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Abstract
Bioelectronic Medicines that modulate the activity patterns on peripheral nerves have promise as a new way of treating
diverse medical conditions from epilepsy to rheumatism. Progress in the field builds upon time consuming and expensive
experiments in living organisms. To reduce experimentation load and allow for a faster, more detailed analysis of peripheral
nerve stimulation and recording, computational models incorporating experimental insights will be of great help. We present
a peripheral nerve simulator that combines biophysical axon models and numerically solved and idealised extracellular space
models in one environment. We modelled the extracellular space as a three-dimensional resistive continuum governed by
the electro-quasistatic approximation of the Maxwell equations. Potential distributions were precomputed in finite element
models for different media (homogeneous, nerve in saline, nerve in cuff) and imported into our simulator. Axons, on the
other hand, were modelled more abstractly as one-dimensional chains of compartments. Unmyelinated fibres were based
on the Hodgkin-Huxley model; for myelinated fibres, we adapted the model proposed by McIntyre et al. in 2002 to smaller
diameters. To obtain realistic axon shapes, an iterative algorithm positioned fibres along the nerve with a variable tortuosity
fit to imaged trajectories. We validated our model with data from the stimulated rat vagus nerve. Simulation results predicted
that tortuosity alters recorded signal shapes and increases stimulation thresholds. The model we developed can easily be
adapted to different nerves, and may be of use for Bioelectronic Medicine research in the future.
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Introduction

Manipulations of the peripheral nervous system (PNS) by
implanted devices might soon serve as a treatment for
various medical conditions. Such Bioelectronic Medicines
(Birmingham et al. 2014) can be seen as a permanent,
highly localised alternative to molecular medicines with
less side effects. Already today, vagus nerve stimulation is
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being applied in patients suffering from refractory epilepsy
(Milby et al. 2010), Alzheimer’s disease (Sjogren et al.
1997), anxiety (George et al. 2008), obesity (Krzysztof et al.
2011), chronic heart failure (Rousselet et al. 2014), and
to evoke anti-inflammatory effects (Meregnani et al. 2011;
Borovikova et al. 2000). The more localised targeting of
organs e.g. of the heart (Pohl et al. 2015) has also shown
promising results in animal experiments.

Current devices operate in open-loop mode and stimula-
tion selectivity is low. Future Bioelectronic Medicines will
need more precise stimulation interfaces and the capabil-
ity to analyse (or ‘decode’) nerve activity to stimulate in
an adaptive manner. First advances towards a decoding of
information from peripheral nerves have been successfully
undertaken (Citi et al. 2008; Lubba et al. 2017). To both
accelerate the design of interfaces and to further develop
decoding algorithms, computational peripheral nerve models
that integrate physiological insights acquired in experiments
at different levels (i.e. properties of axons, extracellular
media, spontaneous activity patterns, organ responses) will
be of great merit to predict stimulation efficiency and
recording selectivity and as a source of surrogate data.
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Previous efforts to simulate peripheral nerves date back
approximately twenty years. In 1997, Struijk (1997) devel-
oped a 2D model of recordings from myelinated peripheral
axons. Models for stimulation were also proposed at the
time (Veltink et al. 1989; Goodall et al. 1995). One main
difficulty in peripheral nerve simulations, already appreci-
ated at that time, is the calculation of extracellular potentials
from membrane currents in the inhomogeneous medium
surrounding the axons. As a major difference from record-
ings in the central nervous system (CNS), the recording
method (e.g. cuff electrode, oil bath) often shapes nature
of the extracellular space in the PNS. Early simulations
therefore often concentrated on modelling the extracellular
medium whilst approximating axons with simplified mod-
els such as the Fitz-Hugh-Nagumo equations (Plachta et al.
2012, e.g.) or the McNeal model (McNeal 1976; Veltink
et al. 1989). Only recently precise biophysical axon models
and detailed, numerically solved models of the surround-
ing medium have been combined (Grinberg et al. 2008;
Raspopovic et al. 2011), thanks to increasing availability of
computational resources.

For the general task of modelling extracellular potentials
caused by cells (axons), many choices at different levels
of detail and computational cost exist. The most simple
approach is based on volume conductor theory: the extra-
cellular space is modelled as being resistive, homogeneous,
and isotropic (Holt and Koch 1999; Lindén et al. 2014) so
that the extracellular potential becomes an analytic func-
tion of source (membrane) currents. The latter are obtained
from compartmental simulations of the cell membrane in
which usually the extracellular potentials are assumed to
be constant. However, in peripheral nerves, the surround-
ing medium is not homogeneous or isotropic, requiring
a more complex approach. To accommodate conductiv-
ity inhomogeneities, precomputed membrane currents from
compartmental cell simulators can be imported into a finite
element model (FEM) solver (as a point source or boundary
condition) where the potential over the entire space and time
span is computed based on the quasistatic Maxwell equa-
tions (cf. McIntyre and Grill 2001; Lempka and McIntyre
2013; Ness et al. 2015). This costlier method was employed
in the recent aforementioned works on peripheral nerves
(Grinberg et al. 2008; Raspopovic et al. 2011). It has dis-
advantages, however. The model needs to be defined in two
different environments, the compartmental axon simulator
and the FEM solver. Both environments need to be coor-
dinated in terms of geometry, coordinate systems, units,
and so on and setting up a model this way is a time con-
suming and error prone process. There exist commercial
simulation solutions that combine a compartmental simula-
tor and a FEM solver in a single framework, e.g. Sim4Life
(Zurich MedTech AG) but no openly available simulators.
As a further limitation of current hybrid solutions, the FEM

simulation is run for each point in time even though the qua-
sistatic approximation of the Maxwell equations allows for
a separation of time and space. Static FEM simulations for
each source position are sufficient (see Methods).

More detailed models that go beyond the simplifying
assumptions of a constant extracellular potential during
axon simulation and a quasistatic extracellular space were
proposed as well. In particular, electrical feedback of neu-
ronal activity on membrane processes, ephaptic coupling,
is neglected by the methods mentioned so far. However, it
can be significant (Tveito et al. 2017; Bokil et al. 2001).
To incorporate such feedback, the entire model (including
the intracellular space and membranes) can be simulated
in a FEM solver as in Agudelo-Toro and Neef (2013) and
Tveito et al. (2017). Even if elegantly capturing intra-,
extracellular, and membrane effects in a combined, self-
contained model, the calculation becomes more expensive
and is only suitable for simple geometries (Tveito et al.
2017). An even higher degree of accuracy can be attained by
going beyond the quasistatic Maxwell equations and incor-
porating electrodiffusive effects (diffusion of charge ions)
in Poisson-Nernst-Planck solvers, see Pods et al. (2013) and
Halnes et al. (2016) or the simplified version (electroneu-
tral model) (Pods 2017). Whilst offering great degree of
detail, the computation becomes very expensive in those
formulations.

