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Abstract

Avian pathogenic E. coli and human extraintestinal pathogenic E. coli serotypes O1, O2 and O18 strains isolated from
different hosts are generally located in phylogroup B2 and ST complex 95, and they share similar genetic characteristics and
pathogenicity, with no or minimal host specificity. They are popular objects for the study of ExPEC genetic characteristics
and pathogenesis in recent years. Here, we investigated the evolution and genetic blueprint of APEC pathotype by
performing phylogenetic and comparative genome analysis of avian pathogenic E. coli strain IMT5155 (O2:K1:H5; ST
complex 95, ST140) with other E. coli pathotypes. Phylogeny analyses indicated that IMT5155 has closest evolutionary
relationship with APEC O1, IHE3034, and UTI89. Comparative genomic analysis showed that IMT5155 and APEC O1 shared
significant genetic overlap/similarities with human ExPEC dominant O18:K1 strains (IHE3034 and UTI89). Furthermore, the
unique PAI I5155 (GI-12) was identified and found to be conserved in APEC O2 serotype isolates. GI-7 and GI-16 encoding two
typical T6SSs in IMT5155 might be useful markers for the identification of ExPEC dominant serotypes (O1, O2, and O18)
strains. IMT5155 contained a ColV plasmid p1ColV5155, which defined the APEC pathotype. The distribution analysis of 10
sequenced ExPEC pan-genome virulence factors among 47 sequenced E. coli strains provided meaningful information for B2
APEC/ExPEC-specific virulence factors, including several adhesins, invasins, toxins, iron acquisition systems, and so on. The
pathogenicity tests of IMT5155 and other APEC O1:K1 and O2:K1 serotypes strains (isolated in China) through four animal
models showed that they were highly virulent for avian colisepticemia and able to cause septicemia and meningitis in
neonatal rats, suggesting zoonotic potential of these APEC O1:K1 and O2:K1 isolates.
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Introduction

Escherichia coli generally colonizes the mammalian intestinal

tract commensally, but highly adapted E. coli clones can become

true pathogens called ‘‘pathotypes’’, some of which cause various

lethal diseases after acquisition of specific virulent factors [1,2].

These E. coli pathotypes can be broadly classified as intestinal

pathogenic E. coli or extraintestinal pathogenic E. coli (ExPEC)

based on the pathogenic types [3]. Intestinal pathogenic E. coli
strains (IPEC) cause infection in the gastrointestinal system, while

ExPEC strains cause urinary tract infections, newborn meningitis,

abdominal sepsis, and septicemia in the extraintestinal system

[2,4]. ExPEC pathotypes are classically divided into four groups,

based on the disease pathology, namely avian pathogenic E. coli
(APEC), uropathogenic E. coli (UPEC), neonatal meningitis E. coli
(NMEC), and septicemic E. coli [5–7].

In order to discriminate ExPEC from commensal and intestinal

pathogenic E. coli, several molecular epidemiology approaches are

used for ExPEC typing. The classical typing method is the

identification of E. coli (O: K: H) serotypes, and highly virulent

ExPEC isolates can be classified as several specific and predom-

inant O1, O2 and O18 serotypes strains, which can express K1

capsule and are popularly isolated from human and avian

colibacillosis [6,8–10]. Related to above mentioned three O

serotypes, O6 serotype strains are also highly virulent and popular

among UPEC isolates [6,11], and APEC O78 serotype strains are
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also frequently isolated from avian colibacillosis [6,12]. The

phylogroup typing method based on multilocus enzyme electro-

phoresis (MLEE) and several relevant DNA markers are generally

used for identification of E. coli genetic and evolutionary

characteristics. E. coli can be classified as four major phylogroups

(A, B1, D and B2) in accordance with the studies of Clermont et al.

[13–16], and an additional fifth group (E) [17–19]. Most ExPEC

isolates belong to the mainly phylogroup B2 and a lesser group D,

especially highly virulent ExPEC strains, while intestinal patho-

gens and commensals E. coli mainly belong to group A and B1

[20]. In addition, the phylogroup E contains almost all serotype

O157:H7 strains [18,19,21]. Multilocus sequence typing (MLST)

is currently most powerful typing system for the discrimination of

bacterial population genetics [22]. The molecular epidemiology

shows that phylogenetic diversity of E. coli isolates are unambig-

uously differentiated based on E. coli MLST data (clonal

complexes and sequence types data) [17,23]. ExPEC and IPEC

isolates are generally distributed in distinct clonal complexes i.e.

sequence type complexes, containing numerous sequence types

(ST) for E. coli MLST database. The majority of ExPEC isolates

are located in several specific ST complexes (95, 73, 131, 127, 141,

et al.), which are called ExPEC dominated clonal complexes[24–

27]. Phylogroup B2 ExPEC strians of serotypes O1, O2 and O18

are generally located in ST complex 95, and ExPEC isolates of ST

complex 95 are popular objects for ExPEC genetic characteristics

and pathogenesis in recent years [5,6,19,27–29].

After its entry via inhalation of fecal dust, APEC colonizes at the

avian respiratory tract, and causes local infections and then

spreads to various internal organs, resulting in systemic infection in

poultry. These APEC-associated systemic infections have been

proven economically devastating to global poultry industries

[6,29–31]. The phylogroup B2 APEC strains isolated from avian

colibacillosis mainly belong to O1:K1, O2:K1, and another O78

serotypes [6,9]. The complete genomic sequence of APEC O1 (an

O1:K1:H7 strain; ST95) is first determined, which shares high

similarities with the genomes of human UPEC isolates [5]. APEC

and NMEC ST95 serotype O18 isolates can both cause meningitis

in the rat model and disease in poultry, suggesting that they might

have no or minimal host specificity [32]. APEC O78 strain x7122

(ST23) is the second genome that has been sequenced in APEC

isolates, which keeps close relationship with human ST23 ETEC

than that of APEC O1 and human ExPEC strains. APEC wild-

type strain IMT5155 (O2:K1:H5; ST complex 95, ST140; B2

phylogroup) is often used as a classic infection strain of APEC

pathogenicity to identify APEC virulence factors [33–35]. Due to

close relationship of ExPEC O2:K1 serotype strains with

extraintestinal infection between humans and animals, we

reported the complete genome sequence of IMT5155 in order

to unravel the evolutionary and genomic features of APEC O2

isolates. We further compared IMT5155 genome with other E.
coli strains to identify APEC/ExPEC genetic characteristics. In

addition, virulence and zoonotic potentials of APEC O1:K1 and

O2:K1 serotypes isolates were assessed through animal models for

pathogenicity testing.

Materials and Methods

APEC strain and the total DNA extraction
The avian pathogenic E. coli strain IMT5155 was isolated from

a chicken with the typical clinical symptoms of avian colibacillosis

at a German chicken farm in the year 2000 and were provided by

Lothar H Wieler and Christa Ewers [33]. The IMT5155 cells were

cultured in LB media to its exponential growth phase and

harvested by centrifuge. The bacteria genomic DNA extraction

was extracted using the Bacterial DNA Kit (Omega Bio-Tek,

America).

454 pyrosequencing of the IMT5155 genome and
assembly

A whole genome shotgun library was produced with 5 mg of the

genomic DNA of IMT5155. The shotgun sequencing procedure

followed the instruction of 454 GS Junior General Library

Preparation Kit (Roche). In addition, an 8 kb insert paired end

library was produced with 15 mg of the genomic DNA of

IMT5155. The paired end sequencing procedure followed the

instruction of 454 GS Junior Paired-end Library Preparation Kit

(Roche). Paired-end reads were used to orientate the contigs into

scaffolds. The DNA libraries were amplified by emPCR and

sequenced by FLX Titanium sequencing chemistry (Roche). Two

shotgun runs and one paired-end runs were performed based on

their individual library. After sequencing, the raw data were

assembled by Newbler 2.7 (Roche) with default parameters.

