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Abstract: In modern industries, high precision dimensional measurement plays a pivotal role in
product inspection and sub-pixel edge detection is the core algorithm. Traditional interpolation and
moment methods have achieved some success. However, those methods still have shortcomings.
For example, the accuracy is still insufficient with the resolution limitation of the image sensor.
Moreover, prediction results can be affected by image noise. With the recent success of deep learning
technology, we propose a sub-pixel edge detection method based on convolution neural network
(CNN) and bi-directional long short-term memory (LSTM). First, one-dimensional visual geometry
group-16 (VGG-16) is employed to extract edge features. Then, a transformation operation is
developed to generate sequence information. Lastly, bi-directional LSTM with fully-connected layers
is introduced to output edge positions. Experimental results on our steel plate dataset demonstrate
that our method achieves superior accuracy and anti-noise ability than traditional methods.

Keywords: dimensional measurement; sub-pixel edge detection; deep learning; convolutional neural
network; bi-directional LSTM

1. Introduction

A charge coupled device (CCD) is an important piece of digital imaging equipment. With the
rapid development of CCD sensors and computer hardware, high precision dimensional measurement
systems based on machine vision have been gradually adopted by industries such as automobile
manufacturing, iron and steel manufacturing, and electronic manufacturing [1]. As shown in Figure 1,
there are examples of industries applying dimensional measurement for their products. In the
dimensional measurement systems, edge detection is the core algorithm. Due to the high precision
requirements and the cost of the high-resolution CCD sensor, the accuracy of pixel-level edge detection is
insufficient, and sub-pixel edge detection becomes an effective way to further improve the performance.

In this work, we take the production line of steel plate in the Taiyuan iron and steel industry for
research. Figure 1b shows the actual scene of the production line. Sheared steel plates are conveyed
along with the roller; the aim of the task is to design a system for the measurement of length. Figure 2
shows the sketch map of the designed dimensional measurement system. Steel plate images are
collected by two industrial-grade array CCD sensors and the length of the steel plate can be calculated
by the sum of the field interval in the middle, and the steel plate’s length in the fields of two CCD sensors.
Therefore, the core issue here is the high precision measurement of edge positions. Here, we take the
images of one camera to test sub-pixel edge detection methods.
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Figure 1. Applications of dimensional measurement with machine vision. (a) The parts of the 
automobile manufacturing industry. (b) The steel plate production line of iron and steel industry. (c) 
The electronic components and printed circuit board (PCB) of the electronic manufacturing industry. 

The concept of sub-pixel edge detection was first introduced by Hueckel [2], which includes 
three main methods: fitting method, interpolation method, and moment method. The fitting methods 
acquire edge location by fitting the grey value of the hypothetical edge model. The method proposed 
by Ye [3] adopts the Gaussian edge function obtained by convoluting the ideal edge model. The 
interpolation methods [4–6] interpolate the grey value of the pixel to increase information and locate 
the sub-pixel edge positions. Moreover, for the moment method, Ghosal first utilizes Zernike 
orthogonal moment on edge detection, which only needs three masks to be calculated [7–10]. The 
method proposed by Xie [11] improves the Zernike orthogonal moment with Roberts operator and 
Otsu’s method. However, in terms of the vast field-of-view of steel plates, those traditional methods 
cannot achieve a satisfactory accuracy with the resolution limitation of image. Furthermore, some 
images captured by the CCD sensor have noise such as scars and retro-reflective targets, which may 
affect the prediction results. 

 
Figure 2. The principle diagram of the length measurement system of steel plate. CCD: charge coupled 
device. 

