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ABSTRACT 

Epilepsy affects 1% of the population, with up to one-third of patients being medication-resistant. 

Surgery is the only curative treatment, yet over one-third of surgical patients fail to achieve seizure 

freedom due to the lack of a reliable epileptogenic zone (EZ) biomarker. We introduced and validated 

mini-seizures, frequent hypersynchronization events at EZ hubs that mirror seizure network dynamics, 

as a novel interictal EEG biomarker. Using a dynamical networks-based model, we analyzed short 

interictal intracranial EEG from 159 patients across two institutions. Our model, integrating 

hypersynchronous network properties and clinical data, successfully identified EZ hubs and accurately 

predicted one-year postoperative seizure outcomes. Our model (mean F1 score: 87%) outperformed 

the high-frequency oscillations-based model (mean F1 score: 79%) and seizure onset zone resection-

status-based model (current clinical standard) (mean F1 score: 78%), supporting its potential as a 

robust interictal biomarker for EZ localization. Our findings suggest mini-seizures and seizures exist on 

a continuum of epileptic events, sharing common network properties. Unlike seizure-based analyses 

that require 1-2 weeks of monitoring to capture spontaneous seizures, mini-seizures provide a rapid 

alternative using only brief interictal recordings. 
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INTRODUCTION  

Epilepsy is one of the most common childhood neurological disorders, with an estimated 

prevalence of active epilepsy at 1%, affecting approximately 30 million children worldwide.1, 2 Up to one-

third of children with epilepsy are medication-resistant (defined by the failure of two tolerated and 

appropriately chosen antiseizure medications),3 exhibiting significant risk of mortality and morbidity.4 As 

many as 30-50% of children with drug-resistant epilepsy can be resective surgical candidates,5 and 

epilepsy surgery is the only curative treatment for children with focal drug-resistant epilepsy and 

increases the likelihood of long-term survival6 and improves the quality of life.7 Achieving postoperative 

seizure freedom requires accurately identifying and removing or disrupting the epileptogenic zone 

(EZ)—the critical brain region responsible for generating seizures.8 About 20-50% of them undergo 

invasive intracranial EEG (iEEG) monitoring, primarily when non-invasive evaluation fails to identify a 

clear focus.9, 10 Typically, iEEG monitoring lasts 1–2 weeks to define the seizure onset zone (SOZ), 

defined as the brain region with channels displaying sustained rhythmic change on EEG clearly 

distinguished from state change and the baseline background activity, accompanied by habitual ictal 

behavioral change.10, 11 However, this conventional approach using the SOZ to represent the EZ has 

significant limitations. Patients with infrequent seizures or multiple seizures may only exhibit a small 

number of target events during the limited time frame (hence, identified SOZ will be only a small part of 

the EZ),10 and seizures may not occur at all during the hospitalization, leading to incomplete information 

on the SOZ.12 At present, more than one-third of surgical patients do not achieve seizure freedom after 

surgery,13 suggesting that the SOZ cannot fully capture the extent of the EZ. Moreover, the prolonged 

hospital stays required for iEEG monitoring are burdensome for children and their families. These 

challenges highlight the urgent need for tools leveraging short interictal (in-between seizure) EEG to 

identify the EZ, optimize postoperative seizure outcomes, and minimize the duration of long-term 

monitoring. 

Emerging recognition is that focal epilepsy is a network disorder where critical nodes (the EZ 

hubs) involve peripheral nodes to synchronize epileptic networks.14-16 Numerous studies on animal 

models and human research using neuroimaging and neurophysiology have demonstrated epilepsy 

involves network pathology.17-19 Structural connectivity, evaluated using diffusion MRI,20, and functional 

connectivity, evaluated through magnetoencephalography,21 functional MRI (fMRI),22, 23 and intracranial 

EEG (iEEG),19, 20 have revealed abnormal connectivity patterns in patients with epilepsy. Currently, the 

clinical practice relies primarily on seizures, which account for less than 1% of collected iEEG data, and 

is agnostic to the remaining 99% of interictal iEEG data.  

Our overarching hypothesis is that the synchronized epileptic network events –resulting from the 

underlying pathophysiology of epilepsy– form a continuum: Smaller, more frequent hyper-
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synchronization events (mini-seizures) occur spontaneously during interictal periods and engage the 

same EZ hubs and synchronization pathways that drive less frequent, larger events (seizures). This 

hypothesis is grounded on a shared behavior exhibited by most bursty complex dynamical systems, 

where a stream of smaller events of varying magnitudes occur continually, and as an integral part of the 

same continuum of events, rare large events occur that are felt throughout the system.24-31 In the 

current study, we propose the High-Frequency Synchronization Network Dynamics (HiSyncDx) 

platform, a novel data-driven framework designed to capture dynamic and complex synchronization 

patterns and identify hubs within epileptic networks (EZ hubs) by leveraging graph theory and parallel 

computing applied on iEEG data to estimate interactions across thousands of potential channel pairs 

with hundreds of milliseconds resolution. We analyzed a large cohort of patients with focal drug-

resistant pediatric-onset epilepsy who underwent iEEG monitoring to test our hypothesis.  