Primer pairs were designed along the sequences flanking the gap

regions for PCR gap filling. The complete sequences of IMT5155

chromosome and two plasmids have been deposited in GenBank

(Accession numbers: CP005930, CP005931, and CP005932,

respectively).

Genome annotation of IMT5155
Glimmer 3.02 was used for gene prediction of IMT5155

complete genome [36]. The Glimmer results were corrected

manually, and pseudogenes were investigated through genome

submission check process for GenBank (http://www.ncbi.nlm.nih.

gov/genomes/frameshifts/frameshifts.cgi), and small CDSs in

intergenic regions were identified by IASPLS (Iteratively adaptive

sparse partial least squares) [37]. Then, all the predicted ORF

sequences were translated into protein sequences. BLASTp was

applied to align all the above protein sequences against the NCBI

non-redundant database (January, 2013) [38]. Protein sequences

with alignment length over 90% of its own length and over 50%

identity were chosen and the name of the best hit will be assigned

to the corresponding predicted gene. rRNA operons were

annotated by RNAmmer (http://www.cbs.dtu.dk/services/

RNAmmer/), tRNA genes tRNAscan-SE Search Server (http://

lowelab.ucsc.edu/tRNAscan-SE/), and tmRNA were annotated

by tmRNA Database (http://rth.dk/resources/rnp/tmRDB/)

with default parameters.

Phylogenomic analysis of IMT5155 with other E. coli
pathotypes

46 complete genomes and 1 draft genome of E. coli strains were

downloaded from NCBI GenBank (File A in File S3). The

othologous genes were identified by using the predicted genes of

IMT5155 to align to all annotated genes of 47 E. coli by BLAT

(the BLAST-like alignment tool) [39]. Those single copy IMT5155

genes over 90% of alignment length against all other E. coli strains

were considered as the common genes, which composed the

common genome of 47 E. coli strains. Then, all the common genes

were aligned by MUSCLE and concatenated together [40].

Finally, the concatenated aligned genes were submitted to

MrBayes with the GTR+G+I substitution model [41]. The chain

length was set to 10,000,000 (1 sample/1000 generations). The

first 2,000 samples were discarded as burn in after scrutinizing the

trace files of two independent runs with Tracer v1.4 (http://tree.

bio.ed.ac.uk/software/tracer/).
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Virulence genes and Genomic islands of IMT5155
The annotated genes were submitted to IslandViewer (http://

www.pathogenomics.sfu.ca/islandviewer/genome_submit.php) and

PAIDB (https://www.gem.re.kr/paidb/about_paidb.php) with de-

fault parameters for the identification of genomic islands s, i.e.,

pathogenecity island-like region [42,43]. Then the annotated genes

were submitted to VFDB database (http://www.mgc.ac.cn/VFs/)

for the identification of virulence genes [38,44]. Protein sequences

with alignment length over 90% of its own length and over 50%

identity were chosen from VFDB database, and the name of the best

hit will be assigned to the corresponding predicted gene. Through

online prediction and manual inspection, we obtained the detailed

and precise information for IMT5155 GIs and virulence genes.

Comparative genomic analysis
For comparative studies, common genes in chromosomes of

other E. coli strains (APEC O1, CFT073, x7122, MG1655, SE15,

O157Sakai, IHE3034, CE10, 83972, NA114, UMN026, UTI89,

E2348/69, RM12579, NRG857c, and UM146) shared with E.
coli IMT5155 were identified and plotted along with all predicted

genes in E. coli IMT5155 (with .90% alignment length and .

50% identity). The similarities and differences of the predicted

genes located in IMT5155 genomic islands were highlighted

among the other E. coli strains.

p1ColV5155 and 5 plasmids (pAPEC-O2-ColV, pAPEC-O1-

ColBM, pUTI89, pMAR2, and pO83-CoRR) were used for

plasmid comparative analysis and synteny analysis. The common

genes in 5 plasmids shared with p1ColV5155 were identified and

plotted along with all predicted genes in p1ColV5155 as well as

some functional genes. All genes of 5 plasmids were aligned with

all genes predicted in p1ColV5155 respectively. Then, the aligned

genes (with .90% alignment length and .50% identity) were

shown for synteny analysis. The scripts for comparative ORF

analysis and GIs distribution between IMT5155 and other E. coli
strains were shown in File B in File S3.

The distribution analysis of 10 sequenced B2 ExPEC
pan-genome virulence genes among all sequenced E. coli
strains

The homologous and non-orthologous genes in genomes of 10

sequenced B2 ExPEC strains (NA114, UTI89, IHE3034,

IMT5155, APEC O1, S88, CFT073, Clone Di14, ABU83972,

536) were identified by this standard: homology genes, gene

sequence identity $80% and coverage $80%, otherwise it was a

non-orthologous gene. The total genes of the homologous and

non-orthologous genes of those genomes represent the pan-

genome of 10 sequenced B2 ExPEC genomes. The genes of pan-

genome for 10 sequenced B2 ExPEC were translated into protein,

and then protein of 10 sequenced B2 ExPEC pan-genome were

submitted to VFDB database (with .90% alignment length and .

50% identity) [38,44]. Then all predicted virulence genes were one

by one manually verified through a large number of references

about ExPEC virulence factors, and the confirmed virulence-

associated genes were classified as six categories: adhesins,

invasins, toxins, iron acquisition/transport systems, polysialic acid

synthesis, and other virulence genes. For distribution analysis of

virulence genes, common genes in 46 E. coli genomes (selected

consistent with phylogenomic analysis) (File A in File S3) shared

with virulence genes of 10 sequenced B2 ExPEC pan-genome

were identified with .90% alignment length and .50% identity,

and highlighted among all 46 sequenced E. coli strains expect draft

PCN033 genome sequence. The scripts for virulence genes

statistics and heat-map for virulence gene distribution were shown

in File B in File S3.

Pathogenicity testing
All animal experimental protocols were approved by the

Laboratory Animal Monitoring Committee of Jiangsu Province,

China.

(i) Chicken embryo lethality assay (ELA). The ELA model

was performed to evaluate lethality in chicken embryos for

IMT5155 and other APEC strains, as previously described [5,32].

Briefly, approximately 500 CFU of each cultured bacterial were

inoculated into the allantoic cavity of a 12-day-old, embryonated,

specific-pathogen-free egg (Jinan SAIS Poultry Co. Ltd.), and 20

eggs were successively inoculated for every experimental group.

PBS-inoculated and uninoculated were used as negative controls.

The inoculated eggs were checked daily, and embryo deaths were

recorded for 4 days.

(ii) Chick colisepticemia model. IMT5155 and other

APEC strains to cause avian colibacillosis were assessed for chick

lethality, as previously described [5,32]. Briefly, group of 10 1-day-

old SPF chicks (QYH Biotech) were inoculated intratracheally

with 0.1 ml bacteria suspensions (approximately 107 CFU) for

APEC and other strains. The groups for chicks inoculated with

PBS and MG1655 acted as negative controls. Measuring time for

mortality were 7 days after postinfection. Deaths were recorded,

and the survivors after 7 days were euthanatized, and all tested

chicks in each group were dissected and examined for lesion scores

(ranked from 0 to 3 in accordance with the presence of

airsacculitis, pericarditis, and perihepatitis). The air sacs, blood

in heart, and brain of all tested chicks were picked using

inoculation loops, and then plates of MacConkey agar were

crossed by inoculation loops and cultured at 37uC overnight.