In face of those choices, our open-source toolbox
PyPNS1 aims at realising an compromise between usability,
computational efficiency, and accuracy for a bundle of
many axons. Our approach is in principle very comparable
to a model that precomputes membrane currents in a
compartmental simulator and imports them into an FEM
simulation. We use the NEURON simulator (Hines and
Carnevale 1997) to model axon membrane processes at the
scale of ion channels. Standard models for both myelinated
and unmyelinated axons in the diameter range found in the
periphery were implemented. The extracellular space was
governed by the electro-quasistatic approximation of the
Maxwell equations. Ephaptic coupling and electrodiffusion
were neglected for the sake of computational efficiency.
Importantly however, PyPNS improves the efficiency
and usability of previous approaches by avoiding to
run FEM simulations repeatedly for every simulation.
Instead, we took advantage of the quasistatic approximation
of the Maxwell equations to separate time and space
and simplified the nerve geometry to create symmetries.
Potential distributions could thereby be precomputed in a
reusable way for arbitrary axon shapes and were imported
into PyPNS. In this way, the accuracy of hybrid FEM-
based solutions was reached at the computational cost of the

1See information sharing statement at the end for accessing the
toolbox.
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simple volume conductor method. In addition, PyPNS adds
detail compared to previous simulations by letting the user
choose the degree of axon tortuosity. Tortuosity is expected
to be particularly relevant for peripheral nerves. An
increased axon length can act as a buffer against mechanical
influences only present in the periphery; this buffer allows
curvier axons. Lastly, our simulator is embedded into the
Python ecosystem. For the entire simulation, the user can
stay in Python to stimulate nerves and record from them in
silico.

Methodology

Nerve Stimulation Experiments

Experiments were carried out in accordance with the Ani-
mals (Scientific Procedures) Act 1986 (United Kingdom)
and Home Office (United Kingdom) approved project and
personal licences, and experiments were approved by the
Imperial College Animal Welfare Ethical Review Board
under project licence PPL 70/7365. A male Wistar rat (body
weight 350–400 g) was initially anaesthetised with isoflu-
rane. Urethane was then slowly administered through a
tail vein (20 mg kg−1). The left cervical vagus nerve was
exposed and contacted with a stainless steel pseudo-tripolar
hook electrode of pole distance 1–2 mm for stimulation.
To record from the nerve, a bipolar platinum hook elec-
trode (pole distance 2–3 mm) was then wrapped around the
anterior branch of the subdiaphragmatic vagus nerve with
an Ag/AgCl ground electrode placed in the abdominal cav-
ity. Distance between recording and stimulating electrodes
was 8–10 cm. See Fig. 1. Mineral oil was applied to each
site to insulate the electrodes from environmental and prox-
imal noise sources. Stimulation of the cervical vagus nerve
was performed using a Keithley 6221 current source, con-
trolled by Standard Commands for Programmable Instru-
ments (SCPI) via a custom built Matlab interface. Bipolar
cuff recordings were achieved with an Intan Technology

~

stimulation

recording

vagus nerve
V

Fig. 1 The validation data were obtained through stimulation of a rat
vagus nerve. A pseudotripolar electrode excited axons at the cervical
vagus nerve, signals were picked up at the subdiaphragmatic vagus
nerve with a bipolar electrode

RHD2000 system, using a 16-channel bipolar ended ampli-
fier (RHD221). The obtained recordings were averaged over
10 repeated stimulations in the same animal.

Imaging of Peripheral Nerve Tortuosity

All procedures were carried out in accordance with
the Animals (Scientific Procedures) Act 1986 (United
Kingdom) and Home Office (United Kingdom) approved
project and personal licences, and experiments were
approved by the Imperial College Animal Welfare Ethical
Review Board under project licence PPL 70/7355. To
reproduce the morphology of axons, we imaged the vagus
and sciatic nerves in mice using two photon fluorescence
imaging. In the experiment, ChAT-Cre FLEX-VSFP 2.3
mice were euthanised by intraperitoneal overdose of
pentobarbital (150 mg kg−1). The pre-thoracic left and
right vagus nerves were surgically exposed and 0.5 cm
sections were removed and placed in phosphate buffered
saline (155.1 mmol NaCl, 2.96 mmol Na2HPO4, 1.05 mmol
KH2PO4) adjusted to 8.0 pH with 1 mol NaOH. Sections
of the left and right sciatic nerves of between 1 and 2 cm
from above the knee were also removed. To prepare for
microscopy, the nerves were placed on microscope slides,
stretched until straight, and the nerve ends were fixed
with super glue. The preparation was covered with PBS.
Distortions potentially caused by the stretching of the nerves
were assumed to lie within the physiological range of
movement-induced deformations the nerve undergoes in the
living organism. A commercial 2P microscope was used
for imaging (Scientifca, emission blue channel: 475/50 nm,
yellow channel 545/55 nm, 511 nm dichroic, Semrock)
whilst exciting at 950 nm using a Ti-Sapphire laser (Mai Tai
HP, Spectra-Physics).

PyPNSOverview

Every PyPNS simulation describes one peripheral nerve
consisting of an arbitrary number of unmyelinated and
myelinated axons, each with a certain diameter and
trajectory. Axons can be activated by synaptic input,
intra- and/ or extracellular stimulation. For extracellular
recordings, electrodes are positioned along the nerve.

The module is organised as several core classes mapped
to the physiological entities found in a peripheral nerve
(shown in Fig. 2 along with the data flow). All objects
are managed by the main class Bundle. This is the
central object in the Python domain and represents the
whole nerve. It contains instances of the Axon-class that
define properties needed by the NEURON simulations.
Unmyelinated and Myelinated are derived from
the parent Axon-class. Each axon is characterised by its
diameter and trajectory. To activate axons, Excitation
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Fig. 2 The Axon-class is the central object of PyPNS’s
internal information flow. Together with its associated
ExcitationMechanisms it defines the NEURON simulation.
Extracellular-objects allow the calculation of extracellular
potentials given current i(t), source position s and receiver position

r. They are used by both StimField for extracellular stimula-
tion and by RecordingMechanism for recording. All classes
are managed in the Bundle-class and supported by helper mod-
ules spikeTrainGeneration, signalGeneration and
createGeometry.

Mechanisms are added to the Bundle. Those can be
either synaptic input (UpstreamSpiking), intracellular
stimulation (StimIntra) or extracellular stimulation
(StimField). Similarly for recording, electrodes can be
added to the whole nerve as a RecordingMechanism.
For all interactions with the extracellular space, i.e.
extracellular stimulation or recording, a model of the
medium defined in a Extracellular-class has to be
set. This can be either homogeneous (homogeneous),
an FEM result (precomputedFEM) or an analytically
defined potential distribution (analytic).

In the simulation step, the definition of each axon
in Bundle is sequentially transmitted to NEURON
via the Python-NEURON-Interface (Hines et al. 2009)
alongside its associated ExcitationMechanisms. After
the calculation of single axon membrane processes is
finished in NEURON, PyPNS computes the extracellular
single fibre action potential (SFAP) for the associated
RecordingMechanisms from membrane currents. Once
all axons have been processed, their contributions to the
overall compound action potential (CAP) are added.