 

METHODS: 

 

Study Cohort: 

This was a multi-institutional retrospective cohort study. The inclusion criteria consisted of [a] having 

pediatric-onset (up to age 21 years) focal drug-resistance epilepsy, [b] simultaneous video-iEEG 

recording with subdural grid/strip for epilepsy surgery between August 2016 and December 2023 at 

UCLA Mattel Children's Hospital (UCLA) or between January 2007 and May 2018 at Children's Hospital 

of Michigan, Detroit (Detroit), [c] iEEG sampling rate of at least 1,000Hz, [d] iEEG contained at least an 

artifact-free 20 min slow-wave sleep epoch at least two hours apart from clinical seizure events, [e] 

undergoing resection surgery after iEEG recording, and [f] known postoperative seizure outcomes over 

one year. The exclusion criteria included [a] undergoing epilepsy surgery without iEEG recording (such 

as hemispherectomy or neuroimaging-guided resection), [b] the presence of massive brain 

malformations (such as megalencephaly and perisylvian polymicrogyria) or previous surgeries that 

make it difficult to identify brain anatomy during the iEEG study, and [c] patients without one-year 

postoperative seizure outcomes. The institutional review board at UCLA and Wayne State University 

have approved the protocol. We obtained written informed consent from patients or the guardians of 

pediatric patients. 

  

Patient evaluation: 

All study subjects were referred during the study period underwent a standardized presurgical 

evaluation, which—at a minimum—consisted of inpatient video-EEG monitoring, high resolution (3.0 T) 

brain magnetic resonance imaging (MRI), and 18 fluoro-deoxyglucose positron emission tomography 
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(FDG-PET), with MRI-PET co-registration.32, 33 The margins and extent of resections were determined 

mainly based on the SOZ, clinically defined as regions initially exhibiting sustained rhythmic waveforms 

at the onset of habitual seizures. In some cases, the seizure onset zones were incompletely resected to 

prevent an unacceptable neurological deficit. Postoperative seizure outcomes were determined based 

on the status of ILAE class I outcomes (seizure-free) versus others 12 months after the resective 

surgery. 

  

iEEG recording: 

Macroelectrodes, including platinum grid/strip electrodes (10 mm intercontact distance), were surgically 

implanted. The placement of intracranial electrodes was guided by the results of scalp video-EEG 

recording and neuroimaging studies.32, 33 All electrode plates were stitched to adjacent plates, the edge 

of the dura mater, or both to minimize movement of subdural electrodes after placement. Both 

institutions obtained iEEG recordings using Nihon Kohden Systems (Irvine, California, USA). The 

sampling frequency was set at 1,000 Hz in Detroit and at 2,000 Hz in UCLA upon acquisition. 

  

Acquisition of three-dimensional (3D) brain surface images: 

We obtained preoperative high-resolution 3D magnetization-prepared rapid acquisition with gradient 

echo (MPRAGE) T1-weighted image of the entire head. Using the FreeSurfer scripts,34 we created the 

averaged surface image for which all electrode locations were spatially normalized.32, 33 In cases where 

the software failed to detect the pial surface accurately due to insufficient cerebral myelination, we 

manually delineated the pial surface using the Control Point function. The averaged surface image 

functioned as the template for the analysis of anatomical location. 

  

Electrode co-registration of brain MRI and standardized parcellation of regions of interest 

(ROIs): 

For the dataset from UCLA, each implanted contact was labeled visually according to the Desikan-

Killiany-Tourville atlas.35 The location of electrodes was directly defined within a Freesurfer-based 3D 

surface image using post-implant computed tomography (CT) images using Brainstorm software.36 For 

the dataset from Detroit, all implanted subdural contacts were coregistered with 3D surface images 

within the FreeSurfer with an FSaverage vertex label.32 For the data harmonization between the two 

institutions, the FSaverage vertex of Detroit datasets was converted to MNI coordinates.37 Finally, these 

data were combined with UCLA patients, which were projected to the MNI normalized space under 

Brainstorm for the co-registration image. After the co-registration procedure, iEEG electrode contacts 

outside of the brain or with significant artifacts were excluded for subsequent EEG analysis. The 
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channel resection status (resected vs. preserved) was meticulously determined based on post-

resection brain MRI and intraoperative pictures (pre-and post-resection) to visually confirm the grid/strip 

locations).32, 33, 38
 

  

iEEG data pre-processing: 

The EEG data from UCLA was first resampled to be the same sampling frequency of 1,000 Hz to match 

that from Wayne State, and a band-reject filter was to reject the 60 Hz and its harmonics with a 

stopband of 2 Hz. The signals were referenced using a bipolar montage. Five-minute long interictal 

iEEG data from each patient will be obtained on the first night of the monitoring, before the medication 

wean. 

 

Building high-frequency synchronization network HiSyncDx: 

For a given frequency band, we construct a directed weighted time-varying synchronization network 

from the iEEG using the following steps (see Figure 1):39  

 

- Split the iEEG data into T-second-long non-overlapping data segments. For each data segment, 

we construct a directed weighted network following the steps below. 

