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Abstract

MicroRNA (miRNA)–mediated gene regulation is of critical functional importance in animals and is thought to be largely
constrained during evolution. However, little is known regarding evolutionary changes of the miRNA network and their role
in human evolution. Here we show that a number of miRNA binding sites display high levels of population differentiation in
humans and thus are likely targets of local adaptation. In a subset we demonstrate that allelic differences modulate miRNA
regulation in mammalian cells, including an interaction between miR-155 and TYRP1, an important melanosomal enzyme
associated with human pigmentary differences. We identify alternate alleles of TYRP1 that induce or disrupt miR-155
regulation and demonstrate that these alleles are selected with different modes among human populations, causing a
strong negative correlation between the frequency of miR-155 regulation of TYRP1 in human populations and their latitude
of residence. We propose that local adaptation of microRNA regulation acts as a rheostat to optimize TYRP1 expression in
response to differential UV radiation. Our findings illustrate the evolutionary plasticity of the microRNA regulatory network
in recent human evolution.
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Introduction

microRNAs (miRNAs) are endogenous small RNAs that bind to

their target mRNAs to post-transcriptionally repress protein

production. They recognize their target mRNAs primarily

through sequence complementarity between the seed region of a

miRNA (usually defined as the 2nd to the 7th or 8th nucleotide

along a miRNA 59 end) and the binding sites on its target mRNAs

[1]. A large number of human genes are known to be regulated by

miRNAs, thus, miRNAs constitute a critical post-transcriptional

regulatory network that plays vital roles in a broad range of

biological processes [2–4]. Their functional importance is also

consistent with the evolutionary conservation of miRNA-mediated

regulations, as many miRNAs and their targets are conserved

across species [5,6] and sequence variants that disrupt miRNA

regulation are typically rare in humans and are often associated

with human diseases [7–9]. However, human phenotypic

evolution can be caused by changes in gene regulation, perhaps

even more so than by changes in the proteins themselves [10–13].

Modulation of miRNA regulations is a possible path for such

adaptive changes, but hitherto no solid evidence has been

presented in favor of miRNA interactions playing an important

role in human evolution. To address this issue, we first examined

the degree to which local human adaptation is affected by changes

in miRNA regulatory interactions, and then experimentally

verified some of the identified interactions showing extreme

population differentiation, including the regulation by miR-155 on

TYRP1 to modulate human pigmentation phenotype.

Results

Differentiation of miRNA–mediated regulation among
human populations

We first aim to identify miRNA regulatory interactions that

have been significantly differentiated among human populations,

and then determine whether these differentiation events were

driven by positive selection during human evolution. We mapped

the ,3 million HapMap Phase II single-nucleotide polymor-
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phisms (SNPs) [14] onto predicted binding sites of known human

miRNAs using TargetScanS [15], and identified 2,217 bi-allelic

SNPs that have one allele disrupting an intact binding site. We

considered only those binding sites that have high-confidence

scores (see Materials and Methods, and Figure S1A). Population

differentiation of each SNP was then quantified by FST, a

commonly used statistical measure of genetic differentiation [16].

A SNP locus that has exlucively alternate alleles among

populations receives an extreme FST value. We used FST computed

by Barreiro et al. [17] for the 4 HapMap populations: Yoruba from

Ibadan, Nigeria (YRI), Japanese from Tokyo (JPT), Han Chinese

from Beijing (CHB) and Utah residents with northern and western

European ancestry (CEU). Our subsequent analysis revealed that

many SNPs showing extreme population differentiation interfere

with their predicted miRNA regulatory interactions (Table S1).

Given the short evolutionary history of human population

differentiation, this finding is in contrast with the common

thought that miRNA-mediated regulation is strongly conserved

[5,6].

Positive selection on miRNA regulatory interactions
Extreme population differentiation can be attributed to several

possible factors, such as outliers from neutral drift, population

structure, or positive selection for local adapation. Thus we sought

to determine the potential sources accounting for the observed

differentiation events. Recent population genetic analyses of

human variation have shown that much of the recent local

adaptation in humans may be caused by subtle changes in allele

frequencies in many genes rather than strong changes in a few

genes [18,19]. The effect of local (population-specific) selection can

then be detected by comparing genome-wide pattern of FST. For

example, Coop et al. showed that SNPs with high FST values in

humans are enriched for genic SNPs in comparison to non-genic

SNPs, and interpreted this as evidence of local selection targeting

sites in genic regions [18]. Inspired by this work, we here ask

whether a similar enrichment exists for miRNA target sites

compared to the background distribution. Since the miRNA

binding sites in this analyses were on the 39 UTRs of human genes,

we then collected a total of 23,030 39 UTR SNPs to serve as a

background control. We divided FST values into different bins

(Figure 1A), and computed the enrichment scores for SNPs in each

bin. The enrichment score is the fraction of miRNA target-site

SNPs in each bin, divided by the fraction of all 39 UTR SNPs in

the same bin. To determine the distribution of the enrichment

score under the null hypothesis of no enrichment, we generated

1,000 data sets with 2,217 randomly sampled 39UTR SNPs.

Figure 1A clearly shows that loci with extreme FST values

(FST$0.5) were significantly enriched for miRNA binding sites

(P,2.661024; hypergeometric tail probability). Positive selection

by definition acts on functional loci so these findings clearly

indicate that miRNA binding sites with extreme population

differentiation (FST$0.5) are likely targets of positive selection.