Assumptions and Simplifications

Several assumptions were required for the computational
feasibility and efficiency of our model. Axons were
assumed to be independent from each other in their
activity (no ephaptic coupling). Properties such as diameter,
myelination, and channel densities stayed constant along
the axon length. The electro-quasistatic approximation

of Maxwell’s equations governed the extracellular space,
neglecting magnetic induction:

∇ × E = −∂B

∂t
� 0 (1)

Further, all media were assumed to be purely resistive,
so that all changes in current affected the potentials of
the entire space immediately. In Maxwell’s equations this
results in neglecting displacement currents:

∇ × H = J + ∂D

∂t
� J (2)

For the brain and in the considered frequency range, the
electro-quasistatic approximation is assumed to be valid
(Hämäläinen et al. 1993; Bossetti et al. 2008); previous
peripheral nerve simulation studies have built on both
quasistatic and purely resistive approximations (Raspopovic
et al. 2012; Struijk 1997; Veltink et al. 1989; Goodall
et al. 1995). Layers of tissue surrounding the nerve were
modelled with a circular symmetry and only one fascicle
was considered. Extracellular recordings and stimulation
did not take into account the electrode-electrolyte interface
(see Cantrell et al. (2008) for its effect on stimulation
efficiency).

AxonModels

We used the original Hodgkin-Huxley parameters (Hodgkin
and Huxley 1952) for unmyelinated axons. Myelinated ones
were based on the model of McIntyre et al. (2002) that
has originally been developed for peripheral motor fibres
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with thicker diameters (5.7–16.0 μm). To match the thinner
axons found in the PNS (0.2–3 μm), we extrapolated all
diameter dependent parameters to smaller diameters as
shown in Fig. 3. Extrapolated parameters were: (1) the
diameters of the different segments – nodes, MYSA (myelin
attachment segment), FLUT (paranode main segment),
STIN (internode segment), (2) node distance and (3) the
number of myelin sheaths. Neither model is claimed to
exactly match the properties of single neurons found in
the PNS. We aimed to implement a generalised framework
in which parameters can be fine-tuned to match specific
datasets.

Generation of Axonal Geometry

Axons in peripheral nerves are not perfectly straight, but
instead follow the nerve path with a certain degree of
tortuosity. To model this in our simulation without defining
the geometry for each fibre manually we iteratively placed
straight axon segments along a previously defined bundle
guide, itself composed of longer straight segments. In each
step, the axon segment direction ai was calculated as

ai = ai−1 + (1.1 − α) · bk + α · wi

||ai−1 + (1.1 − α) · bk + α · wi || , (3)

based on the corresponding bundle guide segment direction
bk (k ≤ i as bundle guide segments were longer than
axon segments), the previous axon segment direction ai−1

and a random component perpendicular to the bundle guide
segment direction wi . All vectors have unit length. The
parameter α ∈ [0, 1] regulates the tortuosity of the axon
and can, together with the distribution of ||w||, be fit to
geometries measured by microscopy. The factor (1.1 − α),
rather than (1 − α), was chosen to maintain forward axon
growth. See Appendix A for the exact implementation of wi

which insures that axons stay within the nerve.
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Fig. 3 Linear and quadratic fits were used to extrapolate the
parameters of myelinated axons to smaller diameters. a Diameters
of all segments – nodes, MYSA (myelin attachment segments),
and paranodal elements FLUT (paranode main segment) and STIN
(internode segment, see McIntyre et al. (2002) for more information
on the model)–were fit quadratically to prevent negative values. Node
distance (b) and number of myelin sheaths (c) were extrapolated
linearly

r, t)

i(s, t)

Fig. 4 Axon segments can be interpreted as current point sources. The
extracellular potential φ(r, t) at position r caused by a current i(s, t)
at position s is determined by current time course scaled with a static
potential depending on the extracellular space and the spatial relation
between source and receiver position

To fit our axon placement method to realistic axon
trajectories, fibres in microscopy images were manually
traced and segmented into straight sections of length 15 μm.
For all traced axons of one nerve, the normalised difference
in direction between consecutive segments c = ||ai −ai+1||
was calculated. We then compared the c-distribution of
imaged, traced axons to the ones obtained from artificial
fibres placed at different tortuosity coefficients α and
||w||-distributions to select the best fit. For details see
Appendix B.

Extracellular Potentials

Recordings from peripheral nerves capture changes in the
potential of the extracellular medium caused by membrane
currents. To calculate those changes in PyPNS, axon
segments were interpreted as point current sources, each
causing a potential change in the entire medium.2 See Fig. 4.
Potentials generated by all current sources were superposed.
From the electro-quasistatic approximation of the Maxwell
equations, combined with pure resistivity, time and space
can be separated in the compound action potential (CAP)
calculation:

φCAP(r, t) =
∑

si

φstatic(si , r, Iref)

Iref
· i(si , t). (4)

The extracellular potential over time at receiver position
r, φCAP(r, t), was calculated as the sum over single axon
segment contributions. The contribution of one segment
at position si to the potential recorded at position r was
obtained from a known static potential φstatic(si , r, Iref) at
reference current Iref that was then scaled by the temporally
varying membrane current of the segment i(si , t).

Extracellular stimulation follows exactly the same prin-
ciple, with stimulation electrodes modelled as assemblies
of point current sources and axon segments as potential
receivers.

2Point sources were given preference over the line source approxima-
tion to enable our efficient precomputation of extracellular potentials.
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To further clarify the implications of Eq. 4 on extra-
cellular recordings, consider a single straight axon on the
z-axis, so that φstatic(s, r, Iref) becomes φstatic(z, Iref) with
z = (s − r) · ez. The translation of membrane current to
recorded single fibre action potential (SFAP) in the extra-
cellular medium is then solely determined by the profile of
the static potential over longitudinal distance:

φSFAP(t) =
∑

zi

φstatic(zi, Iref)

Iref
· i (zi, t) . (5)

As Fig. 5 demonstrates, the membrane current of each axon
segment is temporally displaced according to its distance zi

and the conduction velocity CV (Fig. 5a):

i(zi, t) = i
(
t − zi

CV
| z = 0

)
:= i0

(
t − zi
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)
. (6)
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Fig. 5 The impact of the longitudinal profile φSFAP(z) on SFAPs can
be understood by studying the potential caused by a perfectly straight
axon recorded at z0 = 0 for t = t ′. Axon segments of length �z exhibit
the exact same current time course except for a delay �t = zi/CV

(a). The potential φSFAP at t = t ′ is then obtained as the sum over
membrane currents i(zi | t = t ′) shown in (b), multiplied by the static
potential φstatic(zi , Iref)/Iref (c)

For one t = t ′, the instantaneous currents i(zi | t =
t ′) = i0(t

′ − zi/CV ) of all segments shown in Fig. 5b
are multiplied by the static potential corresponding to their
spatial displacement (Fig. 5c) and added up.