- The network consists of N nodes where N is the number of channels in iEEG 

- The edge weights between the nodes in the network are computed using the power and phase-

related coupling coefficient, which are computed from the Fourier transform 

- The directionality between the edges is computed using the phase-related coupling coefficient 

-  A dynamic threshold is used to only keep edge weights in the top 90% percentile 

 

Power and Phase spectrum using Fourier transform: For each channel, we compute its power and 

phase spectrum using Fast Fourier Transform (FFT). After obtaining its power spectrum, we isolate the 

given frequency band and set the magnitude of each frequency component outside the given band to 

zero. 

 

Power-related coupling coefficient between node i and j: Let Pi be the sum of the squared power 

spectrum of the ith node and is given by 
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where K is the number of discrete frequencies in the given frequency band. Then, power-related 

coupling coefficient between nodes i and j is given by 

 

 

Phase-related coupling coefficient between node i and j: Phase-related coupling coefficient 

between node i and j is given by 

 

 

where K is the number of discrete frequencies in the given frequency band. 

 

Edge weight between node i and j: The synchronous coefficient between node i and j, dij is given by 

 

 

From the above equation, it can be observed that the synchronous coefficient is the product of the 

power and phase-related coefficient. Then, we compute the edge weight between node i and j, wij, as 

 

 

where we use the exponentiation factor 

 

 

Directionality to the edge between node i and j: The total phase in node j is given by 

 

where K is the number of discrete frequencies in the given frequency band. Analogously, the total 

phase in node i is given by 

 

where K is the number of discrete frequencies in the given frequency band. If there is a greater total 

phase in node j than node i, that is 
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then the weighted edge points from node i to node j (i  j). If there is a greater total phase in node i 

than node j, that is 

 

 

then the weighted edge points from node j to node i  (j  i). 

 

Computing Network Synchronization Index, Node Properties, and Other Characteristics of High-

Frequency Synchronization Networks  

For each of the three frequency bands, HiSyncDx outputs a sequence of T networks (assuming one-

second-long segments) where T is the duration of the iEEG recordings. To explore the structure and 

the dynamics of the networks, we use a mix of global (network level) and local (node level) graph-

theoretic properties. We hypothesize that mini-seizures are driven by the EZ region (represented by a 

few nodes in the network), leading to large-scale/intensity network synchronization events, such as 

seizures. To capture such events in the network level dynamics, we use measures such as (i) Fiedler 

eigenvalue: higher Fiedler eigenvalue implies higher synchronizability of the networks, (ii) edge 

weights: larger edge weight implies stronger synchronization strength and (ii) Node degree variance: 

higher variance implies the presence of hubs. We propose a data-driven computational metric to 

quantitatively identify synchronization networks that have high values for each of the metrics. We refer 

to this metric as the Network Synchronization Index (SI), which is the product of the three global 

measures stated above. The metric not only assists in identifying the events but also provides a 

potential framework for ranking the network states and unearthing interictal time stamps of interest in 

an unsupervised way. In addition to identifying such events, we also identify the drivers of such events 

using a set of node-level features like in-degree,out-degree, scaled in and out degrees by Fiedler 

eigenvalue and eigencentrality scores. 

 

HiSyncDx-based EZ prediction: defining EZ centrality score 

As mentioned in the previous section, we aim to identify the drivers of the network synchronization 

events (EZ hubs) (Figure 2). To quantify the importance of each electrode channel (EZ centrality 

score), a set of five network features—including in-degree, out-degree, eigenvector centrality, and 

Fiedler eigenvalue-based measures—are extracted at each time point. These features are summarized 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 2, 2025. ; https://doi.org/10.1101/2025.01.31.25321482doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.31.25321482
http://creativecommons.org/licenses/by-nc-nd/4.0/


across time by measuring their mean, variance, skewness, and kurtosis, forming a 20-dimensional 

feature vector for each channel in each frequency band. For each channel, the 20-dimensional featu

vectors for each of the three frequency bands is concatenated into a single 60-dimensional feature 

matrix. The resulting feature matrix is then used as input for a random forest classifier, trained using 

10-fold cross-validation strategy, with the SOZ (seizure onset zone) information serving as binary 

ground truth labels. The random forest classifier outputs an EZ centrality score that can be threshold

to identify the EZ. This method provides an interpretable, data-driven approach to localizing the EZ, 

leveraging high-frequency synchronization dynamics to improve diagnostic precision. 

 

Predicting surgical outcomes using EZ centrality scores 

To evaluate the EZ centrality scores as interictal iEEG markers of the EZ, we tested their efficacy in 

predicting surgical outcomes (Figure 3). We construct a 3-dimensional feature vector from the EZ 

centrality scores: catEZ, resEZ, and resection, where: 

 

We augmented the EZ centrality scores with patient demographics (age and sex) to obtain a five-

dimensional feature vector for surgical outcome prediction. We trained and validated the performanc

of the five-dimensional surgical outcome prediction model on the same multicenter patient corpus of 

159 patients that we introduced earlier. Since the patient cohort is unbalanced, with ∼ 70% of patient

being seizure-free and ∼ 30% of patients being non-seizure-free, we used 10-fold stratified cross-

validation to evaluate our model's performance and generalization power. In 10-fold stratified cross-

validation, we split the corpus of 159 patients into 10 patient groups of roughly equal size, where eac

group has around 70% seizure-free and around 30% non-seizure-free patients. Then, for each fold, w

train the model using nine patient groups and then test the model on the left-out patient group. 