Selection of candidate miRNA target site SNPs
We next focused on the polymorphic binding sites that have the

strongest evidence of population differentiation (FST$0.5); how-

ever we also attempted to control, at least partially, for hitchhiking

effects by excluding target-site SNPs linked to any annotated

functional variant that lies 500 Kb upstream or downstream of the

SNPs (following the protocol of HapMap, see Materials and

Methods). Using these filters, we identified 30 SNPs located in the

putative miRNA binding sites of 26 genes, which showed very

strong evidence of population differentiation (Figure S1B, also see

Tables S1 and S2). In addition to using FST for cross-population

comparison, we also examined these 30 loci for evidence of

selection within individual populations, using several other aspects

of the data including haplotype structure (the integrated haplotype

scores, iHS [20]) and excessive high-frequency derived alleles (Fay-

Wu’s H test [21]). These revealed that approximately half of the

identified SNPs showed evidence of selection using either test

statistic (Table S1). To further elucidate whether selection has

been acting directly on the target site, rather than on linked sites,

we assessed composite likelihood ratios (CLR) to identify the

location of a selective sweep [22]. Figure S2 shows several

examples where selection signals can be clearly localized around

the polymorphic binding sites using this method. While we cannot

exclude that the particular sites identified using these analyses

show high FST values due to linkage with other SNPs that have not

been annotated, or in a few cases are false positives with high

degree of differentiation due solely to genetic drift, the procedures

we have used here are designed to maximize the probability that

the candidate sites identified here are targets of selection. Based on

these studies we chose 7 candidate loci for further functional

analyses (Table S3).

In vitro validation of the differentiated miRNA
regulations

To validate whether the 7 predicted candidate loci indeed

display differentiated miRNA regulations, we made three variants

of the 39 UTR for each locus fused downstream of the firefly

luciferase coding sequence using the pMIR-REPORTER vector

(Figure 1B). The first two variants carried either the ancestral or

derived allele of a SNP within the putative miRNA target, while

the third deleted the entire site. In addition, we employed the

unrelated G3R 39 UTR sequence, which is derived from the

chicken versican G3 domain, as a control. Each reporter was then

transfected into HEK293T cells either with control miRNA (miR-

CTL) or a miRNA mimic that corresponds to the predicted

miRNA regulator. Among the 7 putative interactions examined,

we found that the predicted sites on SMNDC1 (survival motor

Author Summary

MicroRNAs (miRNAs) are endogenous small RNAs that bind
to their target mRNAs to post-transcriptionally repress
protein production. miRNA–mediated gene regulation is
usually considered to be strongly conserved among and
within species, and thus alteration of such regulations is
usually considered as detrimental. However, it is likely that
evolutionary divergence of miRNA regulation may actually
be selectively advantageous and could even serve as a
genetic reservoir for innovation and adaptation. Towards
this goal, we identified a number of polymorphic miRNA
binding sites that display extreme population differentia-
tion and show evidence of positive selection. We
experimentally validated 3 regulations, including a regu-
lation by miR-155 on TYRP1, a melanosomal enzyme
associated with human pigmentation. We found that the
two alternate alleles on the 39 UTR of TYRP1, either
inducing or disrupting repression by miR-155, are under
opposite selections among human populations. This
results in a strong negative correlation between the
degree of fixation of miR-155–mediated repression of
TYRP1 in a population and the population’s latitude of
residence. These observations collectively suggest miR-155
acts a rheostat to optimize TYRP1 expression for local
adaptation to differential UV radiation along the latitudes.
Our findings demonstrate the plasticity of miRNA regula-
tion in recent human evolution.

Positive Selection in MicroRNA Regulation
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Figure 1. Identification of miRNA binding sites that show extreme population differentiation. (A) The predicted miRNA binding sites are
significantly enriched among the High-FST loci on 39 UTRs. The enrichment score was the fraction of the target-site SNPs in each bin divided by the
fraction of all the 39 UTR SNPs in the same bin. Likewise the enrichment score for the randomly sampled SNPs in each bin was computed in the same
way based on 1, 000 bootstrap resampling from all the 39 UTR background SNPs. Error bar represents one standard deviation. (B–D) In vitro validation
of the predicted miRNA binding sites showing extreme population differentiation. The 39 UTR of genes selected for validation were cloned into the
pMIR-REPORTER vector. Variants of each gene harbouring the ancestral (blue), derived (red) alleles or a deletion of putative miRNA site were
generated and analyzed along with the G3R control vector (B). For analysis of miRNA targeting, the reporters containing the indicated ancestral (blue
shading) or derived (red shading) alleles of SMNDC1 (C) or SLC25A19 (D), as well as the deletants or the G3R control were transfected into HEK293T

Positive Selection in MicroRNA Regulation
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neuron domain containing 1), SLC25A19 (solute carrier family 25,

member 19), and TYRP1 (tyrosinase-related protein 1) showed

significant miRNA-dependent inhibition of luciferase expression in

an allele-specific manner (Figure 1C and 1D and Figure 2), while

the remaining 4 genes showed no evidence of regulation (Figure

S3). For example, the ancestral ‘A’ allele of SNP rs1050755 in

SMNDC1 interfered with miR-329 regulation (Figure 1C). This

allele is the most common allele in East Asians (CHB and JPT) and

CEU, but is rare in YRI, which almost exclusively possess the

derived miR329-targeted ‘G’ allele (derived allele frequency is

0.98). In the same vein, the ancestral allele ‘C’ of SNP rs7198

mediated allele-specific regulation of SLC25A19 by miR-122, while

its derived ‘G’ allele prevented regulation (Figure 1D). Notably,

the derived allele reaches a frequency around 90% in East Asian

populations (CHB and JPT) but is rare in YRI (with derived allele

frequency 0.02). The third validated interaction, between miR-155

and two linked SNPs mapped to the 39UTR of TYRP1 was subject

to extensive analysis (Figure 2 and discussed below). Of note, given

the difficulty in predicting miRNA targets and a lack of consensus

among miRNA target prediction algorithms [23], it is encouraging

that we could validate 3 of the 7 in silico predicted interactions.

Regardless, these results verify that the highly differentiated SNPs

in several cases have a direct impact on miRNA-mediated

regulation.