If one assumes, as an extreme example, the Kronecker
delta as a profile (φ(z) = δ(z)), the SFAP would have
exactly the same time course as the membrane current. On
the other hand a constant profile φ(z) = c will make
the resulting SFAP vanish because of charge conservation
(
∫

i(t)dt = 0 ⇒ ∫
i(z/CV )dz/CV = 0). The recorded

action potential is maximal if positive and negative peaks of
membrane current add up constructively. To quantify when
this happens, an active length la of an axon can be defined as

la = ta · CV, (7)

with ta denoting the time during which an axon segment
emits current of constant sign and CV the conduction
velocity. Membrane current is of the same sign over length
la. The match between this length and the range of the
profile (�z = z2 − z1 with φ(z) > 0 for z in [z1, z2])
will determine the amplitude of the SFAP – in addition to a
scaling factor depending on the absolute values of φstatic(z)

in Eq. 4.

Homogeneous Media

If the medium is assumed to be homogeneous with a
constant conductivity σ , the potential φ(r, t) at r caused
by a point source of current i(s, t) at s can be analytically
written (see Malmivuo and Plonsey 1995, Chapter 8 or
Lindén et al. 2014 for reference) as

φ(r, t) = 1

4πσ

i(s, t)
|s − r| . (8)

Compared to the formulation in Eq. 4, the static potential
term that translates current to voltage here became

φstatic(s, r, Iref)

Iref
= 1

4πσ |s − r| . (9)

PyPNS implements the homogeneous case as
PyPNS.Extracellular.homogeneous.

Radially Inhomogeneous Media

As the medium surrounding the axons in peripheral
nerves is anisotropic and inhomogeneous, the homogeneous
assumption is not appropriate. Consequently, no exact
analytical solution for the potential caused by a point current
source exists and numerical methods become necessary.3

In order to reduce computational load, we precomputed

3A homogeneous but anisotropic medium can in fact be modelled
analytically using a conductivity tensor (Nicholson and Freeman 1975;
Goto et al. 2010). A combination of inhomogeneities and anisotropy is
not feasible, however.
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potential fields once in a finite element model (FEM) and
then imported and reused them in PyPNS. This means that
the computationally expensive field calculation only had
to be carried out once per extracellular medium geometry.
To insure the feasibility of this approach, the extracellular
space was modelled using the simplified geometry shown in
Fig. 6a, with conductivities set to the values given in Table 1.
By making the conductivity a function of radius only (i.e.
conductivity boundaries were circularly symmetric), a very
limited number of unique point source positions exists, each
for a different radius (dots in Fig. 6a). We refer to this setup
as a radially inhomogeneous medium.

In the FEM solver COMSOL 4.3, the nerve had a length
of 10 cm and was placed in a cubic volume of equal edge
length. The inner nerve radius was set to 190 μm, the
endoneurium thickness to 50 μm. All inner boundaries had
von Neumann boundary conditions, the potential of the
outer border of the cubic volume was set to zero (Dirichlet
boundary condition). The current entered the mesh at a
single point.

oil/ cuff

recording
electrode

epineurium

axons

point source

saline

ri
ra

A

B

Fig. 6 A circularly symmetric geometry makes it possible to import
precomputed potential fields. The nerve is modelled as axons (white
matter) surrounded by the epineurium. The positions of exemplary
current point sources, each generating one potential field, are shown.
For radially inhomogeneous media, a line of sources does characterise
all unique fields. For longitudinal inhomogeneities (a), potential fields
for a two-dimensional array of point current sources need to be
precomputed (b)

Table 1 Conductivity of different tissues contained in the simulated
peripheral nerve; colours correspond to Fig. 6 (Capogrosso et al. 2013;
Struijk 1997)

Tissue Conductivity S m−1

Axons (light blue) 0.5 longitudinal, 0.8 transversal

Epineurium (darker blue) 0.1 isotropic

Saline (white) 2.0 isotropic

Voltage fields φ(x, y, z, r) for different radial point
source displacements r were computed. Due to our assump-
tions concerning the medium, steady state simulations were
sufficient (separation of time and space). The static volt-
age fields were exported on a grid of x ∈ −[1.5, 1.5] mm
with a step of 0.015 mm, y ∈ [0, 1.5 mm] with a
step of 0.015 mm, z ∈ [0, 30] mm with a step size
of 0.03 mm where z is the longitudinal nerve axis and
source positions are displaced along x. The fields were
imported in PyPNS as a linear 4D spline interpolator.
PyPNS afterwards scales the static potentials with cur-
rent time courses as given in Eq. 4 with Iref set to 1 nA
in COMSOL. The corresponding mechanism in PyPNS is
PyPNS.Extracellular.precomputedFEM. When
using an imported potential field, attention has to be paid
to the source radii used in the FEM precomputation step.
The radius selected in PyPNS needs to lie within the pre-
computed range. E.g. for stimulation, radii might be larger
than the nerve radius whereas for recording the precom-
puted source radii have to lie within the nerve. Of course,
different precomputed fields can be used for recording and
stimulation respectively.

Longitudinally Inhomogeneous Media

In electrophysiological experiments, the nerve does not
usually lie within its natural surrounding tissue. Instead,
to improve stimulation and recording performance, a cuff
or a mineral oil bath increases the extracellular resistivity.
The medium is in this case no longer longitudinally
homogeneous, and any longitudinal shift in current source
position will result in a different potential field. For
stimulation, the current source (stimulation electrode)
position can be fixed and the precomputation of very few
potential fields, each for one electrode radius, characterises
the effect of the electrode completely. For recordings,
however, the longitudinal source position necessarily varies,
as the axon segments extend through the nerve. Therefore,
to cover all unique axon segment potential fields, a 2D-
array of source positions distributed along both radial and
longitudinal direction must be precomputed, as shown in
Fig. 6b.
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Note that without circular symmetry, a volume of
source positions would need to be simulated, making the
precomputation infeasible.4 In this case, the most efficient
approach would be to fix the axon geometries for one
particular case, perform an FEM simulation for each axon
segment position and either export the potential fields for
the whole space or also fix the electrode positions and
export the potentials only at the electrodes. This method,
however, is less universal, much more computationally
expensive, and involves a lot more coordination between
FEM simulation and compartmental axon model.

We found that for recording, a reasonable number of
current source positions (∼ 20, each using about 40MB
of memory) could not abolish interpolation errors between
fields from longitudinally adjacent source positions, causing
artefacts in the extracellular action potentials. To generate
recordings without artefacts, a smoothed transfer function
between point current source position and potential in the
cuff was fit to FEM model results. Details are given in
Appendix C. This transfer function served in PyPNS as a
variant of PyPNS.Extracellular.analytic.