In recent years, the convolution neural network (CNN) has achieved great success in the 
computer vision field [12–19], including feature extraction, classification, and regression. CNN-based 
models learn network parameters directly from data using backpropagation and have more hidden 
layers which means a more powerful nonlinear fitting ability. In the early stage, CNN mainly focuses 
on classification tasks. LeNet was introduced by Yann in 1998 [20], which was designed to deal with 
the recognition of handwritten characters. After that, AlexNet [21], ZF-Net [22] and GoogleNet [23] 
were proposed at the ImageNet large scale visual recognition competition (ILSVRC), all of which 
achieved good grades. VGG was proposed by the visual geometry group of Oxford University at 
2015 [24,25], which has more than 10 hidden layers, a smaller filter size, and a more robust feature 

Figure 1. Applications of dimensional measurement with machine vision. (a) The parts of the
automobile manufacturing industry. (b) The steel plate production line of iron and steel industry.
(c) The electronic components and printed circuit board (PCB) of the electronic manufacturing industry.
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Figure 2. The principle diagram of the length measurement system of steel plate. CCD: charge
coupled device.

The concept of sub-pixel edge detection was first introduced by Hueckel [2], which includes three
main methods: fitting method, interpolation method, and moment method. The fitting methods acquire
edge location by fitting the grey value of the hypothetical edge model. The method proposed by Ye [3]
adopts the Gaussian edge function obtained by convoluting the ideal edge model. The interpolation
methods [4–6] interpolate the grey value of the pixel to increase information and locate the sub-pixel
edge positions. Moreover, for the moment method, Ghosal first utilizes Zernike orthogonal moment on
edge detection, which only needs three masks to be calculated [7–10]. The method proposed by Xie [11]
improves the Zernike orthogonal moment with Roberts operator and Otsu’s method. However, in terms
of the vast field-of-view of steel plates, those traditional methods cannot achieve a satisfactory accuracy
with the resolution limitation of image. Furthermore, some images captured by the CCD sensor have
noise such as scars and retro-reflective targets, which may affect the prediction results.

In recent years, the convolution neural network (CNN) has achieved great success in the computer
vision field [12–19], including feature extraction, classification, and regression. CNN-based models
learn network parameters directly from data using backpropagation and have more hidden layers
which means a more powerful nonlinear fitting ability. In the early stage, CNN mainly focuses on
classification tasks. LeNet was introduced by Yann in 1998 [20], which was designed to deal with
the recognition of handwritten characters. After that, AlexNet [21], ZF-Net [22] and GoogleNet [23]
were proposed at the ImageNet large scale visual recognition competition (ILSVRC), all of which
achieved good grades. VGG was proposed by the visual geometry group of Oxford University at
2015 [24,25], which has more than 10 hidden layers, a smaller filter size, and a more robust feature
extraction ability. However, image noise may affect the prediction results, while long short-term
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memory (LSTM) [26] has been proposed to handle the problem due to its excellent performance in
analyzing sequence information.

LSTM is a widely used deep learning algorithm that aims to process and analyze sequence
data. LSTM has been used in applications like natural language processing and the prediction of
the stock market [27–34]. LSTM is developed based on the recurrent neural network (RNN) [35–37].
The traditional RNN has the problem of long-term dependency, which cannot connect the information
when the gap between relevant information grows. LSTM avoids the long-term dependency problem
by different gate structures that keep or drop out information. Moreover, the bi-directional LSTM
model fuses forward propagation LSTM and backpropagation LSTM to connect both past and future
information [38–40]. In our case, the positions of edge points in one image has relationships with
both forward and backward ones. Therefore, bi-directional LSTM is a more appropriate option to
optimize the edge positions further. For image noise, which may affect the extraction of edge points,
bi-directional LSTM can learn edge information from adjacent unaffected edge points to rectify incorrect
prediction results. Recent research has been proposed that combines the advantages of CNN and
bi-directional LSTM for practical applications [41,42].