 

Statistical analysis 

Statistical analyses were performed using Python (3.9.1). Quantitative data were reported as median

with interquartile ranges or means with standard deviations. Group comparisons used chi-square tes

for distributions and Student's t-tests for means, with significance set at p < 0.05 unless stated 
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otherwise. Machine learning model performance was evaluated using accuracy and F1 score. Specific 

statistical tests for each experiment are detailed in their respective sections. 

RESULTS: 

 

Cohort characteristics 

We studied 159 patients (79 females) from two centers who met the eligibility criteria (Table 1). The 

median age at surgery was 12 years (range: 3–44 years). The median duration of analyzed EEG data 

was 91.5 minutes [IQR: 90.6–96.6 min] for the UCLA dataset and 5.3 minutes [IQR: 5.1–5.7 min] for the 

Detroit dataset. All patients underwent resective surgery, with 110 patients (69.2%) achieving seizure 

freedom. The pathological diagnoses included focal cortical dysplasia (FCD) (40.3%), tumor (19.5%), 

hippocampal sclerosis (HS) (6.9%), and other conditions (33.3%). 

 

Novel interictal biomarker: high-frequency synchronization network dynamics and mini-seizures 

Interictal hypersynchronous network states mimic Ictal network states. 

Analysis of HiSyncDx networks revealed distinct patterns of hypersynchrony across both interictal and 

ictal periods of EEG recordings (Figure 4). During interictal periods, we observed transient 

hypersynchronous states that manifested as "mini-seizures," characterized by brief periods of 

increased network connectivity. These interictal networks showed a consistent pattern of organization 

centered around the seizure onset zone (SOZ). Notably, the network topology during these interictal 

events showed remarkable similarity to ictal patterns, suggesting a common underlying 

pathophysiological mechanism. In the ictal segments, the EEG recordings captured the evolution of full 

seizure activity, marked by the emergence of pronounced hypersynchronous states at seizure onset. 

The network representations reveal a more extensive recruitment of brain regions during the ictal 

period, with the SOZ maintaining its central role in the network architecture. This analysis demonstrates 

HiSyncDx's capability to identify and characterize hypersynchronous states across different temporal 

scales, providing insight into the relationship between interictal network dynamics and seizure 

generation. 

 

Mini-seizures have salient features in the synchronization index space. 

Our analysis established a quantitative framework for distinguishing mini-seizures from normal brain 

states through network characteristics and synchronization metrics (Figure 5). The network topology 

during normal states exhibited markedly different properties compared to mini-seizure states. In normal 

network states, we observed low synchronizability as measured by the Fiedler eigenvalue, minimal 
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synchronization strength indicated by low average giant connected component edge weights, and an 

absence of synchronization hubs evidenced by low degree variance across nodes. In contrast, mini-

seizure states demonstrated significantly enhanced network synchronization properties, characterized 

by high Fiedler eigenvalues, increased edge weights in the giant connected component, and the 

emergence of distinct synchronization hubs with high degree variance. The synchronization index 

distribution revealed a clear bimodal pattern, enabling the definition of distinct regimes: a normal regime 

(synchronization index < 3) and a mini-seizure regime (synchronization index ≥ 3). Notably, the analysis 

revealed a hierarchical organization of synchronization states, where interictal mini-seizures (shown in 

blue) exhibited intermediate synchronization indices between normal states and full ictal seizures 

(shown in red). This quantitative characterization provided an objective, data-driven approach for 

detecting and classifying mini-seizures in interictal recordings. 

 

Hypersynchronous network states are a continuum bridging interictal and ictal network states. 

Analysis of interictal recordings revealed frequent mini-seizure occurrences across the patient cohort 

(Figure 6). In representative examples from two patients (Panel A), mini-seizures occurred repeatedly 

during brief interictal periods, with distinct temporal patterns unique to each patient. Quantitative 

analysis across our cohort of 159 patients demonstrated a consistent presence of mini-seizures, with a 

median occurrence rate of 5.8 events per minute (Panel B). Notably, examination of longer recording 

segments (Panel C) revealed an interictal-ictal continuum, where mini-seizure frequency systematically 

increased leading up to and during clinical seizures. This temporal evolution was observed consistently 

across patients, as demonstrated in the two representative cases shown. These findings provide 

evidence that mini-seizures represent a fundamental feature of dynamic epileptic networks, potentially 

serving as a bridge between interictal and ictal states. 

 

Synchronization network properties follow power-law distributions exhibiting transitions 

between normal and hypersynchronous network states. 