Worthy of note, for two of the three validated sites (on

SLC25A19 and TYRP1), the signal of positive selection can be

localized directly to the miRNA binding sites using the CLR

method (Figure 1E). The alteration, rs7198 on SLC25A19

disrupted miR-122 regulation and is affected by the selective

sweep, almost fixing the derived allele in East Asians with a

frequency of ,90%. This is further supported by analyses using

other methods including Fay and Wu’s H (Figure 1F), where a

sharp reduction in H suggests an excess of derived alleles fixed by

the sweep around this locus. These signals, however, were absent

in YRI and CEU (Figure S4), particularly in YRI where the

derived allele is very rare. The second verified miRNA regulation

with extreme population differentiation and strong evidence of

selection acting directly on the miRNA binding sites, TYRP1, is

more interesting since it is associated with an obvious population

differentiated phenotype – pigmentation. TYRP1 is an enzyme

specifically expressed in melanocytes, which promotes melanin

production and regulates pigmentation in skin, eyes and hair [24–

26]. Mutations in TYRP1 can cause oculocutaneous albinism type

3 (OCA3) [27,28]. Furthermore, TYRP1 is important for adjusting

skin reflectance to protect against excessive UV exposure [29] and

recent genome-wide association studies have consistently found

this gene to be associated with differentiated pigmentation among

populations [30–32]. Lastly, several studies have suggested that

this gene has been under strong positive selection relating to

adaptation to local environments [33–35]; however no causal

variants have been identified. In our study, we discovered that

TYRP1 harbors 2 common SNP variants, rs683 and rs910 that

reside in two putative miR-155 binding sites (Figure 2A). These

two SNPs are nearly fixed for the derived allele in the African and

Asian populations (YRI, CHB and JPT), but remain polymorphic

in the European population (CEU). Notably rs683 is reported to

be associated with difference in iris color among Europeans [30].

To investigate this link we next sought to systematically validate

the role of these SNPs in population-specific miRNA regulation of

TYRP1.

miR-155 selectively regulates TYRP1 in human
populations

miR-155 is very narrowly expressed among human tissues

[36,37]. Interestingly it is reported to be expressed in melanocytes

[38], suggesting it may physically interact with TYRP1. Notably

miR-155 is also an oncomir [38,39], and is involved in cell

signaling and dendritic development [40–43]. The 39 UTR of

TYRP1 contains three putative miR-155 binding sites, among

which two are polymorphic in the HapMap data analyzed here.

As seen in Figure 2A, site I is a non-canonical site mediating a 6-

mer match to the miRNA seed and is located immediately

downstream of the stop codon, while sites II and III mediate

canonical pairing with the intact seed region of miR-155. The two

SNPs, rs683 and rs910, reside within site II and site III

respectively, with the derived alleles forming intact miRNA sites

in CHB, JPT and YRI. In contrast, two thirds of CEU individuals

carry the ancestral alleles that disrupt miRNA-target interaction.

Due to their physical proximity, the two SNPs are tightly linked

with D’ = 1 and LOD = 24.44, indicating their co-presence (or co-

absence) in CEU individuals (Figure 2A).

To test the function of these putative miR-155 targets, 7

variants of the TYRP1 39UTR harboring combinations of

ancestral, derived and deleted miR-155 target elements were

constructed in pMIR-REPORTER (Figure 2B). Transfection into

HEK293T cells either alone or in the presence of increasing

amounts of synthesized miR-155 revealed that the 39 UTR

harboring the derived alleles (construct A, Figure 2C) was

substantially suppressed by miR-155. Furthermore, a mutant in

which all three putative miR-155 targets were deleted (construct

C, Figure 2C) showed minimal repression that was comparable to

the G3R control (G3R, Figure 2C). In contrast, when we analyzed

the ancestral alleles (construct B, Figure 2C), suppression was

compromised, indicating that the sequence variations in sites II

and III interfered with miR-155-dependent regulation of TYRP1

(Figure 2C). The derived TYRP1 39 UTR (construct A) is thus a

target of miR-155. Analysis of the ancestral alleles revealed

substantial suppression when compared to a mutant in which all

three miR-155 targets were deleted (construct C, Figure 2C). This

suggested that the fixed site I might be functional. Therefore, to

determine the relative contributions of the three sites to miR-155

regulation of TYRP1, we next tested various combinations of site

deletants (Figure 2B). This revealed that site II mediated the

strongest suppression (Figure 2D, curve E), while site I was weaker

(Figure 2D, curve D) and site III was the weakest (Figure 2D, curve

F). As site III is linked with site II (Figure 2A), we subsequently

analyzed alternate site II alleles in isolation, since the strongest

suppression mediated by this site might serve to direct natural

selection on this locus. We observed that interruption of the site by

the ancestral allele (construct G) strongly blocked miR-155

suppression (Figure 2E).

cells in the presence of either control miRNA (miR-CTL; white bars) or the relevant miRNA (black bars), as shown. 40-hour post-transfection, luciferase
expression in cell lysates was measured by chemiluminescence and is plotted as activity relative to miR-CTL transfected cultures. Bars are the mean 6
standard deviation for triplicate experiments and *** indicates P,0.001. (E–F) Statistical tests for positive selection on the miR-122 binding site on
SLC25A19 in East Asians (CHB+JPT), where the derived allele of rs7198 that compromises miR-122 regulation has reached high frequency in East
Asians. The yellow dots represent genic position on SLC25A19, and the flanking non-genic positions are in red. The CLR test (E, where the dotted line
indicates the locus of rs7198) and Fay-Wu’s H statistic (F, where the dotted line indicates the 5% extreme value among the genome-wide SNPs) were
used.
doi:10.1371/journal.pgen.1002578.g001

Positive Selection in MicroRNA Regulation
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Figure 2. Modulation of miR-155 regulation of TYRP1 by rs683 and rs910. (A) 39 UTR sequences of TYRP1, which harbors 3 predicted miR-155
binding sites (site I, II and III). Site I had been fixed in all populations, mediating a 6-mer match to miR-155. The positions of SNPs rs683 and rs910 in
sites II and III are shown with ancestral allele in blue and derived allele in red. The pie charts show the distribution of ancestral and derived alleles in
CEU, CHB, JPT and YRI. Note that the derived alleles are almost fixed in CHB, JPT and YRI, but are highly polymorphic in CEU. (B–D) Effects of rs683 and
rs910 on miR-155 regulation using luciferase reporters. Luciferase reporter constructs (shown in B) were individually transfected into HEK293T cells
together with either miR-CTL or increasing concentrations of miR-155 as indicated. The luciferase expression in cell lysates was then measured by

