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Autophagy is a membrane trafficking pathway responsible for the breakdown of unwanted intracellular materials and
crucial for the cell healthiness and survival. In the autophagic flux, various dynamic membrane rearrangements
occurs starting with the elongation of the phagophore and its closure to build an autophagosome and ending with its
fusion with late endosomes and lysosomes to form an autolysosome. Although Ca2+ is a well established regulator of
membrane fusion events, little is known about its role in these processes during autophagy. Recent studies, based on
proteomic analyses of lysosomal membranes, have provided new insights into this field of study. Thus, the levels on
lysosomal membranes of annexin A1, annexin A5 and copine 1, three proteins that bind to phospholipid membranes in a
Ca2+-dependent manner, increased under nutrient deprivation, a condition that promotes autophagic degradation. In
addition, two different studies showed that annexin A5 and annexin A1 are involved in autophagosome maturation.
Here, we discuss the molecular mechanisms by which the fusion of autophagosomes with endosomes and lysosomes
could be regulated by these three proteins and Ca2+.

Background

The clearance of cell components, in particular those that are
damaged, is essential for cell welfare and survival. This is mainly,
but not exclusively, performed by two different degradation
pathways involving proteasomes or lysosomes.1 The delivery of
intracellular material to lysosomes for breakdown is principally
mediated by double membrane vesicles called autophagosomes. In
the last years, the origin of the autophagosomal membrane and
the molecular mechanisms of autophagosome formation have
been extensively analyzed and discussed. However, much less
attention has been paid to later steps in the autophagic process,
when autophagosomes deliver their content to acidic compart-
ments for degradation, which are nonetheless the final destiny of
the sequestered material. At this stage, autophagosomes mature by
fusing with different endocytic and lysosomal vesicles, which add
complexity to these fusion events.

Autophagosomal Fusion Machinery

Although the available information on this machinery is still
fragmentary, several cell components have been described to be
involved in the fusion of autophagosomes with endo-lysosomal
compartments. For example, microtubules are thought to direct
the traffic of autophagosomes toward lysosomes and endosomes.2,3

Also SNAREs (Soluble N-ethylmaleimide-sensitive factor attach-
ment protein receptors), proteins with a well known role in
tethering/docking of vesicles in the presence of Ca2+, 4–6 induce, in

association with the Rab7 GTPase and the HOPS (Homotypic
fusion and protein sorting) complex, the fusion of autophago-
somes with lysosomes.7-10 In addition, it has been reported that
the three ESCRT (Endosomal sorting complex required for
transport) complexes, I–III, which were originally associated with
the sorting of ubiquitinated membrane proteins into multi-
vesicular bodies,11-13 participate in the fusion of autophagosomes
with lysosomes by mechanisms that are still unknown.14

Involvement of Annexins in Autophagy

Annexins are a family of ubiquitous and Ca2+-dependent
membrane-binding proteins whose functions depend on their
ability to attach to specific lipid microdomains. Using a proteomic
approach, we recently identified annexin A5 as a regulator of
autophagosome maturation, especially in the starvation response,
where it localizes on lysosomal membranes in a Ca2+-dependent
way.15 Under starvation conditions, annexin A5 translocates from
the Golgi complex to lysosomes and, to a lesser extent, to late
endosomes. Interestingly, this protein was found to inhibit fluid
phase and cholera toxin endocytosis. Since annexin A5 localizes in
late endosomes considerably more than in early endosomes, it is
likely that the observed inhibition of endocytosis occurs at the late
steps of this process. Moreover, annexin A5 induces autophago-
some fusion with lysosomes, but inhibits the formation of
amphisomes, hybrid organelles produced by the fusion of
autophagosomes with late endosomes. Although the molecular
basis of these two opposite roles of annexin A5, activation of
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autophagy and inhibition of endocytosis, remains to be
elucidated, it is possible that lysosomal and late endosomal
membranes have different molecular characteristics in terms of
their respective mechanisms of fusion with autophagosomes. In
accordance with this concept, at least one protein, Rab7, is
required in autophagosome-lysosome fusions,16 but is dispensable
in fusions of autophagosomes with late endosomes.17