Results

AxonModels

For thin (< 1 μm) myelinated axons, extrapolated parame-
ters from the McIntyre model (McIntyre et al. 2002) yielded
bursting behaviour as soon as the fibres were activated
through either synaptic input or stimulation. To prevent this,
the potassium channel density at the nodes was increased by
a factor of 1.5. Node size reduction with diameter achieved
the same effect but is not observed (Tuisku and Hildebrand
1992; Berthold and Rydmark 1983). Potassium channels in
the paranodal regions (not included in the original model)
have been observed physiologically (Poliak and Peles 2003;
Röper and Schwarz 1989) but their integration in the model
could not abolish bursting. Myelinated conduction velocity
(CV) fit experimental data well (CV [ms−1] ∼ 5 · d with
diameter d in μm). Unmyelinated axons based on Hodgkin-
Huxley channels had very low conduction velocities, CV
∼ 0.4 · √

d, in comparison with expected values of around
2 · √

d (Waxman 1980). This is an inherent property of the
Hodgkin-Huxley axon model.

As membrane current directly shapes extracellular
potential recordings, Fig. 7 compares the membrane current
in time for one unmyelinated axon segment (Fig. 7a) and

4For a nerve of radius 200 μm, a longitudinal length coverage of
20.000 μm and a source position grid step of 20 μm this would mean
approximately 300,000 simulations, each taking at least 30 min on a
single core of a state of the art workstation, totaling to a computation
time of over 17 years. The result would occupy 12 TB of RAM.
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Fig. 7 Unmyelinated axons (a) produce a smoother membrane time
course than myelinated (b) ones. Both axons had a diameter of 3 μm. c
Unmyelinated axons produce a higher current output per distance. The
integrated absolute current during a single action potential over axon
length is shown

one node of Ranvier (Fig. 7b). In Fig. 7c, the integrated
current output is plotted over diameters. Importantly,
unmyelinated axons emitted more current per distance and
the signal shapes differed considerably. The unmyelinated
current time course was smooth, whereas the myelinated
one was more complex with a sharp peak and a long
lasting recovery. The latter axons contain different segments
(node, myelin attachment segment (MYSA), paranodal
main segments (FLUT)) which all contribute to the overall
current output and thereby caused the more complex shape.
See the model of McIntyre et al. (2002) for more details on
section types.

Profiles of Extracellular Media

In “Extracellular Potentials” we described the impact of
the longitudinal profile φstatic(z) on the single fibre action
potentials (SFAPs). Building on these considerations, the
normalised φstatic(z)-profiles of our media can be compared.
Figure 8 shows the normalised static potentials over distance
for all three media and makes the strong impact of the cuff
insulation obvious. The potential profile became smooth,
stretched out in space. The thin nerve surrounded by
an insulation acted as two parallel resistors, causing a
linear characteristic. For radial displacements of the current
source towards the electrode, a sharp peak emerged (see
also Fig. 18). We expect fast conducting axons with long
active length la to best match this large range profile.
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The other two media had a different, much narrower
characteristic. Radial inhomogeneities produced a slightly
smoother potential profile compared to the homogeneous
medium but differences remained small. Both profiles
decayed a lot steeper with longitudinal distance than in
the cuff and were therefore expected to better suit slower
conducting axons with a shorter la.

Extracellular Single Fibre Action Potentials

In Fig. 9, the effect of different extracellular media on
the resulting SFAPs can be compared. The axons were
activated by intracellular stimulation and recorded with a
monopolar circular electrode at radius 235 μm.5 In the cuff
medium, the electrode was placed centrally as shown for
one point electrode in Fig. 6b. Figure 9a shows extracellular
potentials from a single unmyelinated fibre. Between the
three different media, mostly amplitude varied with only
slight differences in shape. Insulating the nerve with a
cuff increased the potential by a factor of about ten and
caused a narrower signal shape. In addition, an entrance
and an exit peak at the sides of the cuff arose that were
not present in the two longitudinally homogeneous media.
The radially inhomogeneous medium slightly stretched the
action potential in time which can be explained by the
preference of current to flow along the nerve rather than
transversally (compare to profile in Fig. 8).

The SFAP of myelinated axons in Fig. 9b was much
more strongly affected than the unmyelinated fibres when
insulating the nerve. Whilst the difference between homo-
geneous and radially inhomogeneous medium remained
small, myelinated SFAP amplitude increased by a factor of
about 20 in the cuff and shape was changed radically. The
recorded signal lasted longer and had (as for unmyelinated

5Electrode radius was chosen to be slightly smaller than nerve radius
to maintain a small distance to the non-conducting insulation layer
surrounding the nerve.

axons) a negative main and two positive entrance and exit
peaks.

Figure 9c compares the SFAP amplitude for unmyeli-
nated and myelinated axons over diameters and media.
Whilst the SFAP amplitude of unmyelinated axons was
similar and even higher than myelinated SFAPs in homo-
geneous and radially inhomogeneous media, myelinated
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Fig. 9 Unmyelinated and myelinated SFAPs showed different sen-
sitivities towards the extracellular space. In the upper plots (a, b),
diameters were set to 3 μm. a The main peak of unmyelinated fibres
mostly varied in amplitude over media, not in shape. In cuff insulated
nerves, additional side peaks emerged. b Myelinated fibres produced
much higher and longer lasting SFAPs in the cuff insulated medium.
Both axons had diameter 3 μm, were placed centrally within the nerve
and recorded by a circular monopolar electrode with radius 235 μm.
Conductivity of the homogeneous medium was set to 1 S m−1. Lower
row shows zoomed-in plots. c The amplitude boost achieved by cuff
insulation was stronger for myelinated than for unmyelinated axons
over the whole diameter range. For the other two media, unmyelinated
SFAPs produced stronger SFAP amplitudes at diameters above 0.5 and
1 μm respectively
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fibres achieved much stronger amplitudes following cuff
insulation – even though their membrane current output is
substantially lower compared to unmyelinated axons (see
Fig. 7). This difference in reaction to the cuff medium
between fibre types can be explained by the two different
mechanisms through which cuff insulation changed SFAP
amplitude. The first one is the increased extracellular resis-
tance. Current cannot freely dissipate into the surrounding
tissue but needs to flow along the thin nerve. As membrane
current was modelled to be independent of the medium, an
increase in extracellular resistance equaled an increase in
extracellular potential. This effect increases SFAP ampli-
tude equally for both fibre types. The second one – that can
explain the difference in amplitude gain between fibre types
– is the match of active length (as defined in Eq. 7) and
cuff dimension (equal to range of the profile; 20 mm in this
case) as detailed in “Extracellular Potentials”. For a myeli-
nated axon of diameter 3 μm the active length evaluated to
approximately 0.5 ms · 15 ms−1 = 7.5 mm, an unmyeli-
nated axon of this diameter only had an active length of
about 0.5 ms · 1 ms−1 = 0.5 mm. Figure 9c demonstrates
the matching effect between myelinated axons and the cuff
over all diameters.