To further improve the accuracy of dimensional measurements with the limitation of image
resolution, inspired by the analysis above, we propose a novel sub-pixel edge detection model based
on CNN and bi-directional LSTM, which simultaneously has high precision and anti-noise ability.
Our model adopts a one-dimensional visual geometry group-16 (VGG-16) to extract edge point features
from the images. Then, a transformation module is developed to generate sequence information
and bi-directional LSTM is followed to equip the model with anti-noise ability. In the end, a fully
connected layer is employed to output the final prediction results. Experiments on our steel plate
dataset demonstrate that the proposed model outperforms traditional methods and achieves only
0.112 of the overall mean absolute error (MAE) with the low image resolution of 512 pixels × 612 pixels.

The main contributions of this work are listed as follows:

1. We propose a sub-pixel edge detection method based on deep learning for high precision
dimensional measurements.

2. We adopt CNN to extract features from images and introduce the anti-noise ability by adding
bi-directional LSTM.

3. We offer a sub-pixel edge detection dataset of steel plate used in training and testing sub-pixel
edge detection methods.

The remainder of the paper is organized as follows: Section 2 describes different components of
the proposed sub-pixel edge detection system. Section 3 introduces the dataset, preprocessing methods,
training protocol, and results. Section 4 is the discussion. Section 5 is the conclusion.

2. Methods

In this paper, we propose a sub-pixel edge detection method based on deep learning for
high precision dimensional measurements. Our work aims to predict accurate edge positions
of steel plates with the resolution limitation of image. In order to obtain low-resolution input
data and the corresponding sub-pixel ground truth, two steps of preprocessing should be noticed.
First, we downsample each image of steel plate by four times and collect 90 horizontal lines’ pixel
value in the region of steel plate at the equal interval as the input data. Then, we measure the edge
position of each line manually at the original resolution and divide the position by four to obtain
the sub-pixel ground truth. Therefore, our method and comparison methods are all tested on the
low-resolution images.

After the preprocessing steps, our proposed sub-pixel edge detection network is trained using the
training data and the training procedure is based on the gradient descent algorithm which uses the
updated parameters calculated by the loss function to improve the performance. Then, the trained
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model with the best parameters will be chosen to generate predictions on the test data. The pipeline of
our sub-pixel edge detection system is illustrated in Figure 3.
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Figure 3. The pipeline of the proposed sub-pixel edge detection system, including data preprocessing,
model training, and testing.

2.1. Building Blocks

In this section, we introduce the three building blocks in the proposed model. We first apply a
one-dimensional VGG-16 to parallel extract edge features from the 90 collected lines of pixel value.
Then, a transformation module is developed to generate sequence information. Lastly, bi-directional
LSTM is employed to introduce the anti-noise ability and make the prediction results more accurate.
The architecture of the proposed network is shown in Figure 4.
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block, and output fully connected layer.

2.1.1. VGG-16 as Feature Extractor

The purpose of applying VGG-16 to our model is to extract edge features from the input lines of
pixel values. VGG nets proved to have excellent feature extraction performances at the Imagenet large
scale visual recognition competition in 2014. The increase in the depth of the convolution layers has a
significant improvement on feature extraction and the application of small convolution kernels reduces
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the number of parameters. In this work, the inputs are 90 one-dimensional vectors. To extract edge
features from them, we adopt a VGG-16 with the one-dimensional kernel in each convolution and
max-pooling layer. The 90 input vectors are considered as a batch, and the one-dimensional VGG-16
can extract edge features parallel with the same weights. Figure 5 shows the details of the VGG-16
model used in this work.Sensors 2019, 19, x FOR PEER REVIEW 5 of 13 
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2.1.2. Transformation Module

A transformation module is developed to connect VGG-16 and bi-directional LSTM. In this work,
90 sets of data are calculated by VGG-16 and the output features are 90 one-dimensional vectors,
while the input of bi-directional LSTM is the timing sequence with 90 moments. The transformation
module converts the extracted features to sequence data. The process of the transformation operation
is shown in Algorithm 1:

Algorithm 1. The Process of the Transformation Operation

1. All the outputs from VGG-16 are denoted as Vi, the form is (w, h, c), where w, h is the width and height of
the feature map, and c is the number of channel. Expand the dimension of Vi at first axis, the new form of Vi is
(1, w, h, c).
2. Concat all the Vi at first axis, the output is denoted as V, and the form is (N, w, h, c).
3. Expand the dimension of V, the new form is (1, N, w, h, c).
4. Compress the width, height, and channel to one dimension, the form of the final output is (1, N, w ∗ h ∗ c).