(iii) Mouse sepsis model. The mouse sepsis model for

virulence evaluation of ExPEC isolates was performed on the basis

of previously described methods [28,45,46]. Approximately

107 CFU (0.2 ml) of bacteria suspensions for APEC and other

strains were injected intraperitoneally into 8-week-old imprinting

control region (ICR) mice, and every group contained 10 mice.

Mice for health status were observed twice daily during 3 days

postinfection, which was score on a 5-step scale (1 = healthy,

2 = minimally ill, 3 = moderately ill, 4 = severely ill, 5 = dead) with

the worst score as the score for that day, as described by Johnson et

al. [28]. The mean of the 3 daily health status scores represented

each mouse’s infection process during 3 days postinfection. The

blood in heart and brain of all tested mouse were picked using

inoculation loops, and then plates of MacConkey agar were

crossed by inoculation loops and cultured at 37uC overnight.

(iv) Rat neonatal meningitis model. The abilities to induce

septicemia and enter the central nerves system (CNS) for APEC

strains were assessed by 5 days old, specific-pathogen-free

Sprague-Dawley rats, as previously described [28,32]. And E. coli
MG1655 and NMEC strain RS218 acted as negative and positive

controls, respectively. Groups of 12 rat pups were intraperitoneally

inoculated with approximately 200 CFU of bacteria suspensions

(20 ml) [32]. At 24 h postinoculation, rats were subsequently

euthanized, and 25 ml of blood and 10 ml of cerebrospinal fluid

(CSF) from each survivor for infected rat pup were obtained for

quantitative cultures. The blood and CSF were plated on

MacConkey agar to measure the bacteria concentration in the

blood and indicate meningitis, respectively.
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Results and Discussion

Sequencing and overview of the complete genome of
APEC strain IMT5155

The complete genome of APEC strain IMT5155 was

determined by initial de novo assembly of two shotgun sequencing

runs and one paired-end sequencing run (8-kb insert paired-end

library) followed by PCR gap-filling. The raw shotgun reads and

paired-end reads were assembled into 121 contigs which were

further assembled into eight scaffolds. The N50 contig size was

177,509 bp. The largest scaffold size was 4,907,543 bp (containing

56 large contigs). The second largest scaffold size was 191,765 bp

(containing 14 large contigs) indicating that our raw assembly was

highly continuous and that might be sequence of E. coli large

plasmids. Primer pairs were designed to amplify the gaps between

contigs. The PCR products were directly sequenced using a

Sanger sequencer ABI 3730. For the shotgun runs, one run

generated 132,755 reads (,53 Mb) and the other generated

108,804 reads (,47 Mb). The average read length of both

shotgun runs was approximately 400 bp. The paired-end run

generated 90,792 reads (,26 Mb) with an average read length of

approximately 300 bp. Over 99% of the total reads were

assembled, resulting in approximately 23-fold coverage of the

genome of APEC strain IMT5155.

The complete genome of APEC strain IMT5155 comprises

5,126,057 bp, existing as a circular chromosome of 4,929,051 bp

and two plasmids of 194,170 bp and 2,836 bp. Glimmer 3.02

annotated 4,804 CDSs covering 87.87% of IMT5155 chromo-

some. In addition, 27 pseudogenes and 30 small CDSs in

intergenic regions were identified (File C in File S3). p1ColV5155

contained 270 Glimmer-predicted CDSs (File D in File S3), and 6

CDSs were identified in p25155. Moreover, 88 tRNA genes, 19

rRNA genes, and 1 tmRNA gene were identified in the IMT5155

chromosome (File C in File S3). The GC content of the IMT5155

chromosome is approximately 50.65%, which is similar to other

reported E. coli genomes. By contrast, the two plasmids have

GC% contents of 49.84% (p1ColV5155) and 42.21% (p25155). The

large plasmid, p1ColV5155, was identified as a ColV plasmid,

which was widespread in ExPEC pathotypes, particularly in APEC

pathotype[47,48]. Table A in File S2 summarizes the general

genomic features of IMT5155 genome. Among 5,144 Glimmer-

annotated CDSs found in IMT5155 genome, 5,053 (,98.2%)

could be matched to genes in the NCBI nr database (December,

2013).

Whole-genome phylogenetic analysis of IMT5155
compared with other E. coli pathotypes

Whole-genome-derived phylogeny of common genomes can

accurately illustrate evolutionary relationships among different

commensal and pathogenic E. coli variants [49]. The genomes of

IMT5155 and another 46 E. coli strains were selected for mapping

the whole-genome evolutionary phylogeny, ranging from a

commensal K12 strain, through intestinal pathogenic strains, to

the highlighted extraintestinal pathogenic strains (Figure 1).

MrBayes was used to construct a BMCMC phylogenetic tree to

define the evolutionary phylogeny of 47 whole genome sequenced

E. coli strains, based on E. coli common genes. The common

genes identified from IMT5155 and the others 46 E. coli genomes

comprised 1,782 genes and covered approximately 1.61 Mb. The

result of phylogeny showed that 47 E. coli strains could be clearly

divided into six monophyletic groups, which was similar to the

whole-genome-based phylogeny by both Rasko and McNally et al.

[26,50] (Figure 1). In the phylogenetic tree, APEC strains

IMT5155 and APEC O1 were located in B2 ExPEC cluster

(Figure 1), and an APEC O78 strain x7122 was located in B1

clade (Figure 1). The phylogenomic tree showed that ST complex

95 APEC dominant O1:K1 and O2:K1 serotypes strains (APEC

O1 and IMT5155) have the closest evolutionary relationships with

human ExPEC dominant O18:K1 (ST95 complex) strains (UTI89

and IHE3034).

Identification of virulence determinants and genomic
islands in the IMT5155 genome

Many virulence-associated factors were identified in IMT5155

genome (Table B in File S2). Adhesins, invasins, and iron uptake

systems were critical for APEC/ExPEC pathogenesis, which

typically promote motility, achieve the capability of adhesion to

and invasion of host tissues, and conduct iron uptake for survival

[51–53]. The predicted adhesins of IMT5155 genome were listed

in Table B in File S2. Six different chaperone-usher adhesion

determinants were identified at IMT5155 genome, including fim,

yqi, yad, auf, yfc, and fml operons. APEC strains shared common

invasion genes with NMEC strains isolated from patients with

neonatal meningitis [28,51]. Several microbial invasion determi-

nants, including Ibe proteins, yijP, aslA, K1 capsule, and Hcp
family proteins (Table B in File S2) which contribute to invasion of

brain microvascular endothelial cells (BMECs), were identified at

both APEC and NMEC pathotypes [46,54,55]. IMT5155

possessed ferrous iron transporters FeoABC and SitABCD (Table

B in File S2). Unlike widespread siderophore enterobactin,

IMT5155 contained three ExPEC specific pathogen-related

siderophores for salmochelin, aerobactin, and yersiniabactin,

which took important roles in APEC virulence [52,56] (Table B

in File S2).

The distinct genomic islands (GIs) of pathogens that encode

various virulence factors are called pathogenicity islands (PAIs),

which have a significant difference in GC content compared with

the core genome, and some PAIs are usually integrated into tRNA

genes [57]. In this study, 20 GIs, ranging from 4 to 96-kb, were

annotated on the IMT5155 chromosome via PAIDB and

IslandViewer (Table C in File S2). 14 GIs contained several

potential virulence factors, as predicted by PAIDB forecast and

NCBI BLAST analysis, and these islands could be considered as

confirmed or presumed PAIs. Moreover, 5 prophage islands (GI-5,

-6, -13, -18, and -19) were identified at IMT5155 chromosome.