Effects of Varying the Cuff Length

As a tool for Bioelectronic Medicines, PyPNS should help
the design of peripheral nerve interfaces. Here we take a
look at the impact of cuff electrode length on the recorded
signal amplitude. Figure 10 demonstrates how unmyelinated
and myelinated fibres require different cuff lengths for
a maximal SFAP amplitude. Unmyelinated fibres with
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their lower conduction velocity and therefore shorter active
length produce the strongest signals for (theoretic) cuff
lengths of about 1 mm. Whilst those are most likely not
achievable, medium lengths of about 1 cm seem reasonable
according to our simulation. The amplitude of myelinated
axons keeps rising until the investigated maximum cuff
length of 10 cm but starts saturating at about 1 cm. PyPNS
therefore predicts an ideal cuff length in this order. Results
will vary for a more accurate unmyelinated axon model,
where higher conduction velocities would be expected to
increase the ideal cuff length.

Compound Action Potentials

For validation, we aimed at reproducing experimental
recordings from the stimulated rat vagus nerve in PyPNS.
To this end we obtained diameter distributions and fibre
counts from microscopy images (Prechtl and Powley 1990)
as summarised in Table 2 and set the geometry of the nerve
and the recording electrodes so as to match the experimental
set-up. Outer and inner radius were set to 240 μm and
190 μm respectively; a circular bipolar electrode of radius
235 μm and pole distance 3 mm (20 recording positions
per pole) surrounded the nerve. Axons were placed centrally
and were activated intracellularly; due to the difference
in stimulation threshold between fibres types, the entire
population of myelinated and only a small fraction of
unmyelinated axons (∼ 20% of 10,000) was triggered. As
unmyelinated fibres based on Hodgkin-Huxley channels
had very low conduction velocities, we corrected their
SFAP timings. The nerve was insulated with mineral oil
in the experimental recording. Therefore only the cuff
medium should produce similar extracellular signals in the
simulation. The results from homogeneous and radially
inhomogeneous media are presented as well in the following
for comparison.

Figure 11 plots simulation results in all media against the
experimental data and demonstrates a reasonable agreement
between simulation and experiment in the time domain. This
match naturally only held for the cuff insulated medium
– homogeneous and radially inhomogeneous media led to
very low extracellular potential amplitudes as expected from
their lower tissue resistance. The signal segment between
A- and C-fibres from 25 to 40 ms can be attributed to B-
fibres and was not compared to the simulation as PyPNS
only models A- and C-fibres.

Especially the signal portion caused by myelinated fibres
(Fig. 11b) matches the experiment well in peak amplitudes,
area, zero crossings and overall duration. See Table 3 for
a quantitative comparison. Unmyelinated axons (Fig. 11c)
also produced a CAP comparable to the experiment in
both amplitude and timing although the comparison is more
difficult as the signal to noise ratio in the experimental data
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Table 2 Axon number and
properties set in the simulation
for comparing model results
with experimental recordings

Type # diameter (μm)

Unmyelinated 2000 ∈ (0.2, 1.52) distribution from Prechtl and Powley (1990)

Myelinated 200 ∼ N (1.7, 0.4) (Prechtl and Powley 1990)

is lower for unmyelinated than for myelinated fibres. Table 3
summarises how area and amplitude of the experimental
recording are larger than in the simulation and that there
occur considerably more zero crossings in the experiment.
The noise present in the experiment will be accountable for
a share of those crossings. Of course, the Hodgkin-Huxley
model of the unmyelinated axons did not to exactly match
the properties of the rat vagus nerve C-fibres, therefore
differences in the extracellular recordings were expected.

In Fig. 12 simulation and experiment can be compared
in the frequency domain for both fibre types. The similarity
between simulated and experimental data was comparable
to the match in time domain for both myelinated and
unmyelinated fibres. The spectrum of the unmyelinated
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Fig. 11 a The simulated compound action potential in the cuff medium
approaches the experimental recording well in the relevant signal
segments. As expected, homogeneous and radially inhomogeneous
media lead to much weaker signal amplitudes. For the experimental
recording, the grey underlying area indicates the standard deviation
over the 10 stimulation repetitions. See Table 2 for axon properties.
Distance between stimulation site and bipolar electrode (3 mm pole
distance, 235 μm radius) was 8 cm. All axons were activated by
intracellular stimulation. The timing of unmyelinated SFAPs was
adapted to regular conduction velocity values assumed in mammalian
peripheral nerves (CV = 1.4 · √

d, CV in ms−1, d in μm). b The
signal from myelinated fibres, which arrive first, appears similar to the
experiment. c The unmyelinated signal segment matches the amplitude
and duration of the experimental recording as well. The signal-to-noise
ratio of the recordings is much worse for unmyelinated fibres, however,
as the amplitude of their SFAPs is low

signal proportion in our experimental data (black lines in
Fig. 12a) had an overall flat profile with a main peak
(lower plot) at around 500 Hz. This characteristic was
approached to a certain extent by our model. The spectra
in all three media have slighly earlier peaks below 500 Hz
but homogeneous and cuff medium result followed the
characteristic of the experiment well between 0 and 2 kHz
before decaying further below − 20 dB from there. We
surmise that the high frequency content of the experimental
data may be be caused by high frequency noise from the
recording process. Meaningful, spike-event related signal
components from experimental recordings usually stay
below 2 kHz (Diedrich et al. 2003).

The experimental spectrum of myelinated fibres
(Fig. 12b) was dominated by low frequency power below
2 kHz with a peak at about 500 Hz. Our simulation result in
the cuff medium matched this characteristic for frequencies
over the whole frequency range, although showing a later
peak around 1 kHz. The other two media led to a flat char-
acteristic with a larger amount of high frequency power and
less low frequency power. This could be predicted from the
SFAPs in Fig. 9 where the myelinated SFAP is much wider
in the cuff than in the other media.

In conclusion, the experimentally obtained frequency
characteristic of both axon types was reasonably matched
by our simulation for the cuff medium.

Fitting Axon Tortuosity to Experimental Data

In order to obtain axon shapes close to reality, we compared
the distributions of axon segment direction changes c

as detailed in methods “Imaging of Peripheral Nerve

Table 3 Quantitative comparison between compound action potentials
from experiment and simulation (cuff medium)

Feature Experiment Simulation

Myelinated axons

Area (μV ms) 115 83.2

Peak-to-peak voltage (μV) 57.5 50.3

Zero crossings 50 45

Unmyelinated axons

Area (μV ms) 147 93.9

Peak-to-peak voltage (μV) 25.2 14.0

Zero crossings 271 133
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Tortuosity” for imaged mouse sciatic and vagus nerve. See
Fig. 13 for fluorescence microscopy images and traced
axons.

In Fig. 14, the obtained direction change distributions
from microscopy (Fig. 14a) are compared to the ones
of simulated axons (Fig. 14b) alongside a few example
axons in space (Fig. 14c). In Fig. 14a, the higher
tortuosity observed in the vagus nerve is visible from
the wider distribution of segment direction changes (c-
values) compared to the sciatic nerve. A set of direction
change distribution obtained at different parameters (||w||-
distribution and α) in PyPNS is shown in Fig. 14b.
When comparing to Fig. 14a, a Gaussian ||w||-distribution
produced c-distributions the most similar to microscopy
data. The sciatic nerve then corresponded to an α-value of
about 0.6, the vagus nerve had a wider c-distribution as
its axons were curvier, corresponding to a higher α. When
comparing the trajectories in Fig. 14c from uniform (upper
plot) and Gaussian (lower plot) c-distributions, it can be
seen how the normal distribution of random vector length
||w|| leads to both a slightly smoother trajectory and rare
strong direction changes, especially for high α-values.