Positive Selection in MicroRNA Regulation
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As TYRP1 is best known for its role in regulating human skin

pigmentation, we next tested allele-specific regulation of the

endogenous gene by miR-155 using a skin-derived cell line. SK-

MEL-19 cells express endogenous TYRP1, while this gene is not

expressed in many other melanoma cell lines [44]. We examined

the TYRP1 alleles in SK-MEL-19 cells and found it to be

heterozygous for rs683 (Figure 3A). Next we transfected these cells

with either miR-CTL or increasing amounts of miR-155, and

monitored TYRP1 protein levels by immunoblotting. This revealed

that endogenous TYRP1 protein level decreased with increasing

miR-155 concentration (Figure 3B), consistent with our analysis of

the heterologous luciferase reporter assay. As miRNA can suppress

protein production either through destabilization, or through

translational inhibition, we next performed quantitative RT-PCR

(qPCR) to examine TYRP1 mRNA levels, which were also reduced

upon miR-155 transfection (Figure 3C). Finally, to demonstrate

that miR-155 preferentially targets the derived allele, we employed

TaqMan SNP qPCR to detect the abundance of TYRP1

transcripts that carry either the ancestral or the derived alleles of

rs683. Transfection of increasing amounts of miR-155 led to a

modest reduction in the ancestral allele that contrasted the much

stronger suppression observed in the derived allele (Figure 3D).

Taken together, these studies establish that the derived alleles of

rs683 and rs910, which are almost fixed in YRI, CHB and JPT

populations (Figure 2A), introduce two additional miR-155 targets

that serve to enhance miR-155-mediated suppression of TYRP1.

In contrast, these alleles segregate at a frequency of only

approximately 1/3 in CEU, with 2/3 of the population carrying

the alternate ancestral allele that interferes with miR-155-

mediated suppression of TYRP1 expression.

Population analysis of the differentiated miRNA
regulation

Previous studies suggested that TYRP1 has been under selection

in different populations [33–35], but none of the causal alleles were

identified. We next investigated in more detail the pattern of

selection that has driven miRNA site turnover in TYRP1 between

human populations. Since our analysis of the selection signature on

TYRP1 was based on inter-population comparison (FST), we next

tracked the local selection within individual populations. As shown

in Figure 2A, the derived alleles of rs683 (and also the linked site

rs910) are almost fixed in YRI and East Asians (CHB+JPT), and the

CLR test [22] revealed a selection signature around this locus

(Figure 4A for East Asians, Figure S5A for YRI), with the signal

peaking around the binding sites (the dotted line). Consistent with

the CLR test statistic, Fay-Wu’s H statistic correspondingly showed

a sharp reduction around the region of interest (Figure 4B for East

Asian, Figure S5B for YRI). These signals however are absent in

CEU where the derived allele is in the minor form (Figure S5C–

S5D). We also did extensive analyses to explore the possibility of

linkage disequilibrium (LD) between rs683 and rs910 and other

known functional SNPs in the region, but could not detect any high-

LD SNPs with annotated functions (see Materials and Methods and

also Figure S6). Therefore it is most likely that the two miRNA

binding sites mediated by rs683 and rs910 were direct targets of

positive selection in YRI, CHB and JPT. Given that it is the derived

states of the two SNPs that maintain miR-155 regulation

(Figure 2A), positive selection, which increased the derived allele

frequencies of the two de novo binding sites on TYRP1 in YRI, CHB

and JPT, likely reflects a requirement in these populations to induce

miR-155 suppression on TYRP1.

In CEU the major allele is the ancestral form, and in this

population there is no evidence of positive selection affecting the

derived allele (Figure S5C–S5D). However, we found high

extended haplotype homozygosity (EHH) [45] for the ancestral

alleles of rs683 and rs910 (Figure 4C and Figure S7A), which is a

sign of recent selection acting to expand the ancestral alleles in

CEU. This trend is absent in other populations (Figure S7B–S7C).

Further, the integrated haplotype scores (iHS) for the ancestral

alleles in CEU are all above 3, substantially higher than the typical

threshold of 2 used in humans for detecting loci subject to positive

selection [20]. Since there are no other known functional SNPs in

high LD with these SNPs in the HapMap data (see Figure S6), or

in the more comprehensive set of SNPs reported in dbSNP 132

[46], which includes data from the 1000 Genomes Project [47],

the observed increase in haplotype homozygosity in CEU is thus

most likely explained by selection directly expanding the ancestral

allele of rs683, which compromises miR-155 regulation on TYRP1.

Taken together, these results suggest that in YRI, and particularly

in CHB and JPT, the derived alleles of rs683 and rs910 have been

a target of positive selection (Figure 4A and 4B, and also Figure

S5A and S5B), whereas in CEU, haplotypes carrying the ancestral

alleles were recently selected for, leading to an increase in

haplotype homozygosity among haplotypes carrying the ancestral

allele in this population (Figure 4C and Figure S7A).

Due to the significant role of TYRP1 in modulating human

pigmentation [26–29], a possible adaptive explanation is that the

miRNA binding sites on TYRP1 have been targeted by population-

specific selection in relation to exposure to sun light (UV irradiation).

We investigated this hypothesis further by extending our analysis from

the 4 HapMap populations to 37 representative indigenous

populations genotyped in the Human Genome Diversity Project

(HGDP), spanning 650,000 common SNPs [48]. The SNP rs683 at

site II is also genotyped in HGDP, which co-segregates with rs910 at

site III (Figure 2A). For each population, we correlated the absolute

latitude where the population resides with the derived allele frequency

of rs683 (Figure 4D), and found a strong negative correlation

(Pearson’s R = 20.63). As the values for different populations might be

correlated due to miration history, we cannot apply standard statistical

methods to test whether the correlation is significant. However, we

note that the correlation between latitude and allele frequency in rs683

is among the 1% most extreme of such correlations in the genome.

This is also true if we restrict ourselves to analyses of SNPs with

FST$0.5 (Figure S8A–S8B). Thus, the closer to the Equator that a

population resides, the higher the frequency of the derived allele.