2.1.3. Bi-Directional LSTM

The bi-directional LSTM network is introduced to improve accuracy and add anti-noise ability.
The LSTM network has excellent performance in handling context information, while bi-directional
LSTM not only accesses past context information but can also obtain future context information. In this
work, the 90 edge points in one image have logical connections and their values vary little from both
forward and backward ones. Therefore, bi-directional LSTM is more appropriate for our task compared
to the vanilla LSTM. Figure 6 shows the details of the LSTM cell. The input of LSTM is the timing
sequence, and for the input at any moment, there are three steps in a LSTM cell.

The first step is to decide which context information to throw away from the cell state of last
moment by a sigmoid layer called forget gate layer. ft decides which information to throw off and ft is
formulated as follow:

ft = σ(W f · [ht−1, xt] + b f ) (1)

where W f is the weight of forget gate layer, b f is the bias, and σ is sigmoid operation. Then, another

sigmoid layer called input gate layer is applied to decide which information should be reserved. it · C̃t

decides which information to keep, and the expression of it and C̃t are as follows:

it = σ(Wi · [ht−1, xt] + bi) (2)
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C̃t = tanh(WC · [ht−1, xt] + bC) (3)

where Wi and WC is the weight of the input gate layer, bi and bC is the bias. Lastly, the third step is to
decide which information deserved to be output, and this layer is called output gate layer. ht decides
which information to output and the expressions of ht are as follows:

ot = σ(Wo · [ht−1, xt] + bo) (4)

ht = ot ∗ tanh(Ct) (5)
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With these three steps, the proposed model will obtain anti-noise ability and have more accurate
predictions. The detailed configurations of the network are shown in Table 1.

Table 1. Configurations of the proposed network.

Layer Type Kernel Size Resolution

VGG-16

conv1_1 convolution 1 × 3, 64 1 × 612
conv1_2 convolution 1 × 3, 64 1 × 612
pool_1 max_pooling 1 × 2, 64, stride 2 1 × 306

conv2_1 convolution 1 × 3, 128 1 × 306
conv2_2 convolution 1 × 3, 128 1 × 306
pool_2 max_pooling 1 × 2, 128, stride 2 1 × 153

conv3_1 convolution 1 × 3, 256 1 × 153
conv3_2 convolution 1 × 3, 256 1 × 153
conv3_3 convolution 1 × 3, 256 1 × 153
pool_3 max_pooling 1 × 2, 256, stride 2 1 × 76

conv4_1 convolution 1 × 3, 512 1 × 76
conv4_2 convolution 1 × 3, 512 1 × 76
conv4_3 convolution 1 × 3, 512 1 × 76
pool_4 max_pooling 1 × 2, 512, stride 2 1 × 38

conv5_1 convolution 1 × 3, 512 1 × 38
conv5_2 convolution 1 × 3, 512 1 × 38
conv5_3 convolution 1 × 3, 512 1 × 38
pool_5 max_pooling 1 × 2, 512, stride 2 1 × 19

fc_1 fully_connected -, 4096 -
fc_2 fully_connected -, 4096 -

Bi-directional LSTM block1 - -, 4096 -

Output fc_3 fully_connected -, 90 -
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2.2. MSE as Loss Function

The loss function is a necessary component in the deep learning network to calculate the deviation
value between the prediction and ground truth and optimize the network parameters through
backpropagation. In this work, we adopt the mean square error (MSE) loss function at the end of the
proposed network. The expression of MSE is:

MSE =
1
m

m∑
i=1

(X̂i −Xi)
2 (6)

where X̂i is the predicted value, Xi is the ground truth, and m is the batch size. During the training
phase, the proposed network is trained by the stochastic gradient descent (SGD) algorithm to minimize
the MSE loss.