Among the five prophages, it seemed that GI-13 was a P4 family

phage and GI-18 was a P2 family member. The coexistence of

these two phages (a satellite and helper phage pair) was quite

reasonable [58]. It was also likely that the GI-18 phage could

produce two types of tail fibers by DNA inversion like phage Mu

and several other phages [59,60]. The detailed and precise

information for each GI had been elucidated and listed at Table C

in File S2. We then focused on a novel APEC O2 PAI (GI-12) and

two GIs (GI-8 and GI-22) coding Type VI secretion systems.

A novel APEC O2 PAI (GI-12), termed PAI I5155, was identified

from the IMT5155 chromosome, which inserted between the

cadC and yidC genes of E. coli core genome, was adjacent to

tRNA-Phe (Figure 2 and Table C in File S2). The total GC

content of this island was 48.76%, below to the average GC

content(50.65%)of IMT5155 chromosome. The size of PAI I5155

was approximately 94 kb, composed 105 ORFs. Proteins encoded

by ORFs of PAI I5155 were shown in Figure 2 and Table C in File

S2. PAI I5155 was absent in APEC O1 and other ExPEC genomes

in this study, and only partial CDSs including several virulence/

fitness factors (aatA, ireA, fecIRABCDE, and pgtABCP) were

identified in pathogenicity islands of other E. coli pathotypes. For

virulence factors encoded in PAI I5155, AatA of APEC auto-

transporter adhesin, IreA of iron-regulated virulence factor have
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been confirmed that they were involved in the pathogenicity of

APEC/ExPEC [33,61,62], and other putative virulence genes need

to be further identified (Figure 2 and Table C in File S2). Unlike

other ExPEC, IMT5155 contained the ferric dicitrate transport

system, which was previously reported to maintain E. coli growth

under iron-limited circumstances and widespread among E. coli K-

12, intestinal pathogenic E. coli, and Shigella strains [63]. For the

putative metabolism/biosynthesis-related systems, those annotated

genes of PAI I5155 were mainly distributed in ExPEC strains by

BLASTN analysis. A putative transketolase-like protein, which was

adjacent to a putative ascorbate-specific IIABC component of a PTS

system, was also annotated in PAI I5155. In addition, like typical

PAIs, PAI I5155 contained many mobility elements, including four

integrases and multiple transposons, suggesting that horizontal gene

transfer and genomic recombination were possibly involved in the

evolution of PAI I5155 (Figure 2 and Table C in File S2). We

identified a PAI I5155 analogue located in the chromosome of APEC

strain DE205B (O2:K1), which was isolated in China (unpublished

data) [45]. Therefore, PAI I5155 could be considered as a novel

arrangement of these virulence factors and metabolism/biosynthesis-

related systems. This island currently was only identified in APEC

serotype O2 strains. Furthermore, roles of the putative virulence

factors and metabolism/biosynthesis-related systems in pathogenic-

ity and fitness of bacterial demands pending further research.

Type VI secretion systems (T6SSs) are distributed widely in

many Gram-negative pathogenic bacteria [64]. IMT5155 carried

two putative type VI secretion systems, which were located in GI-7

(32.2 kb) and GI-16 (28.2 kb) (Table C in File S2). GI-7, which

was inserted between the mltA and serA-1 genes of B2 ExPEC core

genome, was a region (GC content: 52.81%) adjacent to the

tRNA-Met. GI-16 (GC content: 51.95%) located directly down-

stream of a tRNA-Asp, was inserted between the yafT and ramA-1
genes of E. coli core genome. GI-7 and GI-16 were respectively

corresponding to T6SS1 and T6SS2, both of which have been

recently described by Ma et al. [65]. The genes encoding secretion

assembly components, including conserved core components of

T6SS and additional unknown proteins [65], were located in GI-7

and GI-16 (Figure A in File S1). The typical T6SS1 (GI-7) was

widely prevalent among the B2 and D ExPEC strains, and was

elaborated to take roles in pathogenesis of APEC [28,66].

However, it was reported that the T6SS2 was mainly encoded

in virulent isolated of B2 ExPEC and might be a potential marker

for B2 ExPEC, but not associated with ExPEC virulence [28,65].

In order to identify whether T6SS2 can act as a potential marker

for ExPEC dominant serotypes (O1, O2, and O18) strains, we

detected almost all of the reported ExPEC O1:K1, O2:K1 and

O18:K1 strains (genome sequences available online) and APEC

isolates in our laboratory as previously described by Ma et al. [65]

(Table D in File S2). We speculated that T6SS2 might be

associated with ST95 ExPEC (serotypes O1, O2 and O18) strains,

and those B2 phylogroup ExPEC (O1, O2, and O18) strains

almost simultaneously contained two T6SSs (T6SS1 and T6SS2)

(Table D in File S2).

Comparative genomic analysis of IMT5155 with other
E. coli pathotypes

Comparative genomic analysis was performed using one by one

alignment between IMT5155 genome and other 16 representative

E. coli strains based on their evolutionary relationships and

phenotypes. The general comparison of IMT5155 genome

content with 16 E. coli strains was shown in Table A in File S2.

The 16 representative strains encompassed typical commensal E.
coli, highly pathogenic diarrhoeagenic E. coli, and extraintestinal

E. coli strains. Four of these 16 E. coli strains were used as control

references for comparative genomic analysis, including the

commensal strains (MG1655 and SE15), EHEC strain O157

Sakai, and EPEC strain RM12579. IMT5155 shared different

numbers of common chromosomal genes with these strains (Table

E in File S2). The comparative chromosomal atlas of IMT5155

with those E. coli genomes is shown in Figure 3. The results

showed that significant differences in genome content mainly focus

on IMT5155 GIs regions (Figure 3). The distribution of IMT5155

GIs among these strains was shown in Table C in File S2. The

commensal E. coli genomes were usually smaller than E. coli
pathotypes, and harbored fewer genes, especially accessory genes

i.e., genomic islands by genomic recombination than E. coli
pathotypes [19,49]. As described above, MG1655 harbored

merely IMT5155 GIs homology loci (Figure 3 and Table C in

File S2). Comparison between B2 phylogroup SE15 and IMT5155

reflected a similar result that only 4 IMT5155 GIs were present in

SE15. The EHEC O157:H7 pathotype is a typical highly

pathogenic diarrhoeagenic E. coli and highlighted the genomic

plasticity for lateral gene transfer. EPEC strain RM12579

(O55:H7) is a precursor to O157:H7 pathotype [67,68]. Both E

phylogroup Sakai and RM12579 harbored merely IMT5155 GIs

homology loci (Figure 3 and Table C in File S2), and Sakai shared

the least numbers of chromosomal common genes with IMT5155

(Table E in File S2). The typical EPEC strain E2348/69 (serotype

O127:H6) shares close evolutionary relationship with B2 ExPEC

pathotypes, but has no common GIs with IMT5155. Two AIEC

strains (UM146 and NRG857c) shared relatively largest numbers

of common genes with IMT5155. UM146 and NRG857c had12

and 9 common GIs with IMT5155, respectively.

