs, which are strongly
associated with the disease.

Because there were several limitations existing in previous
models, we constructed a new model that was Similarity Network
Fusion and Inductive Matrix Completion for miRNA-Disease
Association Prediction (SNFIMCMDA). We used the method
of similarity network fusion (SNF) to obtain similarity of
miRNA, which was gained by integrating function similarity
and Gaussian interaction profile (GIP) kernel similarity of
miRNA. And we also used the same way to obtain the disease
similarity, which was gained by integrating semantic similarity
and GIP kernel similarity of disease. After collecting data
and integrating similarity for miRNA and disease, we used
inductive matrix completion (IMC) method to efficiently obtain
possible connections of miRNA–disease. The global leave-one-
out cross-validation and five-fold cross-validation were carried
out to evaluate the effectiveness of SNFIMCMDA. Furthermore,
colon neoplasms, lung neoplasms, and breast neoplasms were
performed as case studies. As a consequence, the 44, 43, and 43
of the top 50 miRNAs inferred by SNFIMCMDA, which were
validated to associate with these human diseases according to the
HMDD v3.2 (Huang et al., 2019) database and dbDEMC v2.0
(Zhen et al., 2017) database, respectively. Experimental results
showed that our model was effective and reliable for predicting
possible relationship of miRNA–disease.

MATERIALS AND METHODS

Human miRNA-Disease Associations
In this article, we downloaded the verified association data
of miRNA–disease from HMDD v2.0 database (Li et al.,
2013). There are 5,430 experimentally verified links of miRNA–
disease in the known association data. Furthermore, we defined
an adjacency matrix A ∈ Rnd×nm to describe the verified
connections of miRNA–disease. There is no doubt that nd is
defined as the amount of diseases, and nm is defined as the
amount of miRNAs. The element A

(
i, j
)

is equal to 1 if disease
di is validated to be related to miRNA mj, and 0 otherwise.

miRNA Functional Similarity
If functions of two miRNAs are similar, they have a high
probability of being related to diseases that are similar and
vice versa (Cui, 2010; Goh et al., 2007). Obviously, the
miRNA functional similarity is obtained by this assumption.
miRNA functional similarity information that we obtained
was downloaded from the website of http://www.cuilab.cn/files/
images/cuilab/misim.zip. In addition, we indicated the matrix
MF to stand for the miRNA functional similarity. The value of
similarity between miRNA mi and miRNA mj is represented by
element MF

(
mi, mj

)
.

Disease Semantic Similarity
The Directed Acyclic Network (DAG) based on the Mesh
descriptor (Lipscomb, 2000) can be utilized to describe
diseases. The DAG of disease D includes two parts:
nodes and edges. The nodes in DAG represent not only
the D itself but also ancestor nodes of D. The edges
in DAG are applied to connect child nodes with their
parent nodes directly. Then DAG (D) = (D, T (D) , E (D))
is utilized in our article to intuitively represent the
DAG of disease D, where T (D) and E (D) indicated the
node set and edge set, respectively. The semantic score
of disease D is calculated according to the following
equation:

DV (D) =
∑

d∈T(D)

DD
(
d
)

(1)

where the contribution score of disease d is obtained by the
following formula:{

DD
(
d
)
= 1 if d = D

DD
(
d
)
= max

{
1∗DD

(
d
′
) ∣∣∣d′ ∈ children of d

}
if d 6=D

(2)
here, the semantic contribution factor 1 = 0.5 in our article

based on previous literature (Xuan et al., 2013).
The equation to calculate semantic similarity score between

disease di and disease dj is as follows:

DS
(
di, dj

)
=

∑
t∈T(di)∩T(dj)

(
Ddi (t)+ DdJ (t)

)
DV

(
di
)
+ DV

(
dj
) (3)

Gaussian Interaction Profile Kernel
Similarity
If functions of two miRNAs are similar, they are likely to relate
to similar or same diseases and vice versa (Lu et al., 2008;
Sanghamitra et al., 2010). Therefore, the miRNA similarity and
disease similarity can use the GIP kernel similarity to represent
(Chen et al., 2016; Cheng et al., 2017). First, after observing
whether there is known association between disease di and
each miRNA or not, the interaction profile of disease di was
represented by vector K