Statistical analysis of synchronization network properties revealed distinct characteristics between 

normal network state and hypersynchronous network state regimes across multiple metrics (Figure 7). 

The distribution of average giant connected component (GCC) edge weights follows a power law with 

bimodal regimes, where the mini-seizure regime is characterized by significantly higher edge weights, 

indicating stronger functional connectivity during these events. Similarly, the Fiedler eigenvalue 

distribution demonstrated a marked separation between normal and MS states, with MS events 

showing elevated values reflecting increased network synchronizability. Node degree variance 

exhibited a comparable pattern, with the MS regime displaying higher variances, suggesting the 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 2, 2025. ; https://doi.org/10.1101/2025.01.31.25321482doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.31.25321482
http://creativecommons.org/licenses/by-nc-nd/4.0/


emergence of hub-like structures during mini-seizures. Notably, analysis of the temporal dynamics 

between successive mini-seizures revealed a striking power-law relationship in the inter-mini-seizure 

intervals, as demonstrated in the log-log plot. This power-law scaling, evident over approximately two 

orders of magnitude, suggests that mini-seizures follow a scale-free temporal organization 

characteristic of self-organized critical systems. The linear relationship in the log-log plot extends from 

sub-second to approximately 10-second intervals, beyond which the relationship deviates from power-

law behavior, potentially indicating a transition to different dynamical regimes at longer timescales. 

 

HiSyncDx-based EZ identification model accurately predicts the EZ, with ripple band networks 

being the most discriminative.  

HiSyncDx-based EZ prediction model demonstrated robust performance across multiple temporal 

scales and feature sets. With full-length iEEG recordings (5 minutes - 90 minutes), the model achieved 

exceptional performance in predicting the EZ (the SOZ within the resected brain reigons) with an F1 

score > 95% and maintained its strong performance even with reduced recording durations (F1 score > 

90%), demonstrating the robustness of the model. The feature importance analysis in the space of the 

frequency bands revealed that the ripple band is crucial to the prediction power of the model, as there 

is a sharp decline in the F1 score when the ripple band is dropped in the HiSyncDx network 

construction. Analogously, in the summary statistics domain, kurtosis captures the most informative 

description of the HiSyncDx network dynamics, which is critical for accurate EZ identification. These 

findings underscore the importance of capturing complex statistical properties of ripple-band activity for 

accurate EZ identification. 

 

HiSyncDx-based EZ prediction model can accurately delineate EZ from interictal iEEG segments 

with a duration as short as 3 minutes.  

Analysis of EZ likelihood scores across different recording durations revealed that brief interictal 

segments are sufficient to identify EZ which are critical for surgical success. We observed consistent 

EZ prediction patterns across recording durations ranging from 1 to 90 minutes, with stable 

identification of high-likelihood EZ channels emerging by 3 minutes of iEEG recording. Patient 1, who 

achieved seizure freedom, showed strong alignment between the resection margin and channels with 

high EZ centrality scores. In contrast, Patients 2 and 3, who did not achieve seizure freedom, exhibited 

high EZ likelihood scores in channels outside their respective resection margins, suggesting incomplete 

removal of epileptogenic tissue. The spatial distribution of EZ likelihood scores, when mapped onto 

brain reconstructions, revealed distinct contiguous hotspots representing potential epileptogenic foci. 

This spatial organization was particularly evident in Patient 1, where the resected region encompassed 
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all identified hotspots, correlating with the favorable outcome. Notably, in Patients 2 and 3, the 

presence of high-likelihood EZ regions outside the resection margin (visible in both heatmaps and brain 

reconstructions) corresponded with continued seizures, validating the clinical relevance of our 

prediction model. These findings suggest that HiSyncDx can reliably identify critical epileptogenic 

regions from short interictal recordings, potentially improving surgical planning and outcome prediction. 

 

HiSyncDx-based surgical outcome prediction model outperforms the state-of-the-art 

performance 

The seizure freedom probability (Ps) score, as outputted by the HiSyncDx-based surgical outcome 

prediction model, is significantly different (two-sample t-test, p < 10^-3) between the two groups with 

seizure-free group consistently having higher predictive values (mean = 0.77, variance = 0.08) than the 

non-seizure free group (mean = 0.48, variance = 0.14) reflecting the predictive power of the model. 

Also, the prediction model has robust generalization capability as shown by the strong performance 

metrics with notably low variance: F1 score (mean = 0.87, variance = 0.004), accuracy (mean = 0.80, 

variance = 0.009), precision (mean = 0.83, variance = 0.005), and particularly high recall (mean = 0.92, 

variance = 0.007). Finally, our prediction model (mean F1 score = 87%) significantly outperformed both 

the HFO-based model (mean F1 score = 79%) and the current clinical standard using SOZ resection 

status (mean F1 score = 78%) across all performance metrics. 

 

DISCUSSION:  

In this study, we developed the HiSyncDx platform to model dynamic and complex epileptic 

networks in 159 patients with focal drug-resistant epilepsy who underwent iEEG monitoring. We found 

that frequent hypersynchronous events utilize the regions around the SOZ as hubs. Using a data-driven 

approach based on network properties, we defined these hypersynchronous events as mini-seizures. 