There are several populations that show deviations from this trend, in

particular the pygmy populations in Africa, which show less evidence

of selection than the East Asian or European populations.

Expression fine-tuning by miR-155
TYRP1 has been suggested to be a target of positive selection,

and the mode of selection on this gene is thought to be

complicated [33–35]. Our analyses now reveal that positive

selection has driven population differentiation of miR-155

chemiluminescence 40 hours after transfection, and is plotted as log2-transformed activity relative to miR CTL prior to curve fitting. (C) Comparison of
miR-155-mediated suppression of the ancestral (blue), derived (red) and deleted (black) variants of the TYRP1 39UTR with the unrelated G3R control
(purple). (D) TYRP1 variants containing no sites, individual derived sites, or all three sites, as indicated, were assessed for miR-155-dependent
targeting. (E) Comparison of miR-155 suppression of the derived (red) allele of site II analyzed in isolation (as indicated) with the ancestral variant
(blue). Note that derived site II alone, but not the ancestral variant, is substantially suppressed by miR-155.
doi:10.1371/journal.pgen.1002578.g002

Positive Selection in MicroRNA Regulation
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regulation on this gene, providing new insights into the causes of

the observed selection signatures (Figure 4). Indeed, TYRP1 has a

well-established role in regulating skin pigmentation, and its

expression is ,2.6-folder higher in Africans than in Europeans

[29]. Thus the presence of selection fixing miRNA binding sites on

the highly expressed TYRP1 in Africans is a good example of

incoherent regulation, i.e. when a miRNA represses a target gene in

the direction opposing the overall outcome of all the other

regulatory processes (e.g. by transcription factors) [49–51] (not to

be confused with the incoherent control or incoherent feed-forward loop in

describing generic regulatory networks). Such a network architec-

ture is important in maintaining target protein homeostasis and in

fine-tuning and buffering target protein expression. Indeed, the

amount of skin pigmentation is thought to be balanced between

two conflicting and UV-dependent physiological needs, the

production of vitamin D and folate [52]. Hyper-pigmentation

can cause vitamin D deficiency, while hypo-pigmentation can

cause folate deficiency, both being tightly associated with human

reproductive success. Thus, pigmentation genes are likely to be

highly regulated, and gain of additional miRNA binding sites on

the highly expressed TYRP1 in Africans (in low-latitude regions)

might ensure proper expression of this gene by dampening

potential fluctuations that may shift its expression away from the

optimal level, conferring unfavorable pigmentation phenotypes

(Figure 4E). On the other hand, in high latitudes with low UV

exposure, light pigmentation and low TYRP1 expression is strongly

favored. In these areas, recent selection that expanded the

ancestral allele to disrupt miR-155 repression might suggest a

physiological need to remove the excessive miRNA regulation on

the already lowly expressed TYRP1, which otherwise would cause

Figure 3. rs683 modulates endogenous TYRP1 targeting by miR-155 in SK-MEL-19 cells. (A) Genotyping the rs683 locus in SK-MEL-19 cells.
The region around rs683 was amplified from SK-MEL-19 genomic DNA and sequenced. Sequence traces (shown) revealed rs683 heterozygosity at the
TYRP1 locus, as indicated. (B) Ectopic miR-155 expression reduces TYRP1 protein levels. TYRP1 levels in the skin-derived melanoma cell line, SK-Mel-19
were analyzed by performing immunoblotting on cell lysates from miR-CTL transfected or cells transfected with increasing amounts of miR-155 as
indicated. Densitometric quantitation of TYRP1 levels is indicated as protein levels relative to the mock transfectants. (C) miR-155 reduces TYRP1
mRNA levels in SK-Mel19. SK-MEL19 cells were mock transfected or transfected with the indicated miR-CTL or miR-155. mRNA was extracted and
TYRP1 levels assessed by qPCR. Results are plotted relative to miR-CTL-treated cells. Bars are the mean 6 standard deviation of triplicate experiments.
The differences in expression between miR-155 transfected cells and either mock or miR-CTL are statistically significant (P,0.01, Students t test). (D)
Targeting of the derived allele by miR-155. SK-Mel-19 cells were transfected with increasing amounts of miR-155 as indicated. mRNA was then
extracted and expression of the ancestral (blue) versus the derived allele (red) assessed by allele-specific TaqMan SNP qPCR. Results are plotted as the
expression level of each TYRP1 allele relative to controls (log2 transformed). Note that the transcripts carrying the derived allele were suppressed by
miR-155 greater that 2-fold, whereas transcripts carrying the ancestral allele were only modestly affected.
doi:10.1371/journal.pgen.1002578.g003
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hypo-pigmentation (Figure 4E). Moreover, disrupting additional

miRNA binding sites on this gene confers rapid response to

external stimulus, and indeed analysis of TYRP1 expression by

solar irradiation in a variety of populations including African and

European revealed that only Europeans displayed significant

induction of TYRP1 upon chronic photoexposure [29]. Therefore

this mechanism might facilitate rapid adaptation to environment

with elevated photoexposure. Taken together, our results reveal

that the regulatory interaction between miR-155 and TYRP1 was

highly plastic during human evolution; this may serve as a

physiological rheostat to optimize the expression of TYRP1 to

distinctively advantageous level in different populations, in

response to differential UV radiation along the latitudes of their

residence.

Discussion

King and Wilson first proposed that most human phenotypic

evolution may be due to changes in gene regulation [10]. This

notion has been supported by a number of studies showing that a

considerable proportion of the genetic variation underlying

phenotypic human variation and human-chimpanzee differences

may lie outside protein-coding regions [11–13]. However, genetic

changes at the post-transcriptional level (e.g. regulation by

miRNAs) have received little attention, and previous studies have

not established a clear functional effect of alleles predicted to be

under selection [7,8]. Our study now revealed that positive

selection can drive population differentiation of human miRNA

regulation, suggesting that miRNA regulation could be highly

evolutionarily plastic, and may contribute to human evolution.