(
di
)
. We used vector K (mi) to represent

the interaction profile of miRNA mi in a similar way. Then,
the equations to calculate GIP kernel similarity of diseases and
miRNAs are as follows:

GKD
(
di, dj

)
= exp

(
−ρd

∣∣|K (di
)
− K

(
dj
)
|
∣∣2) (4)

GKM
(
mi, mj

)
= exp

(
−ρm

∣∣|K (mi)− K
(
mj
)
|
∣∣2) (5)

where the GKD and GKM represent GIP kernel similarity of
disease and miRNA, respectively. The ρd and ρm are utilized to
regulate the bandwidths of kernel. ρd is calculated by normalizing
the original bandwidth ρ

′

d. The specific formula is described as
follows:

ρd = ρ
′

d

/ 1
nd

nd∑
i=1

∣∣|K (di
)
|
∣∣2 (6)
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The ρm can be obtained in a similar way:

ρm = ρ
′

m

/(
1

nm

nm∑
i=1

||K (mi) ||
2

)
(7)

Similarity Network Fusion to Integrate
Similarity
The similarity between miRNAs is calculated by functional
similarity and GIP kernel similarity of miRNA, respectively.
Similarly, the similarity between diseases is calculated by
semantic similarity and GIP kernel similarity of disease,
respectively. In this section, we introduced SNF (Wang et al.,
2014) method to obtain ultimate similarity networks of disease
and miRNA. The SNF method integrated similarity for disease
included the following main steps. First, normalized weight
matrices of disease similarity networks can be obtained by the
below formulas:

DSP
(
di, dj

)
=

{ DS(di,dj)
2
∑

k6=i DS(di,dk)
j6=i

1
2 j = i

(8)

KDP
(
di, dj

)
=

{ GKD(di,dj)
2
∑

k6=i GKD(di,dk)
j6=i

1
2 j = i

(9)

where DSP denotes the normalized weight matrix of disease
semantic similarity network, and KDP denotes the normalized
weight matrix of GIP kernel similarity for diseases. Then, we
used KNN method to calculate disease local relationship by the
following two formulas:

DSK
(
di, dj

)
=


DS(di,dj)∑

k∈Ni
DS(di,dk)

j ∈ Ni

0 otherwise
(10)

KDK
(
di, dj

)
=


GKD(di,dj)∑

k∈Ni
GKD(di,dk)

j ∈ Ni

0 otherwise
(11)

where Ni denotes the number of neighbors of disease di.
DSK denotes the local relationship matrix of disease semantic
similarity; KDK represents the local relationship matrix of GIP
kernel similarity for diseases. Based on the previous literature
(Wang et al., 2014), the essence of SNF method could be
described as an iterative update of similar matrices. In our article,
after we brought disease data into the network fusion formula of
SNF, the specific process of network fusion corresponded to each

FIGURE 1 | Flowchart of SNFIMCMDA model.
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data type is presented by the following equations:

DSP
(
di, dj

)
= DSK

(
di, dj

)∗ KDP
(
di, dj

)∗ (DSK
(
di, dj

))T (12)

KDP
(
di, dj

)
= KDK

(
di, dj

)∗ DSP
(
di, dj

)∗ (KDK
(
di, dj

))T(13)

The final similarity matrix of disease that integrated all data
types is presented by the below formula:

Sd
(
di, dj

)
=

1
2
(
DSP

(
di, dj

)
+ KDP

(
di, dj

))
(14)

where Sd denotes the finial similarity matrix of disease.
Similarity network fusion for miRNA is defined in a similar

way by the following formulas:

MFP
(
mi, mj

)
=

{ MF(mi,mj)
2
∑

k6=i MF(mi,mk)
j6=i

1
2 j = i

(15)

KMP
(
mi, mj

)
=

{ GKM(mi,mj)
2
∑

k6=i GKM(mi,mk)
j6=i

1
2 j = i

(16)