Experimental findings also support the involvement in
autophagy of another protein of the same family, annexin A1.
In fact, in the same proteomic analysis we found that, like annexin
A5, the levels of annexin A1 increased on lysosomal membranes
upon starvation.15 Also, a different group showed that annexin A1
promotes autophagy and suggested that this protein plays a role in
the formation of amphisomes.18 Somewhat complementary to
these results, a small dimeric Ca2+-binding protein that can form a
complex with annexin A1, S100A11, was identified as another
component of the lysosomal membrane.19

Mounting evidences support that, in spite of their lack of
transmembrane domains, various members of the annexin family
can induce membrane fusions.20-22 Thus, several studies (reviewed
in Monastyrskaya et al, see ref. 23) described a Ca2+-dependent
role of some of these proteins in the formation and traffic of
specific endo-lysosomal compartments including annexin A1
(early endosomes, multivesicular bodies and lysosomes) and
annexin A5 (late endosomes and lysosomes). Since Ca2+ promotes
the fusion of autophagosomes with lysosomes under in vitro
conditions,24 these two annexins may be involved in Ca2+-
regulated interactions of the autophagosomal and lysosomal
membranes that finally lead to their fusion and to the delivery of
the autophagosomal content to the lysosome.

Another interesting association of annexin A1 with autophagy
was revealed in preliminary maps of interaction networks in
autophagy, which are based on a shotgun proteomic analysis.25

These maps identified annexin A1 as a putative interactor of
Atg4B. This protease has a crucial role in the formation and
maturation of autophagosomes,26,27 because it participates in the
conjugation/deconjugation of phosphoethanolamine to LC3, the
mammalian ortholog of yeast Atg8. In fact, the balance between
lipidation and delipidation of LC3 controls the tethering and
hemifusion during closure of the autophagosomal membranes,28

and this is an important requirement for the fusion of
autophagosomes with endosomes and lysosomes that occurs
later.29 Therefore, it is tempting to speculate that annexin A1
stimulates the fusogenic potential of autophagosomes by
regulating the activity of Atg4B.

Possible Involvement in Autophagy of Copine 1
in Relationship with Annexins

Copine 1 is another protein whose levels increased on lysosomal
membranes under high proteolysis conditions.15 It shares with

the annexin family of proteins the property of binding to
phospholipid membranes in a Ca2+-dependent manner.30 In
addition, its presence in autophagosomal, phagosomal and
lysosomal delimiting membranes has been previously
reported.31,32 Interestingly, an in vitro study showed that annexin
A1 creates membrane domains enriched in phosphatidyl serine
(PS) that assemble copine 1 aggregates. This provides a possible
scaffold to cluster signaling proteins in the presence of Ca2+.33

Also, annexin A5 is known to bind with high specificity to PS,
using Ca2+ as a bridge between the negatively charged convex side
of the C-terminal domain of the protein and the anionic
phospholipid.34 PS is known to be distributed in all cellular
membranes, but it only confers a negative charge (ideal for Ca2+

binding) at the cytosolic face of endosomes and lysosomes. This is
probably because in other organelles, such as mitochondria, Golgi
and endoplasmic reticulum, PS is localized in the luminal leaflets
of their membranes.35 Although annexins A1 and annexin A5 lack
a coiled-coil domain, which according to a yeast two-hybrid
screening study facilitates copine 1 binding,36 it is possible that
annexin A5, like annexin A1, also forms suitable domains for
copine 1 recruitment, after its translocation under high proteolysis
conditions from cytosol to lysosomal membranes, to facilitate the
fusion of lysosomes with autophagosomes,

Conclusions and Future Work

Annexin A1, annexin A5, and probably also copine 1, emerge as
possible regulators of autophagosome maturation by mechanisms
that require Ca2+. Both annexins could interact on the lysosomal
surface with copine 1, by mechanisms regulated by phospholipid
rearrangements and Ca2+ (see Fig. 1), to promote the fusion of
autophagosomes with lysosomes.

To determine which of the proposed molecular mechanism are
involved in this process, it will be necessary to identify other
proteins and, perhaps more important, the specific lipids that
interact with annexins A1 and annexin A5 and also with copine 1
at the cytosolic surface of the endo-lysosomal membranes. In
particular, it would be interesting to find differences in the
interacting proteins and lipid domains between lysosomes and late
endosomes and also to verify whether these interactions produce
phospholipid rearrangements at specific lipid domains.
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