The temporal dynamics of mini-seizures revealed a striking power-law relationship in the inter-mini-

seizure intervals. We then demonstrated that our prediction model, which incorporates 

hypersynchronous network properties along with clinical information (such as SOZ location), 

successfully identifies EZ hubs. Furthermore, when factoring in the resection status of the EZ hubs, the 

model accurately predicted postoperative seizure outcomes at one year. 

Mini-seizures as novel interictal iEEG Biomarker of the EZ. 

Our findings are clinically important since no spatial biomarker of the EZ is available, especially 

when using short iEEG data. Our new framework suggests that mini-seizures and seizures are both 

part of the same continuum of synchronization events that are generated by the pathophysiology 

dynamics of epilepsy.27 We have provided evidence that instead of waiting 1-2 weeks to capture large 
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events (seizures), capturing frequently occurring mini-seizures provides necessary information 

regarding which brain regions should be targeted for resection or disruption. This finding represents a 

significant potential paradigm shift in clinical practice. Historically, clinicians have relied on expert 

identification of EEG patterns, focusing on EEG channel-based regions and defining several different 

event annotations. For example, interictal high-frequency oscillations (HFOs) have emerged as a 

promising biomarker of the EZ.40-45 HFOs represent pathological bursts of neuronal activity that occur in 

the frequency range of 80-500 Hz, generated by the epileptogenic brain tissues.46-48 Interictal HFOs 

were observed around the SOZ, and retrospective studies demonstrated that resection of HFO-

generating regions correlated with favorable postoperative seizure outcomes.40, 44, 49-52 However, this 

optimism has been tempered by conflicting evidence from more recent observational studies, which 

failed to confirm the utility of HFOs in predicting postoperative seizure outcomes.53, 54 A clinical trial 

failed to prove that HFO-guided resection would improve postoperative seizure outcomes compared to 

standard, spike-guided resection during intraoperative electrocorticography.55 One major limitation is 

that HFOs can occur in healthy brain regions,32, 56, 57 leading to false positives. Also, the detection of 

HFOs typically relies on algorithms applied independently to each channel, overlooking the broader 

concept of regional network dynamics. Network properties, such as propagation in spike58 and HFO 

analysis,59 have been shown to enhance the prediction of the EZ. However, these methods remain 

constrained by the requirement to first detect spikes or HFOs in each channel as an initial step, which 

limits their applicability. Our proposed framework fundamentally shifts the paradigm of epilepsy surgery 

from the traditional approach of estimating the EZ through expert-annotated discrete regions, such as 

the SOZ, to a network-based approach. HiSyncDx employs a data-driven strategy to identify EZ hubs 

and target them for resection or disruption, preventing the perturbed network from generating hyper-

synchronous states and ultimately eliminating seizures. 

The HiSyncDx platform provides a more comprehensive network analysis than prior methods. 

Our conceptual hypothesis of mini-seizures and seizures being part of a continuum of 

synchronization events is based on a shared behavior exhibited by most bursty complex dynamical 

systems, where a stream of smaller events of varying magnitudes occur continually and as an integral 

part of the same continuum of events, rare large events occur that are felt throughout the system.24-31 

For example, around active fault zones in the earth's crusts, small micro-earthquakes occur continually; 

larger earthquakes felt over a wide area are a natural part of this continuum.60, 61 Thus, micro and large 

earthquakes occur because of the same shared dynamics around a fault system. Epileptic seizures 

arise from the dynamic interplay between excitatory and inhibitory neurophysiological processes at 

neuronal, local circuit, regional, and whole brain levels.15, 62, 63 In the EZ, this balance is disrupted, 

leading to clusters of neurons that often fire pathologically at higher frequencies.64  Thus, we 
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hypothesize and validate that the EZ continually produces synchronization events of various 

magnitudes. Moreover,  just as in the case of earthquakes, the geometry of fault zones and their stress 

distributions are routinely mapped via naturally occurring and induced micro-quakes without having to 

wait for larger quakes.65, 66 We are showing that the EZ can be similarly and accurately estimated from 

the mini-seizures that occur in randomly picked short interictal periods.  

As articulated in this work, HiSyncDx uses a novel data-driven algorithm capable of analyzing 

large-scale, non-linear complex systems. By applying graph theory and inferring connections of 

networks (ICON) methodology39 on iEEG data, the HiSyncDx platform provides a (1) comprehensive 

spatial characterization of complex epileptic networks and (2) detection of their dynamic temporal 

evolution within a timeframe of approximately hundreds of milliseconds. Specifically, the HiSyncDx 

framework evaluates each node, representing a specific brain region, and quantifies its ability to drive 

high-frequency synchronization events, measured as the EZ centrality score. Similarly, each edge is 

quantified by the strength and direction of network synchronization between corresponding regions. 