MFK
(
mi, mj

)
=

{ MF(mi,mj)∑
k∈Ni

MF(mi,mk)
j ∈ Ni

0 otherwise
(17)

KMK
(
mi, mj

)
=

{ GKM(mi,mj)∑
k∈Ni

GKM(mi,mk)
j ∈ Ni

0 otherwise
(18)

MFP
(
mi, mj

)
= MFK

(
mi, mj

)∗ KMP
(
mi, mj

)∗ (MFK
(
mi, mj

))T (19)

KMP
(
mi, mj

)
= KMK

(
mi, mj

)∗MFP
(
mi, mj

)∗ (MKM
(
mi, mj

))T (20)

Sm
(
mi, mj

)
=

1
2
(
MFP

(
mi, mj

)
+ KMP

(
mi, mj

))
(21)

where Sm denotes the miRNA similarity matrix.

Inductive Matrix Completion
After collecting data and using SNF to integrate similarities
for miRNA and disease, we utilized IMC method to obtain
final prediction result. The specific flowchart of SNFIMCMDA
is presented in Figure 1. The IMC method was employed
according to the verified connection matrix of miRNA–
disease A ∈ Rnd×nm, miRNA similarity matrix Sm ∈ Rnm×nm,
and disease similarity matrix Sd ∈ Rnd×nd. Here, the feature
matrix of nm miRNAs was used Sm ∈ Rnm×nm to represent,
and the feature matrix of nd diseases was used Sd ∈ Rnd×nd

to represent. The feature vector of miRNA mj was denoted
by Sm

(
j
)
, and the feature vector of disease di was denoted

by Sd (i). Then we made A = UVT , where U ∈ Rnd×r and
V ∈ Rnm×r . Here, the r is desired rank that also is the same
as min

(
rank (U) , rank (V)

)
. The convergence speed of the

IMC algorithm is also affected by r. The matrices U and V

can be treated as the answers of the optimization problem
as follows:

min
U,Vφ =

1
2

∣∣∣|A-SdUVTST
m|
∣∣∣2
F
+

λ1

2
||U||2F +

λ2

2
||V||2F (22)

such that, U ≥ 0, V ≥ 0

where
∣∣∣∣ · ∣∣∣∣2F is Frobenius norm of matrix that is set to solve

overfitting problems. λ1 and λ2 are equal to 1
∣∣∣∣ · ∣∣∣∣F that are

regularization parameters.
In addition,U ∈ Rnd×r and V ∈ Rnm×r were two random

dense matrices by the iterative equation to update. In our
experiment, when the convergence criterion met 10−6, U and
V would be obtained by iterative process. The process of IMC
algorithm to obtain U and V are presented by the following
formulas:

Vjk ← Vjk

(
ST

mATSdU
)

jk(
ST

mSmVUTST
d SdU + λ2V

)
jK

(23)

Uik ← Uik

(
ST

d ASmV
)

ik(
ST

d SdUVTST
mSmV + λ1U

)
iK

(24)

The S
(
di, mj

)
indicates the predicted association chance

between di and mj. S
(
di, mj

)
can be obtained by applying U and

V to calculate:

S
(
di, mj

)
= Sd (i) UVTSm

(
j
)

(25)

Furthermore, if the feature vector of disease newdi is acquired,
S
(
newdi, j

)
can be utilized to obtain association score between

this disease and any miRNA. We will realize disease newdi
associated with which miRNAs effectively.

FIGURE 2 | AUC of global LOOCV compared with those of IMCMDA,
GRL2,1-NMF, and MSCHLMDA.
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RESULTS

Performance Evaluation
For the purpose of affirming the accuracy of predicted result
of SNFIMCMDA, we compared our model with three previous
computational models: IMCMDA (Chen et al., 2018b), GRL2,1-
NMF (Gao et al., 2020), and MSCHLMDA (Wu et al., 2020).
Based on the verified connections of miRNA–disease that were
downloaded from HMDD v2.0 database, global leave-one-out
cross-validation (global LOOCV) and five-fold cross-validation
(5-CV) were utilized to validate the actual performance of these
computational models.