For 9 ExPEC strains in the comparative genomic analysis,

APEC O1, IHE3034, and UTI89 exhibited closest phylogenetic

relationship with IMT5155 (Figure 1). CFT073, ABU83972 and

NA114 were in different subclades of phylogenetic tree relative to

IMT5155, respectively (Figure 1). Our phylogenetic tree and

previous studies revealed APEC ST23 serotype O78 strain x7122

arose from distinct lineages with APEC O1 and IMT5155 [12]. In

addition, CE10 and UMN026 belong to phylogroup D. The

comparative genomic analysis showed that IMT5155 GIs,

excepting for PAI I5155 and several prophage GIs, were highly

conserved in APEC O1, IHE3034, and UTI89 (Figure 3 and

Table C in File S2). Furthermore, IMT5155 shared the highest

number of common chromosomal genes with IHE3034 (3,948;

83.0% of the total annotated CDSs in IHE3034 genome) (Table E

in File S2). In contract, IMT5155 GIs were not widespread among

CFT073, ABU83972, NA114, CE10, UMN026, and x7122

(Table C in File S2). Moreover, 16 of the 20 genomic islands of

IMT5155 were absent or poorly conserved in x7122, and this

result further reinforced the fact that ST23 APEC O78 strains

lacked of conservation of virulence-associated genomic islands

with ST95 APEC serotypes O1 and O2 strains (Figure 3 and

Table C in File S2). Interestingly, the results showed that prophage

GIs in IMT5155 exhibited partial or no homology among these

Figure 1. Phylogenomic tree (1,782 concatenated core genes, 1.61 Mb) of 47 E. coli strains. All MrBayes with the GTR+G+I substitution
model (BMCMC) was used for the reconstruction of the phylogenomic tree. The chain length was set to 10,000,000 (1 sample/1000 generations). 47 E.
coli strains clearly divided into monophyletically phylogroups (A, B1, B2, D, and E), and ST complex 95 strains were highlighted in phylogenomic tree.
47 E. coli genomes data was listed in File A in File S3.
doi:10.1371/journal.pone.0112048.g001
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ExPEC strains. These results showed that genomes of APEC O1

and IMT5155 shared significant genetic overlap/similarities with

human ExPEC O18 strains UTI89 and IHE3034. Moreover,

those GIs of IMT5155 that were widespread among APEC O1,

IHE3034, and UTI89 might be involved in or contribute to the

pathogenicity and niche adaptation of ExPEC O1/O2/O18

strains (phylogroup B2; ST complex 95).

Sequence analysis and characterization of IMT5155 ColV
plasmid p1ColV5155

(i) Analysis and characterization of the structure of

p1ColV5155. The IMT5155 strain harbored a 194-kb ColV

plasmid, termed p1ColV5155, which have been described else-

where [69]. p1ColV5155, which was depicted in a circular map

(Figure 4), comprised 214 CDSs, encoding virulence-related

proteins, plasmid conjugal transfer proteins, mobile genetic

elements, and hypothetical proteins. The number and percentage

of common genes of p1ColV5155 and the other E. coli pathotypes’

plasmids were listed in Table F in File S2. p1ColV5155 shared

more common genes with pAPEC-O2-ColV and pAPEC-O1-

ColBM than the other large plasmids in other E. coli pathotypes

(Table F in File S2). In an effort to better define p1ColV5155

backbone, classical circular genetic map was applied for compar-

ative CDSs analysis of the p1ColV5155 with five other large

plasmids (pAPEC-O2-ColV, pAPEC-O1-ColBM, pUTI89,

pMAR2, and pO83-CoRR), three (pUTI89, pMAR2, and

pO83-CoRR) of which acted as references for homology analysis

(Figure 4). Plasmids pUTI89, pMAR2, and pO83-CoRR were

respectively present in UTI89, E2348/69 and NRG 857C, which

shared close evolutionary relationships with IMT5155 in the

preceding section. In addition, synteny analysis between CDSs

inp1ColV5155and the above five plasmids were also performed

(Figure B in File S1). For the Tra genes region, we identified the

detailed locations of p1ColV5155 homologous genes among those

five plasmids. The common genes of p1ColV5155 with pAPEC-

O2-ColV and pAPEC-O1-ColBM were mainly concentrated in

virulence and plasmid conjugal transfer regions. The conjugative

transfer system regions of pUTI89 and pMAR2 also shared high

identity with that regions of p1ColV5155. However, the common

Figure 2. Chimeric feature and genetic context of PAI I5155 (GI-12). PAI I5155 was inserted between the cadC and yidC genes of E. coli core
genome. Proteins encoded by the ORFs of PAI I5155 represented by arrows, and the direction of the arrows indicated the direction of transcription.
The color keys for functions of these proteins were shown at the bottom.
doi:10.1371/journal.pone.0112048.g002
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genes between pO83-CoRR and p1ColV5155 were mainly located

in the virulence region (Figure 4).

(ii)Virulence-associated genes of p1ColV5155. ColV plas-

mids are generally present in ExPEC strains and contain a series of

virulence genes [70]. Several genes of ColV plasmids, identified as

being involved in APEC virulence and defined the APEC

pathotype [47,48,71,72], were found at two virulence regikbons

of p1ColV5155. The first virulence region with the size of 62.1 kb

was from iroBCDEN of the salmochelin cluster to iucABCD and

iutA of the aerobactin cluster (Figure 4). The second region was a

24.3-kb virulence gene region from cvaA and cvaB of the ColV

operon to eitABCD of a putative iron transport system (Figure 4).

In particular, the first virulence region of p1ColV5155 was nearly

identical to the conserved portion of pAPEC-O2-ColV and

pAPEC-O1-ColBM [47,48]. The second virulence region of

p1ColV5155 was homologous to the variable portion of pAPEC-

O2-ColV and pAPEC-O1-ColBM, including cvaAB, tsh, and

eitABCD [47,48] (Figure 4). However, the virulence genes’ locus

in p1ColV5155 variable portion was completely inverted to that of

pAPEC-O2-ColV (Figure 4 and Figure B in File S1). Further

analysis of variable portion revealed that p1ColV5155 contained

intact cvaA and cvaB genes for ColV export, but lacked the cvaC
gene for ColV synthesis and the cvi gene for ColV immunity

(Figure 4). Obviously, p1ColV5155 neither contained ColB and

ColM operons, which were the namesake traits of ColBM

plasmids [48] (Figure 4). Therefore, this plasmid named as ColBM

plasmid can be excluded, due to the namesake traits of ColBM

plasmids. Even though without encoding cvaC and cvi,
p1ColV5155 was preferred to be classified as a ColV plasmid,

which might lose the intact ColV operon during p1ColV5155

evolution. One speculation is that p1ColV5155 may be a novel type

of ColV plasmid with rearrangements during its evolution. The

pathogenic role of the two virulence regions of p1ColV5155 might

be correspondent to pVM01 of APEC strain E3, which was highly

similar to pAPEC-O2-ColV and pAPEC-O1–ColBM [47,48,72].

The conserved section of the pVM01 virulence region was clearly

shown to be associated with the virulence of APEC strains.

However, the variable sections of this plasmid were not directly

Figure 3. Comparative ORF analysis between IMT5155 and other E. coli strains. From outside to inside, the circles represent that: a)
coordinate of IMT5155 genome; b) IMT5155 genomic island regions (red); c) IMT5155 (pink); d) APEC O1, IHE304, and UTI189 (blue); e) CFT073, ABU
83972 and NA114 (green); f) x7122 (olive); g) UM146 and NRG857c (orange); h) SE15 (magenta); i) E2348/69 (cyan); j) CE10 and UMN026 (skyblue); k)
O157 Sakai and O55:H7 RM12579 (purple); l) MG1655 (yellow); GC% of IMT5155 (calculated by 500 bp sliding window).
doi:10.1371/journal.pone.0112048.g003
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associated with APEC virulence [72]. We speculated that the

conserved section of p1ColV5155 virulence region might be

involved in virulence of IMT5155.