These spatial characteristics of network synchronization can then be analyzed with a temporal 

resolution of hundreds of milliseconds, providing a significant advantage over other methods, such as 

fMRI, which typically has a temporal resolution of 1-3 seconds. Once trained with machine learning 

algorithms, the platform's efficient parallel computation capabilities will enable deployment on 

lightweight platforms, allowing it to run on personal computers for both research and clinical 

applications. 

Although numerous studies on animal models and human research using neuroimaging and 

neurophysiology have demonstrated epilepsy involves network pathology, no comprehensive network 

analysis platform such as HiSyncDx has been proposed to date. Although the source-sink theory is 

compelling, its methodologies face limitations in capturing key neurophysiological aspects of epilepsy 

network dynamics. A "sink" node is defined as a region highly influenced by other nodes but not 

influential itself. In contrast, a "source" node is defined as a region in the brain network that is highly 

influential towards other nodes but is not being influenced by others. Thus, the EZ acts as a sink node 

that is persistently inhibited by neighboring source nodes during interictal periods. Using the source-

sink theory, recent studies investigated epilepsy patients using a multimodal approach, combining 

diffusion MRI to assess structural connectivity and resting SEEG to quantify functional connectivity, 

which demonstrated improved identification of the SOZ.20 Other studies applied graph theory-based 

connectivity analysis to iEEG data, including interictal and pre-ictal/ictal periods, to identify hubs within 

epileptic networks.64, 67 The resection status of the network hubs contributed to predicting postoperative 

seizure outcomes. Such studies have succeeded in determining the "sink" status of the EZ over the 

duration of 5-20 minutes of the interictal iEEG segment. However, their linear connectivity analysis 
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methods20, 21 make it difficult to describe dynamic transitions of the epileptic network across interictal, 

preictal, and ictal states. More specifically, the prior research overlooked rapid synchronization changes 

that could resemble seizures within the short iEEG segment (mini-seizures). Also, the "sink" status 

reflects the baseline state of the channels, but capturing their active "source" state—which more closely 

represents the ictal state—within interictal iEEG data may provide a more accurate delineation of the 

EZ hubs. Although neural fragility theory64 effectively models the unstable transition from the pre-ictal to 

ictal state within SOZ using a time-varying linear model, the methodology is limited by the need for ictal 

EEG data for model training. Besides, this method is not meant to model overall non-linear, non-

stationary interictal-ictal dynamics across the iEEG recording. 

Limitations and further perspectives 

While our findings are promising, several limitations should be acknowledged. This study relied 

on macroelectrode recordings, which may not fully capture fine-grained neurophysiological 

mechanisms at the single-neuron level. A more comprehensive characterization of multidimensional 

network states—spanning cellular, local, and regional brain levels—may require integrating both micro- 

and macroelectrode recordings. Also, our analysis focused on pediatric epilepsy with neocortical 

seizure onsets, utilizing only iEEG recordings from subdural grids. Expanding this work to include 

stereotactic EEG and adult epilepsy populations would provide broader insights. Finally, validating our 

approach based on clinical outcomes remains crucial. Evaluating seizure outcomes following 

neuromodulation, rather than resection alone, would be a meaningful next step in confirming the clinical 

utility of our findings. Although we demonstrated that a five-minute iEEG segment is sufficient to detect 

mini-seizures in each patient, longer multi-day recordings could provide further insights into the 

temporal dynamics of mini-seizure occurrence.68 Additionally, the influence of vigilance states should 

be considered,69 as differences in mini-seizure morphology across sleep stages and wakefulness 

remain underexplored. Despite these limitations, our publicly available data and analysis code allow 

other research groups to validate our findings. Looking ahead, we plan to integrate iEEG data with non-

invasive EEG and neuroimaging modalities70 to enhance our understanding of epileptic networks. 

Moreover, collaborating with additional institutions will be crucial to test the generalizability of our 

approach. 
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FIGURE LEGENDS 

 

Fig. 1: Overview of HiSyncDx network construction.  

 

Fig. 2: Overview of HiSyncDx-based EZ prediction. 

 

Fig. 3: Development of HiSyncDx-based postoperative seizure outcomes prediction. 

 

Fig. 4: HiSyncDx can detect hypersynchronous states in both interictal and ictal EEG segments. 

In the interictal state (A), transient hypersynchronous states (mini-seizures) emerge, involving the SOZ 

and resembling ictal network patterns. During ictal periods (B), the hypersynchronous state, with similar 

functional connections and pathophysiology, emerges at the ictal onset. The weighted adjacency 

matrices heatmap demonstrates these transient hypersynchronous events, with warmer colors 

indicating stronger functional connections between electrode pairs. 

 

Fig. 5: A data-driven definition of mini-seizures. (A) Local and global node characteristics difference 

between normal and hypersynchronous network states. (B) With the distribution of the synchronization 

index (Fiedler Eigenvalue * Average GCC edge weight * Node degree variance), the mini-seizure 

threshold was defined. Note habitual seizures exhibited a larger synchronization index than mini-

seizures. 

 

Fig. 6: HiSyncDx detects frequently occurring mini-seizures, encompassing actual ictal events. 