In the framework of global LOOCV, we applied the
associations of miRNA–disease to train model. First, we
selected each verified connection of miRNA–disease in turn
for testing, whereas other experimentally confirmed associations
were training sets. In addition to verified associations, there
still were some connections between miRNAs and diseases
without evidence that were treated as candidate samples.
Then we calculated all association scores after implementing
SNFIMCMDA, the test samples would obtain the predicting
rankings by comparing with the candidate samples. If a
given threshold was inferior to the ranking of each test
sample, we thought SNFIMCMDA was valid. Furthermore,
we could draw receiver operating characteristic (ROC) curve
by plotting the true-positive rate against the false-positive
rate. Finally, for the purpose of evaluating performance of
SNFIMCMDA, we calculated the areas under ROC curve
(AUCs) of all models. The ultimate result clearly indicated
that the AUC values of SNFIMCMDA, IMCMDA, GRL2,1-NMF,

and MSCHLMDA reached 0.9540, 0.8384, 0.9280, and 0.9287,
respectively (Figure 2). Obviously, the AUC of SNFIMCMDA
was higher than other methods.

In the framework of 5-CV, first, all observed connections of
miRNA–disease were randomly divided into five parts; where
the test set was held by each one of the five parts for each
round, the training set consisted of the other four parts in turn.
In addition to observed connections, there still were several
connections without evidence that were treated as candidate
samples. After implementing the SNFIMCMDA, we could obtain
the predicted rankings of test samples compared with those of
the candidate samples. Furthermore, we performed 100 times
repeated segmentations on known connections, so as to avoid
the possible deviations generated in the process of random
sample segmentation. Finally, similar to global LOOCV, we could
obtain ROC curve and AUCs of these models. The specific result
indicated that the AUC values of SNFIMCMDA, IMCMDA,
GRL2,1-NMF, and MSCHLMDA were 0.9539, 0.8330, 0.9276,
and 0.9263, respectively (Figure 3). Obviously, the AUC of
SNFIMCMDA was also higher than other methods.

Case Study
In this article, several types of human diseases that included colon
neoplasms, breast neoplasms, and lung neoplasms were applied
to validate the prediction result of SNFIMCMDA. These diseases
actually pose a great threat to human beings. Colon neoplasms
belong to the common malignant tumor in the gastrointestinal
tract (Jemal et al., 2011). There were a large amount of new
cases and deaths that were caused by colon neoplasms in recent
years (Thackeray et al., 2011). Several miRNAs that relate to

FIGURE 3 | AUC of 5-CV compared with those of IMCMDA, GRL2,1-NMF, and MSCHLMDA.
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TABLE 1 | The top 50 potential miRNAs associated with colon neoplasms.

miRNA Evidence miRNA Evidence

hsa-mir-34a H; d hsa-mir-133b H; d

hsa-mir-29a H; d hsa-mir-206 d

hsa-mir-29b H; d hsa-mir-20a H; d

hsa-mir-16 Unconfirmed hsa-mir-30a H; d

hsa-mir-125b H; d hsa-mir-31 H; d

hsa-mir-15a H; d hsa-mir-21 H; d

hsa-mir-221 H; d hsa-mir-122 d

hsa-mir-181a H; d hsa-mir-155 H; d

hsa-mir-1 d hsa-mir-15b H; d

hsa-mir-223 H; d hsa-mir-9 d

hsa-mir-29c d hsa-mir-7 d

hsa-mir-146a H; d hsa-mir-203 H; d

hsa-mir-150 H; d hsa-mir-19b d

hsa-mir-199a Unconfirmed hsa-mir-214 Unconfirmed

hsa-mir-24 H; d hsa-mir-23a H; d

hsa-mir-210 H; d hsa-mir-148a H; d

hsa-mir-181b H; d hsa-mir-34c Unconfirmed

hsa-mir-222 H; d hsa-mir-196a H; d

hsa-mir-143 H; d hsa-mir-132 H; d

hsa-mir-106b H; d hsa-mir-125a H; d

hsa-mir-195 H; d hsa-mir-192 H; d

hsa-mir-133a H; d hsa-let-7a Unconfirmed

hsa-mir-146b d hsa-mir-200b H; d

hsa-mir-142 H hsa-mir-124 Unconfirmed

hsa-mir-92a d hsa-mir-18a H; d

H: HMDD v3.2 database; d: dbDEMC v2.0 database.