We also found that a majority of the identified sites are in non-

conserved elements revealed by genomic comparison across 17

vertebrates (quantified by phastCons score [53], which varies

between 0 and 1). For example, for the validated sites in this study,

their highest phastCons scores are only around 0.1, suggesting

genetic novelty may arise from elements that are under relaxed

selective pressure. Of note, we also scanned the known miRNA

loci in our analysis, but did not find any miRNA loccus that has

elevated differentiation among populations. This observation

indicates that binding sites turnover may be a more prevalent

Figure 4. Population analysis of the miR-155 binding sites on TYRP1. (A–B) Statistical tests for positive selection that fixed the derived allele
of rs683 in East Asians. The yellow dots represent genic position on TYRP1, and the flanking non-genic positions are in red. The CLR test (A, where the
dotted line indicates the rs683 locus) and Fay-Wu’s H test (B, where the dotted line indicates the 5% extreme value among the genome-wide SNPs)
were used. (C) Recent expansion by positive selection for the ancestral allele of rs683 in CEU. The expanded haplotype homozygosity (EHH) for both
the ancestral allele (in blue) and the derived allele (in red) are shown. (D) The frequencies of the derived allele of rs683 across world populations. The
derived allele induces miR-155 regulation on TYRP1. The allele frequencies represented by the pie charts are overlaid on a customized Google Map.
The inset indicates a significant negative correlation between the frequencies of the derived allele (which induces miR-155 regulation) in populations
and the latitudes of population residence. (E) The model accounting for positive selection on alternate alleles of rs683 and rs910 to induce or disrupt
miRNA regulation on TYRP1 in different human populations. TYRP1 shows higher expression in low latitudes than in high latitudes; thus selection for
the derived alleles is to fix additional miRNA regulation on the highly expressed TYRP1, which buffers expression fluctuation. As TYRP1 has low
expression in high latitudes, then selection for the ancestral allele to disrupt miRNA regulation is a protective mechanism against excessive repression
on TYRP1.
doi:10.1371/journal.pgen.1002578.g004
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mechanism in modulating miRNA regulation than changing

miRNAs themselves. This notion is supported by a recent study

which re-sequenced known miRNA loci among human popula-

tions and found an absolute lack of sequence diversity within the

miRNA seed regions [54].

There are likely many more changes in miRNA interactions

that have contributed to human adaptation than reported here.

First, we only report signals relating to increased levels of

population differentiation, which most likely only reveal a small

fraction of the selection that has acted during human evolution

since the divergence with chimpanzees. We also used a very

stringent cutoff for FST ($0.5) in this study since we aimed to find

the most extreme cases of population differentiation. Future

comparative studies aimed at miRNA regulatory sites may reveal

many more examples of rewired miRNA interactions. Second, our

target prediction was based on TargetScanS, which uses seed

matches as the principal mechanism for target recognition by

miRNAs. However, other mechanisms might also exist, such as

sites with central pairing [55], and it is possible that natural

selection might act on sites lacking the canonical seed matches.

Third, in this study, we scanned 39UTRs of human genes for

putative miRNA binding sites, however, increasing evidence has

shown miRNA might also target coding regions or 59UTRs,

although repression strength is more marginal [56]. Future studies

will be required to validate other putative sites identified in our

study and to elucidate the underlying evolutionary significance of

the selection signature.

Materials and Methods

SNP collections and analysis
SNP annotations were based on a previous study [17] which

calculated Fst values for ,3 million HapMap Phase II SNPs.

When controlling for potential hitchhiking effects, we followed the

protocol used in HapMap database and computed the pairwise

linkage disequilibrium (LD, quantified by R2) between the SNPs in

question and its flanking SNPs within 500 Kb downstream and

upstream. Any SNPs having R2$0.5 with annotated functional

sites within this distance were excluded from the analysis. The

function annotation of SNPs was retrieved from dbSNP 130

queried from UCSC Table Browser. Following previous protocol

[20], we assigned human SNPs with ancestral alleles based on the

chimpanzee reference genome (queried from UCSC Table

Browser). For the 30 SNPs of particular interest, we also confirmed

its ancestral allele by comparing with the reference genomes of

orangutan and rhesus macaque (Figure S1B).

Allele frequencies of rs683 in world populations were collected

from the Human Genome Diversity Project [48], and were

extracted from the UCSC Table Browser. For each population

genotyped, we extracted its absolute latitude (the absolute value of

the latitude), which indicates the angle of a location from the

Equator rather than relative north and south. Among the

genotyped populations, we used Han to represent ,92% of

Chinese population, and excluded the Chinese minorities from our

analysis due to their complicated ethnohistorical characteristics

and migration histories. We also excluded Yakut as they are very

recent migrants approximately 1,000 years ago, with an effective

female population size of only 150 individuals [57]. This is because

population migration might distort our analysis of long-term

selection in particular population residence.

The iHS values and Fay and Wu’s H for HapMap populations

were extracted from Haplotter (http://haplotter.uchicago.edu/).

CLR test was performed using SweepFinder [22] by setting the

background site frequency spectrum estimated from all SNPs

across the genome. SNPs from HapMap (rel.27) were subject to

this analysis.

Analysis of linkage disequilibrium
To explore the possibility that rs683 and rs910 changed

frequency due to hitchhiking with some other functional variants

on this gene, we analyzed all the known HapMap SNPs on TYRP1

in YRI and CEU, and computed their linkage disequilibrium (LD)

R2 with rs683 using PGEToolbox [58] (Figuere S8). We also

considered SNPs in the 5-Kb upstream region of TYRP1. Most

SNPs that showed significant LD with rs683 are intronic and do

not overlap with any annotated splice sites, while two loci in the 59

upstream region showed only weak LD. Although one missense

SNP was found, it was not linked with rs683 and displayed an

extremely low LD. In contrast, two SNPs rs2762464 and

rs1063380, located in the 39UTR of TYRP1 (Figure S6), were

within a strong linkage disequilibrium region of rs683 and rs910,

consistent with their close physical proximity (,300 bp away).

However, neither has any known mechanistic association with

TYRP1 and none of the SNPs mediates interaction with known

miRNAs. Similarly in CHB and JPT, we did not find any known

functional variants on TYRP1 in strong LD with rs683. We also

expanded the analysis from HapMap SNPs to dbSNP132 by

querying the UCSC Table Browser, which includes SNPs

genotyped in the 1000 Genomes Project [47], and did not find

any annotated functional variants in high LD with rs683.