(iii)Replication and transfer regions of p1ColV5155. Two

replication regions were found in the chromosome of p1ColV5155:

RepFIIA and RepFIB replicons (Figure 4). The first is a 33.4 kp

region encompassing mostly predicted conjugal transfer genes of

p1ColV5155, and the second is a 7.8 kp region contained another

three conjugal transfer genes adjoining RepFIIA (Figure 4). The

plasmid transfer region of p1ColV5155 was slightly different from

that of pAPEC-O2-ColV, which contained a complete plasmid

conjugal transfer region [47].

The distribution of 10 sequenced B2 ExPEC pan-genome
virulence genes among 46 sequenced E. coli strains

E. coli is highly evolved and adapted to the different specific

environment. Recent findings show that the frequency of core

genome recombination appears a striking decrease from intestinal

Figure 4. Comparative ORF analysis between p1ColV5155 and other plasmids. From inside to outside, the circles represent that: a) GC%
(calculated by 500 bp sliding window); b) common ORFs in pUTI89 (brown); c) common ORFs in pO83_CORR (green); d) common ORFs in pMAR2
(yellow); e) common ORFs in pAPEC-O2-ColV (grey); f) common ORFs in pAPEC-O1-ColBM (purple); g) p1ColV5155 (pink); i) highlighted functional ORFs
in the negative strand of p1ColV5155; j) highlighted functional ORFs in the positive strand of p1ColV5155 (orange: RepF IIA, RepF IB, repB; blue: Transfer
regions; red: virulence related genes; green: cvaAB locus).
doi:10.1371/journal.pone.0112048.g004
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commensal, through intestinal pathogenic strains, to phylogroup

B2 ExPEC strains. Phylogroup B2 ExPEC strains are pathogenic

variants, which show highly environmental adaptability with

recombination being restricted [26,73]. Comparative genomic

analysis of IMT5155 with other E. coli pathotypes showed that

APEC dominant O1 and O2 serotypes strains (phylogroup B2; ST

complex 95) shared significant genetic overlap/similarities with

human ExPEC dominant O18 strains (IHE3034, and UTI89), and

could be distinguished from APEC O78 strain x7122, commensal

E. coli, and IPEC. Accordingly, B2 ExPEC strains should harbor

typical ExPEC-specific virulence factors, which could endue

ExPEC a selective advantage to adapt/colonize to extraintestinal

specific niches during infection relative to intestinal pathogenic

strains.

In order to understand the relationship between virulence

factors and genetic landscape of B2 ExPEC pathotypes, the

distribution of 10 sequenced B2 ExPEC pan-genome virulence

genes among 46 sequenced E. coli strains was conducted to

examine whether B2 ExPEC strains harbored typical ExPEC-

specific virulence factors (i.e., determining whether there were

significant differences for the distribution of B2 ExPEC virulence

genes among different E. coli pathotypes) [51]. The pan-genome

of sequenced 10 B2 ExPEC strains contained 10,399 orhthologous

gene families. The VFDB database predicted 287 virulence genes

among these orhthologous genes. 73 virulence-associated genes

were manually confirmed among these 287 virulence genes and

classified as six categories: adhesins, invasins, toxins, iron

acquisition/transport systems, polysialic acid synthesis, and other

virulence genes. The details of 73 virulence genes of 10 sequenced

B2 ExPEC pan-genome and their distributions among 46

sequenced strains were shown in Figure 5 and Table B in File

S2. The distribution diagram showed that 10 sequenced B2

ExPEC pan-genome virulence genes were significant occurring in

extraintestinal pathogenic strains compared with commensal and

diarrhoeagenic E. coli, and several virulence genes were only

present among ExPEC strains, such as fimbrial adhesins (yqi, auf,
and papG), invasins (ibeA and Hcp), almost of toxins, and others

(Figure 5 and Table B in File S2). The distribution of 10

sequenced B2 ExPEC pan-genome virulence factors provided a

meaningful information for ExPEC-specific virulence factors,

including several adhesins, invasions, toxins, iron acquisition

systems, and others (Figure 5 and Table B in File S2), which

were conserved in ExPEC pathotypes and contributed to ExPEC

to adapte/colonize extraintestinal specific niches during infection.

Moreover, these specific virulence factors might also provide

valuable targets for the vaccines design.

Certainly, there may be strain-to-strain variation of the

distribution of virulence genes in any specific strains (Figure 5).

For example, compared with other B2 ExPEC strains, IMT5155

does not have F1C, P, and S fimbariaes, which are involved in

UPEC pathogenesis [53]. We wondered whether there were

specific genes or virulence factors to define the APEC pathotype.

For 10,399 orhthologous genes of 10 sequenced ExPEC pan-

genome, 239 genes were identified in IMT5155 genome relative to

the other 9 B2 ExPEC strains (Table G in File S2), and 202 genes

were present only in APEC O1, and 24 genes were only common

present in APEC strains (IMT5155 and APEC O1) compared with

the other 8 B2 ExPEC strains (data not shown). The hypothetical

genes and prophage genes were predominant among those specific

genes for each APEC strains, and only five virulence genes (aatA,

eitA, eitB, eitC, and eitD) were identified among 24 common

genes. Moreover, 600 orhthologous genes were identify as NMEC-

specific genes. Similarly, the majority of NMEC-specific genes

were prophage genes and hypothetical genes, and no virulence

factors were only present in NMEC (data not shown). Even though

3462 UPEC-specific genes among 10,399 orhthologous genes of

10 sequenced ExPEC pan-genome were identified in six UPEC

strains, almost all virulence genes identified in UPEC strains were

present among some APEC and UPEC strains. Therefore, there

may be slight different distributions of virulence genes for an

individual ExPEC strain, but no specific type of virulence genes to

define B2 ExPEC subpathotype. The distribution analysis of 10

sequenced B2 ExPEC pan-genome virulence factors were further

considered that phylogroup B2 APEC might not be differentiated

from group B2 human ExPEC pathotypes (NMEC/UPEC),

because two APEC O1 and O2 strains shared ExPEC-specific

virulence factors with human ExPEC pathotypes. Furthermore,

these results also support the previous findings that phylogroup B2

APEC isolates share remarkable similarities with human ExPEC

pathotypes, and might pose a potential zoonosis threat

[5,9,10,27,74].

Virulence assessment of APEC O1:K1, O2:K1 and O78
serotypes isolates

The pathogenicity and zoonotic potential of APEC O1:K1 and

O2:K1 serotypes isolates, including IMT5155 and several strains

isolated in China, were assessed with four animal models

[5,28,32,45,46]. In addition, one ST23 APEC O78 strain

CVCC1553 and an APEC non-dominant serotype strain Jnd2

(B2; ST95; O39:K1) were also included in the virulence

assessment. The strains APEC O1, NMEC RS218, and UPEC

CFT073 were used as the positive control, while E. coli K-12

MG1655 and CVCC1531 were used as negative control

[5,28,32,45,46]. The detail information of these 13 selected strains

was shown in Table H in File S2.

The virulence of the selected APEC O1:K1, O2:K1, and O78

strains for natural reservoir were assessed by chicken embryo

lethality assay (ELA) and chick colisepticemia model for avian

colisepticemia. In ELA assay, the mortalities for un-inoculated,

PBS-inoculated, Jnd2, and CVCC1531 inoculated embryos were

not obviously different from the negative control MG1655, while

seven APEC O1:K1, O2:K1, and O78 strains were significantly

different from the negative control MG1655 (P,0.05) (Table 1).