TABLE 2 | The top 50 potential miRNAs associated with breast neoplasms.

miRNA Evidence miRNA Evidence

hsa-mir-106a H; d hsa-mir-363 H; d

hsa-mir-142 H hsa-mir-196b H; d

hsa-mir-192 H; d hsa-mir-99b d

hsa-mir-138 H; d hsa-mir-98 H; d

hsa-mir-542 H hsa-mir-552 d

hsa-mir-32 H; d hsa-mir-186 d

hsa-mir-15b H; d hsa-mir-421 H; d

hsa-mir-449a H; d hsa-mir-144 H; d

hsa-mir-181d d hsa-mir-28 d

hsa-mir-150 H; d hsa-mir-212 H; d

hsa-mir-92b H; d hsa-mir-130b H; d

hsa-mir-498 d hsa-mir-518b Unconfirmed

hsa-mir-211 Unconfirmed hsa-mir-494 H; d

hsa-mir-330 Unconfirmed hsa-mir-410 H; d

hsa-mir-185 H; d hsa-mir-512 Unconfirmed

hsa-mir-130a H; d hsa-mir-370 H; d

hsa-mir-518c d hsa-mir-181c H; d

hsa-mir-622 d hsa-mir-574 H; d

hsa-mir-615 Unconfirmed hsa-mir-376a H; d

hsa-mir-30e H hsa-mir-548d H

hsa-mir-184 H; d hsa-mir-539 d

hsa-mir-483 Unconfirmed hsa-mir-372 H; d

hsa-mir-99a H; d hsa-mir-454 d

hsa-mir-502 H hsa-mir-424 H; d

hsa-mir-630 H; d hsa-mir-455 Unconfirmed

H: HMDD v3.2 database; d: dbDEMC v2.0 database.

colon neoplasms have been confirmed by a mass of biological
experiments. Breast neoplasms can be regarded as a common
disease in females, which has negative effects on the health
of women (Koboldt et al., 2012; Liang et al., 2016). Based on
clinical experiments and evidences, numerous miRNAs that are
related to the breast neoplasms have been found by researchers
(Fu et al., 2011; Zhu et al., 2014) in the past few years. Lung
neoplasms are considered as the fastest-growing neoplasm in
morbidity rate and mortality rate (Jemal et al., 2011; Carol
et al., 2019). The HMDD v2.0 database was used as the training
database; we applied verified associations of miRNA–disease
to produce prediction results. The HMDD v3.2 database and
dbDEMC v2.0 database served as validation databases utilized to
validate prediction results. Furthermore, the candidate miRNAs
of these diseases obtained from the SNFIMCMDA were ranked
by prediction scores. Finally, we gained the top 50 miRNAs
that connected to these human diseases and the 44, 43, and
43 of the top 50 miRNAs certified by HMDD v3.2 database
and dbDEMC v2.0 database, respectively. The specific results
are listed in Tables 1–3. In conclusion, we tested the predictive
performance of SNFIMCMDA on the HMDD v2.0 database to
observe whether the model had a well performance on it. As
the validation results are shown in the tables, the effectiveness
of SNFIMCMDA on predicting unknown interactions between
miRNAs and diseases had been confirmed by the HMDD v3.2
database and dbDEMC v2.0 database.