Compilation of miRNAs and the predicted targets
We first extracted all SNPs annotated to be in 39 UTR of

human genes, which were annotated by HapMap (rel.27 for all

populations), and all the SNPs are polarized to the plus strand.

These 39UTR SNPs were then mapped onto the 39UTR

sequences of RefSeq transcripts (downloaded from UCSC Table

Browser as of July, 2010), and we retained the longest transcripts

when multiple sequences are annotated under the same transcript.

Sequences with inconsistent annotations were discarded from our

analysis. With this mapping procedure, we then generated a set of

polymorphic 39UTR segments, which is a 15 nucleotide window

centered at the SNP position. Therefore for each SNP, sequences

within the window will present twice each carrying the alternate

alleles. TargetScanS [15] was then implemented to scan the

collection of the polymorphic 39UTR segments, and the predicted

sites were then identified, which encompass a SNP, one of whose

alleles does not interact with any miRNA while the other is

miRNA-interacting. Prediction confidence was determined by

context scores assigned the prediction program and we considered

confident sites if their context scores no more than 20.2 (Figure

S1A). We considered 545 miRNA families deposited in TargetS-

canS (Table S4). For experimental validation, we further scanned

the putative miRNA sites in fine solution by allowing a 6-mer

match.

DNA constructs and reagents
All the constructs for this study were derived from the pMIR-

REPORTER (Ambion). Human 39UTR sequences in this study

were amplified from genomic DNA of HEK293T cells using PCR.

The PCR products were subcloned into pMIR-REPORTER

vector. Overlapping PCR and QUICKCHANGE II XL Site-

Directed Mutagenesis Kits (Agilent) were used to generate the

mutants of 39UTRs containing different SNPs and deletions of

miRNA target sites. pMIR-REPORTER b-galactosidase vector

was used as the transfection control. G3R is a gift from Dr. Burton

Yang’ lab at the University of Toronto, which has the coding

sequence of the chicken versican G3 domain in the pMIR-
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REPORTER vector, and was used as a negative control. All the

synthesized miRNA mimics and the mimic negative control were

purchased from Dharmacon. miR-CTL in this study is a negative

control with sequence from a C.elegans miRNA cel-miR-67,

which has minimal sequence identity with miRNAs in human,

mouse and rat (by Dharmacon).

Cell transfection, luciferase assay, immunoblotting, and
qPCR

HEK293T cells were grown in high glucose DMEM containing

10% FBS (Thermo). They were transiently transfected with DNA

constructs and miRNA mimics at 40% confluency in 24-well

plates using the calcium-phosphate precipitation method. Cells

were lysed 48 hours after transfection, and the activities of firefly

luciferase and b-galactosidase of total cell lysates were determined

using the Firefly Luciferase Assay System (Promega) and the b-gal

assay previously described, respectively. To obtain the relative

activity, the activity of the firefly luciferase was first normalized to

the activity of b-galactosidase to obtain normalized firefly

luciferase activity (nFFLuc), and the data were then determined

using the following formula: Relative Activity = log2(nFFLucmiR-

155/nFFLucmiR-CTL), where nFFLucmiR-155 or nFFLucmiR-

CTL is the nFFLuc in the presence of mir-155 mimics or mimic

negative control. The concentration of miR-155 was increased as

indicated in the figures (Figure 1C and 1D, Figure 2C–2E, and

Figure 3B–3D), with the concentration of miR-CTL being 2 nM.

If Relative Activity was positive, we manually set it to be 0. All the

positive Relative Activity are no more than 0.13.

SK-MEL-19 cells were grown in RPMI 1640 (GIBCO)

containing 10% FBS and antibiotics. For genotyping, the lysates

of SK-MEL-19 cells were subjected to PCR. The forward primer

starts from 116 bps upstream of rs683 whereas the reverse primer

starts from 118 bps downstream of rs683. The PCR products were

cleaned and sent to DNA sequencing using the forward primer. The

sequencing spectra were processed and analyzed using MacVector.

SK-MEL-19 cells were transiently transfected with miRNA mimics

following the instructions of the RNAi MAX transfection kit

(Invitrogen). For immunoblotting analysis, cells lysates were

collected 40 hours after transfection. The antibodies used for

immunoblotting analysis are: TYRP1 (sc-10443, Santa Cruz) and

GAPDH (G9545, Sigma). The DCT values were obtained by

comparing the amplification of the target cDNA to that of HPRT.

The TapMan SNP qPCR kit for rs683 (C_3119206_10, AB

Biosystems) was used to analyze the expression of the TYRP1

transcripts carrying its alternate alleles. This kit included two

probes, one conjugated with VIC fluorescence dye to monitor

transcripts carrying the ancestral allele and the other conjugated

with FAM fluorescence dye to detect the derived allele. To evaluate

the cross-hybridization between the probes, a pilot qPCR analysis

was performed for the constructs A and B in Fig. 2B, each carrying

the ancestral and derived alleles, respectively (Figure S9). A total of 8

samples by mixing the construct A and B were prepared as the

following ratios of A to B: 1:0, 1:1, 1:2, 1:4, 4:1, 2:1, 0:1. The total

DNA concentrations of the 8 samples were constant with 0.1 ug/ul.

The same amount of DNA were then taken from these 8 samples

individually to dilute 1000 times in water and these 8 diluted

samples were subject to TaqMan SNP qPCR analysis according to

the instructions of the kit. Expected Relative Fraction refers to the

fraction of the construct in the mixed samples relative to the

construct in the sample without mixing the other construct.

Observed Relative Fraction was obtained using qPCR DCt of the

construct in the mixed sample relative to the DCt of the construct in

the sample without mixing the other construct. Using Observed and

Expected Relative Fractions, two regression lines were plotted for

the FAM and VIC signals to determine the effects of cross-

hybridization between the probes. We then used these probes to

detect the relative expression of TYRP1 transcripts carrying

different alleles in the SK-MEL-19 cells, and probe intensities after

miR-155 transfection were obtained after normalizing to the data

points by transfecting miR-CTL.