Recording from Tortuous Axons

A more complex axon trajectory caused more complex
SFAPs, as it can be seen in Fig. 15. Upper plots of Fig. 15
show superposed SFAP shapes for ten individual axons in
both radially inhomogeneous (upper row) and cuff medium
(second row).6 A summary of SFAP similarity between

6The homogeneous medium produced very similar SFAP shapes in
time as the radially inhomogeneous medium. Therefore the traces are
not shown. The similarity summary in the lower row was plotted for
all three media.

all ten runs is plotted in the lower row. Unmyelinated
SFAPs (Fig. 15a) were especially sensitive to tortuosity.
They developed complex, long lasting signals, especially
in homogeneous and radially inhomogeneous media. When
insulating the nerve, the amplitude of the main SFAP peak
became very weak at high tortuosity whilst many small
side peaks arose, giving the signal a noisy appearance.
Myelinated fibres (Fig. 15b) were more robust to tortuosity
– their SFAP shape remained invariant at low and medium
α-values. Only high degrees of tortuosity could change
signal timing and shape; as for unmyelinated axons, the cuff
isolated medium let the signal become noisy.

The overall effect of tortuosity to change SFAP shape
can be understood by looking at Eq. 10 (same as Eq. 5)
and changing it as in Eq. 11 where s is the distance along
the axon. The longitudinal distance z(s) along the nerve
becomes a function of s, shaped by tortuosity. Differences
in the potential φ depending on the radial displacement
of the axon were neglected here. The potential profiles
of the extracellular media (see Fig. 8) are then both
stretched (z(s) ≤ s) and distorted in a degree dependent on
tortuosity. Different axons show different susceptibilities to
this distortion because of their different active lengths. If
the active length is large compared to the spatial frequency
of the tortuosity-induced profile distortion, variabilities in
φ(z(s)) are shadowed. Axons with shorter active length
respond to those variabilities making their SFAPs noisier.
This explains the difference in susceptibility between axon
types.

φSFAP =
∑

zi

φ(zi) · i
(
t − zi

CV

)
(10)

⇒ φSFAP =
∑

si

φ(z(si)) · i
(
t − si

CV

)
(11)

To quantify the influence of α on the heterogeneity of SFAP
shape, we calculated the pairwise cross-correlation

(f 	 g)(τ ) =
∫ ∞

−∞
f (t) · g(t + τ) dt (12)

between normalised SFAP waveforms sα,i from repeated
simulation runs whilst keeping α, fibre type, and medium
unchanged. The mean maximum cross-correlation over all
waveform pairs described shape homogeneity:

cα = 2

n · (n − 1)

n−1∑

k=0

n−1∑

l=k+1

max(sα,k 	 sα,l). (13)

Figure 15 confirms that a higher α caused higher
differences in shape (lower cα). As expected from the time
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Fig. 13 Fluorescence
microscopy images of the mouse
sciatic and vagus nerve both
show slight tortuosity in their
axon trajectories. a The thick
myelinated fibres in the sciatic
nerve appear very parallel. b
The thinner axons in the vagus
take a more curvy trajectory.
Several manually traced fibres
used to fit the model are
highlighted in orange

11

BA

100µm100µm

course, myelinated SFAPs remained similar even for large
α whilst unmyelinated ones lost their similarity. Note that
this measure does take into account differences in timing or
amplitude.

Stimulation of Tortuous Axons

Not only the recording from but also the stimulation
of axons is influenced by their trajectory. Figure 16
plots the activation ratio of unmyelinated and myelinated
fibres for different degrees of tortuosity and different
stimulation amplitudes. It shows that firstly, regardless of
tortuosity, unmyelinated axons had much higher stimulation
thresholds than did myelinated ones. Second, unmyelinated
fibres had an optimal stimulation current with a smooth
decrease in stimulation efficiency for higher and lower
current amplitudes. In the low amplitude range (< 3 mA),
perfectly straight axons are activated best. In higher current

regimes, very tortuous unmyelinated axons were the most
consistently triggered. Stimulation of myelinated axons on
the other hand was successful from low amplitudes of about
150 nA and at almost any higher current at all degrees
of tortuosity. In Fig. 16c a minor increase in stimulation
threshold with tortuosity becomes visible. Therefore,
tortuosity affected the activation ratio of unmyelinated
axons stronger than it did for myelinated ones.

Discussion

The open-source simulation framework that we have
proposed here for the first time integrates compartmental
axon models and numerically solved extracellular space
models into a single environment. To make the import
of precomputed voltage fields feasible and efficient, the
modelled media needed to fulfil certain constraints. One
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nerve (middle row) their signals became noisy at low α-values and the

main SFAP peak almost disappeared for α = 1.0. b Myelinated axons
mostly differed in timing in the radially inhomogeneous extracellular
space, and not as much in shape. In the cuff, noisiness only arose at
high tortuosity values. In the lower plots, the mean maximum pairwise
cross-correlation gives a quantitative confirmation of the higher sus-
ceptibility of unmyelinated axons to change their SFAP shape in the
presence of tortuosity. Note the different ordinate scales

was the geometry that had to be circularly symmetric.
Whilst presenting a strong simplification of the extracellular
medium, this implementation can be seen as a generic
peripheral nerve in which axons can still cluster to
fascicles. Another constraint concerned material properties.
Displacement currents and therefore frequency dependence
of the tissues was not accounted for. Such frequency
dependence certainly exists to a certain extent. It can arise
from macroscopic structures at constant material properties
(dielectric constant ε and conductivity σ ) – the epineurium
can for instance act as a capacitor. In addition, polarisation
at different microscopic levels (Bédard and Destexhe 2009;
Martinsen et al. 2002) can render the material properties
ε and σ themselves frequency dependent. Such dielectric
dispersion is observed in most biological tissues (Gabriel
et al. 1996). Ephaptic coupling and neurodiffusive effects
were neglected as well.

In terms of axon geometry, we implemented a simple
iterative placement mechanism that was fit to microscopy
data. To our knowledge this is the first implementation
of such automated shape generation for peripheral nerve
models. It enabled us to investigate the influence of tortu-
osity on recordings and stimulation efficiency and indicated
that perfectly straight axons are an oversimplification. Our
simulation predicted that SFAPs become more complex
with increasing tortuosity – an effect that is exploited by
spike sorting algorithms which differentiate single units
from their SFAP shape. For now, axons were positioned
independently from another. As a next step, fibre tra-
jectories could be correlated as observed in microscopy
images.