TABLE 3 | The top 50 potential miRNAs associated with lung neoplasms.

miRNA Evidence miRNA Evidence

hsa-mir-99a H; d hsa-mir-424 d

hsa-mir-429 d hsa-mir-299 H

hsa-mir-194 H; d hsa-mir-23b d

hsa-mir-296 Unconfirmed hsa-mir-495 H

hsa-mir-16 H; d hsa-mir-130b H

hsa-mir-151a Unconfirmed hsa-mir-342 H; d

hsa-mir-196b H; d hsa-mir-141 H; d

hsa-mir-15b d hsa-mir-379 d

hsa-mir-10a H; d hsa-mir-324 H

hsa-mir-204 d hsa-mir-663a Unconfirmed

hsa-mir-708 d hsa-mir-376c d

hsa-mir-211 d hsa-mir-520a d

hsa-mir-122 H; d hsa-mir-152 H; d

hsa-mir-15a H; d hsa-mir-608 H

hsa-mir-451a H; d hsa-mir-500a Unconfirmed

hsa-mir-432 d hsa-mir-190a Unconfirmed

hsa-mir-217 H hsa-mir-520d d

hsa-mir-154 H hsa-mir-215 H; d

hsa-mir-625 d hsa-mir-144 H; d

hsa-mir-195 H; d hsa-mir-184 H; d

hsa-mir-99b d hsa-mir-433 d

hsa-mir-28 d hsa-mir-520c Unconfirmed

hsa-mir-362 H hsa-mir-367 d

hsa-mir-501 Unconfirmed hsa-mir-520b H; d

hsa-mir-423 H hsa-mir-520e H; d

H: HMDD v3.2 database; d: dbDEMC v2.0 database.
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DISCUSSION

The researches for inferring possible relationship of miRNA–
disease would provide deep insight into the pathogenesis of
diseases and contribute to the treatment of diseases. Therefore,
we constructed the novel model of SNFIMCMDA. The prediction
score of each miRNA–disease pair was calculated by combining
the known association between miRNAs and diseases and
integrated similarities of both miRNA and disease in the
SNFIMCMDA. Different from the model of IMCMDA that had
been published in previous years, we made a change in integrating
similarity for miRNAs and diseases. The method of SNF was used
to integrate similarity in place of a previous method in IMCMDA.
After adopting SNF, there was a significant improvement in the
prediction results. In the framework of global LOOCV, the AUC
of SNFIMCMDA was 0.9540, which was higher than 0.8330
calculated by IMCMDA. And in the framework of 5-CV, the AUC
of SNFIMCMDA was 0.9539 that was also higher than 0.8330
obtained by IMCMDA. Moreover, the AUC of SNFIMCMDA
performed better than other previous methods in both global
LOOCV and 5-CV. Furthermore, three different human diseases
were performed as case study that had effectively certified
the reliable performance of the SNFIMCMDA. Therefore,
SNFIMCMDA could be utilized as a reliable biological tool for
extracting the most promising disease-related miRNAs, thereby
enhancing our comprehension on the disease mechanisms of
miRNAs and contributing to the prevention, discovery, and
diagnosis of complex diseases in the future.

In our article, the model of SNFIMCMDA completed the
missing association scores between miRNAs and diseases, which
utilized the feature vector method to succinctly represent disease
and miRNA, respectively. Furthermore, if we had the feature
vector of the disease without any known associated miRNAs,
the SNFIMCMDA could reliably predict this disease associated
with which miRNAs and obtained the scores between them. In
addition, our model belonged to semi-supervised model, so it had
no use for negative samples. The obvious advantage of our model
was that it only needs positive and unlabeled samples, which
effectively lowered the level of difficulty of modeling to a large
extent. In addition, the function of SNF was to combine different
types of experimental data. We applied the SNF algorithm to
combine different-type similarity data of miRNA and disease
so that it makes the prediction result more reliable. Finally,
the alternating gradient descent of IMC algorithm was used to

find the optimal solution, which ensured the reliability of the
eigenvectors of miRNA and disease.

There were some limitations that influenced the performance
of SNFIMCMDA. First, the materials that we used included
verified connections of miRNA–disease, miRNA function
similarity, and disease semantic similarity, which may obtain
noise and outliers. In addition, SNFIMCMDA used the least
square error function that would cause noises and outliers.
Furthermore, the model of SNFIMCMDA included several
parameters. It was an obvious challenge to discover optimal
parameters. Therefore, with the increasing of verified biological
data, we would develop optimization strategy to improve
accuracy of our model.
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