Supporting Information

Figure S1 Identifying the predicted miRNA binding sites

showing population differentiation. (A) Distribution of the context

score among the predicted sites affected by SNPs. Prediction

confidence was quantified by context score where more negative

score indicates more confident prediction. Based on the distribu-

tion, a site considered confident if its context score no more than

20.2. (B) Hierarchical clustering of the ancestral allele frequencies

in the 4 populations, YRI, CEU, CHB and JPT. The SNPs were

clustered into 4 blocks as indicated from block I to block IV, with

highly differentiated patterns among the 4 populations. The two

SNPs (rs683 and rs910) on TYRP1 are indicated in block III.

(TIF)

Figure S2 (A–D) The CLR test localizes selection signal on the

polymorphic miRNA binding sites (indicated in blue below the X-

axis in each panel). The dotted lines indicate the loci for each SNP

analyzed.

(TIF)

Figure S3 (A–D) The luciferase reporter assay in HEK293T

revealed four genes did not respond to their predicted miRNA

regulators. The ancestral alleles are shaded in blue whereas the

derived alleles are shaded in red. The reporter constructs were

individually transfected into HEK293T cells with miR-CTL or

with the predicted miRNAs as indicated. The luciferase relative

activities were obtained and analyzed as described in Figure 1.

(TIF)

Figure S4 Lack of selection signal on the derived allele of rs7198 in

YRI (A–B) and CEU (C–D) revealed by CLR test (A–C, where the

dotted lines indicate rs7198 locus) and Fay-Wu’s H test (B–D, where

the dotted line indicates the 5% extreme value among the genome-

wide SNPs). The derived allele in CEU is 0.67, whose H is marginally

significant as shown in (D), but is not supported by CLR test (C). The

threshold of statistical significance was not shown in (B) as all the values

were insignificant, far beyond the threshold.

(TIF)

Figure S5 Statistical tests for positive selection on the derived

allele of rs683 in YRI (A–B) and CEU (C–D). CLR and Fay-Wu’s

H tests consistently localized the selection signal around the rs683

locus in YRI (A–B), but not in CEU (C–D). The dotted line for H

statistic indicates the 5% extreme value among the genome-wide

SNPs.

(TIF)

Figure S6 Linkage disequilibrium between rs683 and all other

known variants on TYRP1 and its 5 kb upstream in YRI (the first row)

and CEU (the second row). Each column represents one SNP, and

different genomic regions are separated by red vertical bars, including a

5 Kb upstream region. The brighter color indicates higher association

(R2) of a given SNP with rs683. The 6th SNP rs12001162 is absent in

HapMap CEU population. In CEU and YRI, the strongly linked loci

with rs683 are intronic and do not overlap with known splice sites. The

only missense SNP is not associated with rs683. The two other SNPs in

close proximity to rs683 and rs910 on the 39 UTR do not interact with

any known human miRNAs.

(TIF)
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Figure S7 Plots of the extended haplotype homozygosity (EHH)

in the 0.5 Mb region centering at rs683 in CEU (A), East Asia (B)

and YRI (C). Haplotypes carrying the ancestral or the derived

allele of rs683 are in blue or red, respectively.

(TIF)

Figure S8 Histograms of the Pearson’s correlation coefficients

between the absoulte latitides of HGDP populations and the

derived frequencies of SNPs across the genome (A) or SNPs with

high-FST ($0.5) (B). In either case the correlation derived by rs683

is among the extreme 1% of all the SNPs analyzed (the red bar).

(TIF)

Figure S9 Evaluation of the cross-hybridization between probes

for the TaqMan SNP qPCR assay for rs683. In this assay one

probe conjugated with VIC fluorescence dye monitors the

ancestral allele (the blue circles) and the other probe conjugated

with FAM fluorescence dye detects the derived allele (the red

squares). Constructs A and B used in Fig. 2B were used for this

evaluation, carrying the ancestral and derived alleles, respectively.

8 samples with the mixed construct A and B were prepared as the

following ratio of A to B: 1:0, 1:1, 1:2, 1:4, 4:1, 2:1, 0:1, with the

constant total DNA concentrations for the 8 samples at 0.1 ug/ul.

Expected Relative Fraction refers the fraction of the construct in

the mixed samples relative to the construct in the sample without

mixing the other construct. Observed Relative Fraction was

obtained using qPCR DCt of the construct in the mixed sample

relative to the DCt of the construct in the sample without mixing

the other construct. Using data points for Observed (x-axis) and

Expected (y-axis) Relative Fractions, two regression lines were

plotted for the FAM (the red line for the derived allele) and VIC

(the blue line for the ancestral allele) signals respectively. The

slopes of the blue and red lines are 0.91 and 0.94, respectively,

very close to 1. R square values for both regression lines are 0.95

and 0.92 respectively, indicating a lack of cross-hybridization

between probes for the alternate alleles of rs683.

(TIF)

Table S1 The 30 SNPs and 26 human genes identified in this

study. The confidence of miRNA target prediction and the

associated selection statistics are also shown. Alternative transcripts

of these genes as annotated by RefSeq are shown individually.

Note that more than one miRNAs can share one target site and

thus a single SNP can impact the regulation by multiple

microRNAs, for example the SNP rs9893667 on gene

NM_006380 (APPBP2) can influence the target site of hsa-miR-

362-3p, hsa-miR-329, and hsa-miR-603 (highlighted in bold).

(XLS)

Table S2 Summary of molecular functions of the identified

genes. Annotations were queried from DAVID (http://david.

abcc.ncifcrf.gov). In this table, each gene is annotated with its

OMIM disease association, gene ontology and KEGG pathways.

Note C4orf46 is a hypothetical gene with no function annotation.

(XLS)

Table S3 Functional annotation of the 7 genes selected for

experimental validation.

(XLS)

Table S4 miRNA families considered in this study. miRNAs

were grouped into families based on their seed identity. The

miRNA family information was deposited in TargetScanS.

(XLS)
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