No significant differences existed among the seven APEC O1:K1,

O2:K1, and O78 strains compared to the ELA-positive control

strain APEC O1 (high pathogenicity) (Table 1). For chick

colisepticemia assay, the mortalities, rates of reisolation from the

chick organs, and lesion scores were evaluated. Similarly to ELA

results, seven APEC O1:K1, O2:K1, and O78 strains were

significantly different from the negative control MG1655 (P,0.05)

(Table 2) (the original data shown in File E in File S3), while no

significant differences were observed among the seven APEC

O1:K1, O2:K1, and O78 strains compared to the high-

pathogenicity control strain APEC O1 (Table 2). Therefore,

based on the results of two models for avian colisepticemia, seven

selected APEC O1:K1, O2:K1, and O78 strains was categorized

as being highly virulent for natural reservoir. Recent reports show

ExPEC isolates of same clonal group could be different for

virulence genotypes, because acquisition of accessory virulence

traits might be distinct evolutionary paths for strain-to-strain

variation [8,9,32]. The virulence genotypes among APEC O1:K1

and O2:K1 strains showed slight differences (Table H in File S2),

although the virulence for avian colisepticemia were similar (P$

0.05). Four APEC O2:K1 strains showed almost similar virulence

genotypes, and iucD and iroN were absent in Fy26 and DE205B

(Table H in File S2). For the virulence genotypes among three

APEC O1:K1 strains, the two O1:K1 isolates (Jnd25 and

CVCC249) in China did not harbor ibeA (GimA island) and
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aatA genes (APEC autotransporter adhesion) compared to APEC

O1. The results of ELA assay and chick colisepticemia model

showed that Jnd2 was a low-pathogenicity isolate compared to

APEC O1 (P,0.05), even though previous studies claimed that

ST95 B2 strains exhibited enhanced ExPEC virulence [8,75].

There were significant differences between Jnd2 and APEC

O1:K1/O2:K1 isolates that Jnd2 genomic did not harbor the

typical T6SS1 (GI-7 for IMT5155), vat, and ireA, which are

specifically required for survival and virulence during APEC

infection [28,62,66,76] (Table H in File S2). In short, combined

pathogenicity tests with comparative genomic analysis, we

confirmed that APEC O1:K1 and O2:K1 strains, including

IMT5155 and several strains isolated in China, are extraintestinal

pathogenic variants for high pathogenicity during infecting avian

hosts, which is consistent with previous studies [5,24,26–29,32].

Previous reports put forward the hypothesis that APEC strains

have zoonotic potential [6,8,9], and it is confirmed that a subset of

APEC ST95 serotype O18 isolates could cause systemic disease in

chickens and murine models of human ExPEC-caused septicemia

and meningitis [32]. Our comparative genomic analysis further

showed that IMT5155 shared significant genetic overlap/similar-

ities with APEC O1 and human ExPEC O18 strains (IHE3034,

and UTI89), and O1:K1/O2:K1 strains are common among

APEC isolates but which also found among human NMEC and

septicemic isolates [6,9]. Certainly, APEC O1 is unable to cause

bacteremia or meningitis in the neonatal rat model and keep host

specificity by unknown mechanisms [28]. Here, we assessed the

zoonotic potential of IMT5155 and the other O1:K1/O2:K1

isolates through two murine models of human ExPEC-caused

septicemia and meningitis. For mouse sepsis assay, no mortalities

were observed among mouse intraperitoneally inoculated (ap-

proximately 107 CFU) with Jnd2, CVCC1531, APEC O1,

CFT073, and MG1655 (Table 3) (the original data shown in File

F in File S3). The data also showed that six APEC O1:K1/O2:K1

isolates (Jnd25, CVCC249, IMT5155, Fy26, DE164, and

DE205B) and O78 strain CVCC1553 were not significantly

different from the positive ExPEC reference strain RS218 (rate of

mortality:100%)(P$0.05) (Table 3), suggesting that those strains

could have its ability to cause sepsis in the mouse through

intraperitoneal inoculation. For rat neonatal meningitis assay,

CVCC1531 and APEC strain jnd2 were unable to induce

bacteremia in blood and CSF in neonatal rats (Table 4) (the

original data shown in File G in File S3). The number of bacteria

reisolated from the blood and CSF of rats infected with seven

strains (Jnd25, CVCC249, IMT5155, Fy26, DE164, DE205B, and

CVCC1553) were significantly higher than that of negative control

(P,0.05) (Table 4). Moreover, IMT515 and five O1:K1/O2:K1

isolates in China showed comparable septicemia and meningitis in

neonatal rats, since no significant differences in the blood and CSF

counts were observed (P$0.05). Our data demonstrated that

IMT515 and five O1:K1/O2:K1 isolates were close to the high-

level bacteremia in blood and CSF of RS218-inoculated neonatal

rats, suggesting that these APEC O1:K1/O2:K1 isolates were able

to cause septicemia and meningitis in neonatal rats. Like the subset

of APEC ST95 serotype O18 isolates, our data confirmed that

APEC O1:K1 and O2:K1 strains had zoonotic potential.

A subset of APEC ST23 serotype O78 isolates could be

acknowledged as APEC-specific pathogens, because APEC O78

strains were clearly differentiated from serotypes O1, O2, and

O18 by MLST, phylogroup, and virulence genotypes [9]. The

Figure 5. The distribution diagram of 10 sequenced B2 ExPEC pan-genome virulence genes among 46 E. coli strains. The uppermost
row showed six classified clusters: 1, adhesins, green; 2, invasins, magenta; 3, iron acquisition/transport systems, blue; 4, polysialic acid synthesis,
aquamarine; 5, toxins, purple; 6, others, darksalmon. Right side of the vertical line showed E. coli strains that were consistent with phylogenetic tree
(Figure 1). The red and black body showed distribution of virulence genes among these strains. A red line meant that the virulence gene of interest
was present at a particular strain, while a black line implied the gene was absent.
doi:10.1371/journal.pone.0112048.g005
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APEC O78 strain x7122 was used as a classic infection strain of

APEC pathogenicity to identify O78-specific virulence genotype

[12]. Comparative genomic analysis of IMT5155 with x7122 was

consistent with the description by Dziva et al. that x7122 were

distinct from APEC O1 and IMT5155, and close to human ST23

serotype O78 human ETEC strain [12]. We compared the

virulence and zoonotic potential of APEC O78 strain CVCC1553

with ST23 intestinal pathogenic strain CVCC1531. Like APEC

O1:K1 and O2:K1 isolates, CVCC1553 was categorized as being

highly virulent for natural reservoir, and CVCC1531 was avirulent

in ELA and chick colisepticemia model (Table 1 and Table 2).

Meanwhile, both CVCC1553 and x7122 caused low pathogenic-

ity in the neonatal meningitis mode compared to RS218 and

APEC O1:K1/O2:K1 isolates (Table 4) [32]. As discussed by

Dziva et al., x7122 acquired a different virulence gene repertoire

via variation in the accessory genome enabling success in avian

species, including virulence-associated large plasmids [12]. The

virulence genotype of CVCC1553 showed that it also contained

the conserved regions of large virulence plasmids (Table H in File

S2). Our investigation further confirmed that APEC O78 strains

Table 1. Mortality rates among chick embryos infected with APEC strains.