3. Results

3.1. Dataset

We evaluate our sub-pixel edge-detection system on the steel plate images collected at the Taiyuan
Iron and Steel industry. At the end of the production line, all the finished steel plates need to be
measured by the system. The dataset is captured by the industrial-grade array CCD sensor in the
stainless-steel cold rolling production line with roller and steel plate in the image. The type of
CCD sensor is Point Grey FL3-U3-120S3C-C and the resolution is 2048× 2448. All the images have
corresponding ground truth, 241 images for training, and 62 images for testing. Figure 7 shows the
samples of the dataset.
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Figure 7. Samples of steel plate images captured by the industrial-grade array CCD sensor. The steel
plate is moving through the roller.

3.2. Preprocessing the Dataset

To verify the superiority of the proposed method with the limitation of image resolution, all
the images in the dataset need to be preprocessed. It is unnecessary to calculate all edge positions
for length measurement and getting a fixed number of edge positions at equal interval is sufficient.
Therefore, the preprocessing includes two steps: downsampling and collecting one-dimensional
horizontal vectors from each image.

First, we downsample the original images by four times to obtain low-resolution images with the
size of 512× 612. Then, we select the region of interest (ROI) that covers the steel plate and pick 90
one-dimensional horizontal vectors at equal interval as the input data. The resolution of each vector is
1× 612.

Moreover, different from pixel-level edge detection, it is impossible to obtain absolute ground
truth of sub-pixel edge position. Thus, the edge position of each selected vector is calculated manually
on the original images and divided by four. In this way, the error of ground truth is within one-fourth
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of a pixel, and the accuracy can be guaranteed to the greatest extent. Finally, every 90 selected vectors
and the corresponding ground truth from one image are considered as one set of input data to the
proposed model.

3.3. Training Protocol and Metrics

The proposed sub-pixel edge detection model is deployed on Google Tensorflow deep learning
platform with one NVIDIA GTX1080Ti GPU (11GB RAM). During the training procedure, the learning
rate starts with 0.0001 and decays 5% every 241 iterations. The total number of iterations is 80,000.

The metrics to evaluate the proposed sub-pixel edge detection model involve three different
criteria: mean-absolute error (MAE), MSE, and root mean square error (RMSE). The formulas are
as follows:

MAE =
1
n

n∑
i=1

∣∣∣xi −m(x)
∣∣∣ (7)

MSE =
1
n

n∑
i=1

(xi −m(xi))

2

(8)

RMSE =

√√√
1
n

n∑
i=1

(xi −m(xi))

2

(9)

where n is the total number of edge points, m(xi) is the prediction, and xi is the ground truth.

3.4. Experimental Results

To better evaluate the proposed sub-pixel edge detection model, traditional methods including
interpolation method and moment method are adopted as the baseline for comparison. For the
interpolation method, we introduce the quadratic interpolation algorithm, while for the moment
method, the Sobel-Zernike operator is employed.

Table 2 shows the detail results of the proposed model on our steel plate dataset. We evaluate the
model based on the four times downsampled images and Figure 8 shows examples of the prediction
results. The first row is the steel plate images; the second row is the predictions and the corresponding
ground truth, where the vertical coordinate represents the serial number of the edge points, and the
horizontal ordinate represents the coordinate of the edge point.

Sensors 2019, 19, x FOR PEER REVIEW 8 of 13 

 

3.3. Training Protocol and Metrics 

The proposed sub-pixel edge detection model is deployed on Google Tensorflow deep learning 
platform with one NVIDIA GTX1080Ti GPU (11GB RAM). During the training procedure, the 
learning rate starts with 0.0001 and decays 5% every 241 iterations. The total number of iterations is 
80,000. 