(A) Representative examples from two patients demonstrating frequent mini-seizures within brief 

interictal iEEG recordings. (B) Box plot illustrating the distribution of mini-seizure occurrence rates  

(median 5.8 per minute). (C) Examples from two patients exhibiting an interictal-ictal continuum, where 

the frequency of synchronization events increases during ictal events. Blue dots represent high-

frequency oscillations (HFOs) with spikes. Temporal locations of such pathological HFOs are generally 

matched with corresponding mini-seizures, implying a strong pathological origin of mini-seizures 

themselves. Many mini-seizure events, however, do not have corresponding HFOs with spikes. Thus, 

interictal mini-seizures are a more sensitive indicator of the EZ than pathological HFOs.  
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Fig. 7: Statistical characterization of mini-seizure dynamics reveals distinct network states and 

power-law behavior. Complex dynamical systems are characterized by scaling laws (ref. 

simkin+roychowdhury) that govern the distributions of key macroscopic metrics. Several key global 

metrics of the hypersynchronous synchronization networks, including its Fiedler eigenvalue, average 

synchronization edge weights, and node degree variance, show linear trends in log-log plots. Moreover, 

the distributions of these metrics for mini-seizure and ictal networks show a distinctly different trend 

from that of the baseline normal activity networks. Similarly, just as with earthquakes, the distribution of 

the inter-mini-seizure intervals shows a distinct power-law distribution, which is a trademark critical 

behavior shown by most complex dynamical systems.  

 

Fig. 8: HiSyncDx-based EZ prediction model accurately predicts SOZ status, with ripple band 

features being the most informative. A leave-one-out cross-validation approach was used to validate 

the performance of the model. The X-axis represents the four performance metrics, and Y-axis 

represents the value of the performance metric averaged across 159 patients with an error bar showing 

the variance. The model using all frequency bands generalizes well, as shown by the high average F1 

score of 0.97 and small variance in F1 score across 159 patients. However, when the ripple frequency 

band was dropped, the model performance decreased significantly to an average F1 score of 0.84, 

showing the importance of the ripple band in SOZ classification. 

 

Fig. 9: Short interictal iEEG segments are sufficient for high-confidence EZ identification. 

Heatmaps of EZ centrality scores for three patients are shown with rows representing the channels and 

columns representing the duration of the iEEG epoch used to train/test the EZ classification model. A 

patient whose resection margins included all the predicted EZ became seizure-free (left). Conversely, 

patients whose resection margin did not cover all the channels with predicted EZ did not become 

seizure-free (middle and right). Note that the resection margin includes the two identified SOZ channels 

in the patient represented in the right figure. The preserved region, however, includes a number of 

predicted EZ channels that were not annotated as SOZ; not resecting such EZ hubs most likely 

contributed to the failure of surgical intervention.  

 

Fig. 10: Network-based model accurately predicts postoperative seizure outcome. A 10-fold 

cross-validation (CV) approach was used to validate the performance of the surgical outcome 

prediction models. (A) The synchronization network-based model outputs a seizure freedom probability 

(Ps) for each patient. Each dot represents one patient, and the dots are color-coded according to the 

surgical outcome. For the network-based model, the majority of patients with a successful surgical 
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outcome (red dots) had Ps values greater than the threshold (dotted line), whereas patients with a 

failed surgical outcome generally had Ps values below the threshold. (B) Box plots show distributions of 

each performance metric across the 10 CV folds. The network-based model generalizes well, as shown 

by the high mean F1 score of 0.87 and low variance of 0.004 across the 10 CV folds. (C) Four surgical 

outcome prediction models are compared in terms of 4 performance metrics. The synchronization 

network-based model ( mean F1 score - 87%) outperforms the HFO-based model (mean F1 score - 

79%) and SOZ resection status-based model (current clinical standard) (mean F1 score - 78%) on all 

four performance metrics. 
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Table 1: Patient Demographics 
    UCLA Detroit All 

Number of patients 24 135 159 
Median age in years (range) 13.0 (3–22)  12.0 (4–44)  12.0 (3–44) 
Proportion of females (%) 12 (50.0%) 67 (49.6%) 79 (49.7%) 
Sampled hemisphere (%) 

  Left 12 (50.0%) 61 (45.19%) 73 (45.9%) 
Right 9 (37.5%) 51 (37.78%) 60 (37.7%) 
Both 3 (12.5%) 23 (17.04%) 26 (16.4%) 

Seizure onset zone 
  Frontal 13 42 55 

Temporal 6 63 69 
Parietal 12 49 61 

Occipital 3 23 26 
Limbic 3 59 62 

Patients with postoperative seizure-freedom (%)* 15 (62.5%) 95 (70.4%) 110 (69.2%) 
Pathology (%) 

  Focal cortical dysplasia 15 (62.5%) 49 (36.3%) 64 (40.3%) 
Tumor 3 (12.5%) 28 (20.74%) 31 (19.5%) 

Hippocampal sclerosis 0 (0.0%) 11 (8.15%) 11 (6.9%) 
Others 6 (25.0%) 47 (34.81%) 53 (33.3%) 

*Seizure-freedom is defined as ILAE 1 outcome. 
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