The modular nature of our model allows for an easy
comparison of different extracellular media. Building on
this functionality, we identified an ideal cuff length for
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Fig. 16 Unmyelinated axons have higher stimulation thresholds
and are activated less reliably than myelinated ones. Both bundles
consisted of 15 axons with diameter 3 μm and were stimulated with
a bipolar electrode of radius 235 μm and pole distance 1 mm using a
biphasic pulse of frequency 1 kHz, duration 1 ms and duty cycle 0.5.
The extracellular medium was a nerve of diameter 240 μm bathed in
oil. a Unmyelinated axons started to be activated at 1 mA and showed
a peak in activation ratio at about 3 mA. b Myelinated fibres had a
sharp activation threshold at a much lower current of about 0.15 mA
and stayed activated for higher currents. Only when incrementing the
stimulation current in very small steps of about 10 nA c a slight
tortuosity-induced increase in stimulation threshold became visible for
them as well

peripheral nerve interfaces. We also showed how the
long temporal extent of SFAPs in cuff-insulated media –
especially for myelinated axons – makes differentiation of
single fibre contributions difficult as overlaps are probable.
Overall a cuff therefore increased amplitude but reduced
recording precision.

One limitation of the current NEURON simulation is
the unmyelinated axon model. Its conduction velocity was
too low compared to that reported for mammalian axons.
For the overall CAP, the velocity needed to be corrected.
Still, the Hodgkin-Huxley parameters are the accepted
standard model for unmyelinated axons and more detailed
C-fibre models (e.g. Sundt et al. 2015) do not achieve
significantly higher conduction velocities either. Parameters
of the current model such as membrane capacitance or

intracellular resistivity could be adapted to reach the
expected conduction velocity but we chose to leave them
at their physiological values. If more accurate axon models
become available, they can be integrated into PyPNS.

Several steps to improve the model beyond the mentioned
limitations are imaginable. First, axons are currently
simulated sequentially. For the simulation of closed loop
systems interacting with peripheral nerves, the simultaneous
simulation of all nerves would be preferable. Second,
axon membrane sections only need to be simulated if
they are either stimulated or recorded from extracellularly,
otherwise the calculation of their highly uniform membrane
processes is unnecessary and time consuming. In order to
eliminate computational overhead, one could introduce an
abstract layer into the simulation in which the position
change of spikes along axons is computed based on
a known conduction velocity profile. Only for axon
segments relevant to stimulation or recording, would the full
membrane process be simulated.

In conclusion, a unified computer model of a generic
peripheral nerve was developed. It combined an efficient
calculation of extracellular potentials in inhomogeneous
media from precomputed potential fields with compart-
mental axon models in a convenient Python module. The
model was validated against experimental data and used to
investigate the effects of conductivity inhomogeneities on
amplitude and frequency content as well as the influence
of axon tortuosity on both recording and stimulation. We
hope that the simulation framework presented here, PyPNS,
becomes a useful tool for researchers working on periph-
eral nerves, nerve stimulation, and its medical applications,
and envision that the toolbox could be augmented by mul-
tiple branches, organ models, and a variety of specific axon
models matched to fibre types found in different parts of the
peripheral nervous system, to facilitate this.
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Appendix A: Calculation of the Random
Component of the Axon Placing Algorithm

The random vector wi in Eq. 3 is split into an inward
pointing radial wrad and a tangential component wtan (14),
both weighted independently with a weight drawn from
a distribution P (15, 16). P can be either a uniform
distribution U(−1, 1) between −1 and 1 or a normal
distribution N (μ, σ ) with μ = 0 and σ = 0.33 (sigma
chosen to have 99.7% of all values in the range [−1, 1]).
When the radial distance between axon segment and bundle
guide d approaches the bundle radius rbundle, the radial
component wrad becomes more inward directed (16) and
thereby ensures that the axon stays inside the nerve. One
linear implementation of the correction factor e is shown
in Eq. 17. The parameter rcorr defined the relative radius
from which on the correction should begin, set to 0.7 in our
simulation; emax, set to 2 by default in PyPNS, limits the
correction.

wi = βrad · wrad + βtan · wtan

||βrad · wrad + βtan · wtan|| (14)

βtan ∼ P (15)

βrad ∼ P − e (16)

e = min(1, max(0,
d/rbundle − rcorr

1 − rcorr
)) · emax (17)

Appendix B: Generation of Simulated
c-Distributions

To directly translate ||w||-distributions (P) to distributions
of the normed difference in direction of consecutive axon
segments c = ||ai − ai+1|| projected onto a 2D-plane, we
made the simplifying assumption that bk and ai are aligned.
By doing so || ai + (1.1 − α) · bk||) (see Eq. 3) becomes
(2.1 − α) · ||ai ||. Following Fig. 17, it is easily shown that
then ||w|| relates to c as

c = 2 · ||a|| · sin

(
1

2
· arctan

( ||w||
||a||

α

2.1 − α

))
. (18)

ai (1.1 - ) bk

 . wiai+1
c

 . 

Fig. 17 If bundle bk and current axon segment ai have a fixed relation,
e.g. parallel, the expected distribution of segment direction differences
c = ||ai − ai+1|| can be easily obtained from the distribution of ||w||
(P) by their geometrical relation

Appendix C: Fitted Cuff Transmission
Function

For extracellular recording in a cuff, a transfer function
between current point source position and the potential at an
electrode longitudinally centrally placed in the cuff was fit.
Input variables describe the spatial relation between source
and receiver position. As apparent from Fig. 18, the relation
is strongly linear with an additional peak for low distances
between current source and potential receiver – facilitating
the fit of a transfer function.

The static potential was therefore described as a
linear component flin(z) plus a non-linear peak fpeak(z).
Equations 21–23 implement this characteristic for φ in
mV with variables raxe radial axon displacement in m, α

angle between axon displacement direction and electrode
perpendicular on the nerve centre in rad and z longitudinal
distance between electrode and axon in m. The transfer
function is parametrised with r1 for the inner radius of the
nerve in m, a and b for maximum peak amplitude and
steepness, c for maximum of triangular component and d

half the cuff length in m. The left and right borders of the
flin(z)-function were smoothed with a moving average of
width c/20.

flin(z)= max(0, c · (1 − |z/d|)) (19)

fpeak(z) = a

|z|+b
(20)

fpeak,r (raxe) = min(1, (raxe/r1)
5) (21)

fpeak,α(α)= max(0,(1−|mod(α+π, 2π)−π |)/π·5) (22)

φ(z, α, raxe) = tr(z) + p(z) · pfr(raxe) · pfα(α) (23)
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Fig. 18 An analytic
transmission function
implements the relation between
current source position and
potential for recording in a cuff
electrode. In the shown case, a
nerve of diameter 480 μm in a
cuff of 2 cm length was
simulated in the FEM model.
Functions are displayed for
three different angles between
the perpendiculars of source and
electrode position onto the
bundle guide respectively
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Table 4 Parameters of the fitted transmission function for cuff
recordings

Parameter Value

r1 1.9 ·10−4

a 2.5 ·10−9

b 5 ·10−5

c 8.83 ·10−4

d 0.01

Spatial input variables in m, angle in rad, output in mV
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