The metrics to evaluate the proposed sub-pixel edge detection model involve three different 
criteria: mean-absolute error (MAE), MSE, and root mean square error (RMSE). The formulas are as 
follows: 

=

= −∑
1

1 ( )
n

i
i

MAE x m x
n

 (7) 

=

= −∑
2

1

1 ( ( ))
n

i i
i

MSE x m x
n

 (8) 

=

= −∑
2

1

1 ( ( ))
n

i i
i

RMSE x m x
n

 (9) 

where n  is the total number of edge points, ( )im x  is the prediction, and ix  is the ground truth. 

3.4. Experimental Results 

To better evaluate the proposed sub-pixel edge detection model, traditional methods including 
interpolation method and moment method are adopted as the baseline for comparison. For the 
interpolation method, we introduce the quadratic interpolation algorithm, while for the moment 
method, the Sobel-Zernike operator is employed. 

Table 2 shows the detail results of the proposed model on our steel plate dataset. We evaluate 
the model based on the four times downsampled images and Figure 8 shows examples of the 
prediction results. The first row is the steel plate images; the second row is the predictions and the 
corresponding ground truth, where the vertical coordinate represents the serial number of the edge 
points, and the horizontal ordinate represents the coordinate of the edge point. 

Table 2. The metric scores of mean-absolute error (MAE), mean square error (MSE), and root mean 
square error (RMSE) from the proposed model. 

Method MAE MSE RMSE 
Proposed model (VGG-16 + Bi-LSTM) 0.112 0.0406 0.202 

 
Figure 8. Samples of images and the prediction results. (a) The images captured by the CCD sensor. 
(b) The plots of the predictions: blue dots represent the predictions from our model and red dots 
represent the corresponding ground truth. 

 

Figure 8. Samples of images and the prediction results. (a) The images captured by the CCD sensor.
(b) The plots of the predictions: blue dots represent the predictions from our model and red dots
represent the corresponding ground truth.
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Table 2. The metric scores of mean-absolute error (MAE), mean square error (MSE), and root mean
square error (RMSE) from the proposed model.

Method MAE MSE RMSE

Proposed model (VGG-16 + Bi-LSTM) 0.112 0.0406 0.202

4. Evaluation and Discussion

4.1. The Selection of Feature Extraction Block

CNN based models are popular in extracting image features, and numerous CNN-based models
such as AlexNet, VGG, ResNet, and DenseNet have been proposed in the competition of ImageNet
since 2012 with excellent results.

In the proposed model, it is appropriate to apply VGG-16 as the feature extraction block and in order
to prove the superiority of VGG-16 in extracting edge point features, we also explore VGG-19, ResNet,
and DenseNet as comparison. Table 3 shows the details of the comparison. As can be seen, equipping
feature extraction block with VGG-16 has less error in prediction than other CNN-based models.

Table 3. The comparison of VGG-16 with other feature extraction blocks.

Method MAE MSE RMSE

VGG-19 + Bi-LSTM 0.121 0.0436 0.209

ResNet + Bi-LSTM 0.124 0.0438 0.209

DenseNet + Bi-LSTM 0.117 0.0450 0.212

Proposed Model (VGG-16 + Bi-LSTM) 0.112 0.0406 0.202

4.2. The Effect of the Fully Connected Layers in VGG-16

In this work, we adopt a one-dimensional VGG-16 with the standard structure as the feature
extractor and there are two fully connected layers with 4096 output channels in the end. Different from
the convolution layer, the fully connected layer does not share weights. To evaluate the effect of the
fully connected layers, we did comparative experiments with two additional models. In the first model,
the two fully connected layers are replaced by one convolution layer with the kernel size of 1× 38 and
the output channels of 4096, while the second model changed the output channels of the two fully
connected layers to 2048. As shown in Table 4, our model has the best accuracy. The reason may come
from two parts. The characteristics of shared weights reduce the nonlinear fitting ability of convolution
layer and fewer channels hinder the feature extraction.

Table 4. The comparison results of fully connected layer with convolution layer. FC: fully connected
layer; Conv: convolution layer.

Method MAE MSE RMSE

Conv with 4096 0.118 0.0423 0.206

FC with 2048 0.116 0.0418 0.204

Ours (FC with 4096) 0.112 0.0406 0.202

4.3. The Importance of Bi-Directional LSTM

LSTM is an effective model to deal with sequence information, while bi-directional LSTM has the
ability to process information at the present moment according to both the past and future information.
This characteristic makes bi-directional LSTM can optimize the edge positions further and has the
anti-noise ability. To better evaluate the effects of adding bi-directional LSTM into our model, we did
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additional experiments compared to the model with vanilla LSTM and the model without any types of
LSTM. As shown in Table 5, the proposed model with bi-directional LSTM achieves the best accuracy
and the relative error of the predictions from the proposed model is 40% lower than the model without
any types of LSTM. The results demonstrate that bi-directional LSTM is effective and performs better
than vanilla LSTM.

Table 5. The comparison results of our model with vanilla LSTM, bi-directional LSTM, or without any
of them.

Model

VGG-16 Vanilla
LSTM

Bi-directional
LSTM MAE MSE RMSE

√
× × 0.183 0.0610 0.247

√ √
× 0.134 0.0482 0.220

√
×

√
0.112 0.0406 0.202

For the edge points which may be influenced by image noise in this work, the proposed model
can rectify the prediction results according to the context information. Figure 9 shows the examples
of predictions results with image noise. The first column is the images with noise such as scars and
retro-reflective targets, and the second column represents the predictions from the proposed model
and interpolation method. For the areas with noise, the interpolation method incorrectly considers the
noise point as the edge point, while the proposed model is not affected by the noise.
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Figure 9. Samples of the prediction from our model on the images with image noise. (a) The images
captured by the CCD sensor. (b) The plots of predictions. Our model predicts more accurate edge point
positions without being affected by image noise.

The comparison above indicates that the bi-directional LSTM can reduce the effect of image noise
and is also helpful to improve the accuracy of predictions.
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4.4. The Comparison to Other Methods

There are three main sub-pixel edge detection methods: the fitting method, interpolation method,
and moment method. There is also the interpolation method with quadratic interpolation algorithm
and the moment method with Sobel-Zernike operator, which are widely used in the sub-pixel edge
detection. In order to evaluate the proposed dimensional measurement model, we apply those two
methods as comparison.

Figure 10 shows the samples of the comparison between quadratic interpolation method and
our model, where the first column is the steel plates images captured by the CCD sensor; the second
column is the ground truth and the predictions from different methods.Sensors 2019, 19, x FOR PEER REVIEW 11 of 13 
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Figure 10. Samples of comparison result from our model and the interpolation method. (a) The images
captured by the CCD sensor. (b) The plots of the comparison results.

Results on our steel plates dataset (Table 6) demonstrate that the proposed model has superior
improvement on the accuracy of prediction than other methods.
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Table 6. The quantitative results of different methods.

Method MAE MSE RMSE

Quadratic Interpolation Method [5] 0.378 0.151 0.389

Moment Method with
Sobel-Zernike operator [10] 0.355 0.149 0.386

Proposed model (VGG-16 + LSTM) 0.112 0.0406 0.202

5. Conclusions

In this paper, we propose a novel network based on CNN and bi-directional LSTM to perform
sub-pixel edge detection on steel plate images. The main contribution of this work includes introducing
one-dimensional VGG-16 to extract edge features and applying bi-directional LSTM to handle sequence
information. The purpose of our work is to find a way to locate edge positions on steel plate images
more accurately with the limitation of resolution and has anti-noise ability. The comparison between
traditional sub-pixel methods indicates that our method achieves significant improvement than other
existed methods.
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