Strain Mortality rated P value vsa:

MG1655 APEC O1

Uninoculated 0/10 1.0 ,0.001

PBS 1/10 0.416 ,0.001

MG1655b 3/20 ,0.001

IMT5155 17/20 ,0.001 0.306

Fy26 19/20 ,0.001 0.179

DE164 17/20 ,0.001 0.306

DE205B 18/20 ,0.001 0.271

Jnd25 17/20 ,0.001 0.306

CVCC249 16/20 ,0.001 0.276

Jnd2 6/20 0.162 ,0.001

CVCC1553 16/20 ,0.001 0.276

CVCC1531 4/20 0.296 ,0.001

APEC O1c 25/30 ,0.001

aP value measured by Fisher’s exact test.
bNegative control for the ELA.
cPositive control for the ELA.
dData mean the number of dead embryos/total number of embryos tested.
doi:10.1371/journal.pone.0112048.t001

Table 2. Lethality in 1-day-old chicks for intratracheal inoculation with APEC isolates.

strain Mortality ratecf Reisolation rate (air sacs)df Reisolation rate (blood) df Reisolation rate (brain) df Mean lesion scoree

PBS 0/10f 1/10f 0/10f 0/10f 0.1 f

MG1655a 0/10 2/10 0/10 0/10 0.2

IMT5155 6/10 10/10 8/10 8/10 2.3

Fy26 6/10 10/10 9/10 7/10 2.5

DE164 5/10 9/10 9/10 7/10 2.3

DE205B 7/10 10/10 9/10 9/10 2.5

Jnd25 7/10 10/10 10/10 8/10 2.5

CVCC249 6/10 9/10 9/10 7/10 2.3

Jnd2 1/10f 5/10 3/10 0/10 0.9

CVCC1553 8/10 10/10 10/10 4/10 2.5

CVCC1531 0/10f 3/10f 0/10f 0/10f 0.3

APEC O1b 6/10 9/10 8/10 6/10 2.3

aNegative control for chick colisepticemia model.
bPositive control for chick colisepticemia model.
cData mean the number of dead chicks/total number of chicks tested.
dData mean the number of chicks from which the APEC strain was reisolated/total number of chicks tested.
eMean of lesion scores (ranked from 0 to 3 due to occurrence of airsacculitis, pericarditis, and perihepatitis) for 10 chicks tested.
fValues are not significantly different (P$0.05 by Fisher’s exact test) with the negative control.
doi:10.1371/journal.pone.0112048.t002
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could act as avian host-specific extraintestinal pathogenic variant

of ST23 lineage to adapt/colonize to extraintestinal specific niches

and establish a specific infection by an intratracheal route in avian

host.

Conclusions

The study presented here enriches our knowledge of IMT5155

and complements the E. coli genome data of O2 serotype and

ST140 (ST complex 95). Our phylogeny analyses confirmed that

IMT5155 was closest evolutionary relationship with APEC O1

Table 3. Lethality of ICR mouse for intraperitoneal inoculation with APEC isolates and human ExPEC strains.

strain Mortality ratecf Reisolation rate (blood) df Reisolation rate (brain) df Mean lesion scoree

PBS 0/10f 0/10f 0/10f 1.0 f

MG1655a 0/10 0/10 0/10 1.0

IMT5155 10/10 10/10 10/10 5.0

Fy26 10/10 10/10 10/10 4.9

DE164 10/10 10/10 10/10 4.9

DE205B 10/10 10/10 10/10 5.0

Jnd25 9/10 9/10 9/10 4.7

CVCC249 10/10 10/10 10/10 4.9

Jnd2 0/10f 4/10 0/10f 1.1 f

CVCC1553 10/10 10/10 7/10 5

CVCC1531 0/10f 0/10f 0/10f 1.0 f

APEC O1 0/10f 7/10 0/10f 1.5 f

RS218b 10/10 10/10 10/10 4.9

CFT073 0/10f 8/10 0/10f 1.5 f

aNegative control for mouse sepsis model.
bPositive control for mouse sepsis model.
cData mean the number of dead mouse/total number of mouse tested.
dData mean the number of mouse from which the APEC/ExPEC strain was reisolated/total number of mouse tested.
eMean of lesion scores (1 = healthy, 2 = minimally ill, 3 = moderately ill, 4 = severely ill, 5 = dead) for 10 mouse tested.
fValues are not significantly different (P$0.05 by Fisher’s exact test) with the negative control.
doi:10.1371/journal.pone.0112048.t003

Table 4. Pathogenicities of APEC isolates in the neonatal rat meningitis model.

Strain
Inoculum (log10

CFU per animal) Mortality rate c
Reisolation rate from
blood of survivors d

Mean log10 CFU
ml21 (blood) e

Reisolation rate from
CSF of survivors d

Mean log10 CFU
ml21 (CSF) e

PBS 0 0/12 f 0/12 f 0 0/12 0

MG1655 a 2.36 0/12 0/12 0 0/12 0

IMT5155 2.33 1/12 f 10/11 3.54 10/11 4.02

Fy26 2.34 0/12 f 12/12 3.57 10/12 4.10

DE164 2.31 0/12 f 12/12 3.41 11/12 3.95

DE205B 2.25 1/12 f 10/11 3.51 10/11 4.18

Jnd25 2.35 1/12 f 10/11 3.64 10/11 4.3

CVCC249 2.32 0/12 f 12/12 3.50 12/12 4.16

Jnd2 2.32 0/12 f 2/12 f 3.17 0/12 f 0

CVCC1553 f 2.34 0/12 f 7/12 2.85 7/12 3.51

CVCC1531 2.31 0/12 f 0/12 f 0 0/12 f 0

APEC O1 a 2.34 0/12 f 0/12 f 0 0/12 f 0

RS218 b 2.34 3/12 9/9 3.82 9/9 .4.57

aNegative control for the neonatal rat meningitis model.
bPositive control for the neonatal rat meningitis model.
cData mean the number of dead rats/total number of rats tested.
dData mean the number of rats from which the APEC/ExPEC strain was reisolated/total number of rat survivors.
eMean number of E. coli isolates recovered from the blood and CSF of the rat survivors.
fValues are not significantly different (P$0.05 by Fisher’s exact test) with the negative control.
doi:10.1371/journal.pone.0112048.t004
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serotype and human ExPEC O18 serotype strains (APEC O1,

IHE3034, and UTI89; ST complex 95), which all belonged to

phylogroup B2 and ST complex 95. Comparison of IMT5155

genome with other E. coli strains facilitated the identification of

APEC/ExPEC genetic characteristics. Our results of comparative

genomics showed that APEC dominant O1 and O2 serotypes

strains (APEC O1 and IMT5155) shared significant genetic

overlap/similarities with human ExPEC dominant O18 strains

(IHE3034, and UTI89). The unique PAI I5155 (GI-12) was

identified and conserved in APEC O2 isolates, and GI-7 and GI-

16 encoding two typical T6SSs might be useful markers for the

identification of ExPEC dominant serotypes (O1, O2, and O18)

strains. IMT5155 contained a ColV plasmid p1ColV5155, and

virulence genes in p1ColV5155 also defined the APEC pathotype.

The distribution of 10 sequenced B2 ExPEC pan-genome

virulence factors among 47 sequenced E. coli provided a

meaningful evidence for phylogroup B2 APEC/ExPEC-specific

virulence factors, including several adhesins, invasins, toxins, iron

acquisition systems, and others, which contributed to ExPEC to

adapte/colonize extraintestinal specific niches during infection.

The pathogenicity tests of IMT515 and other APEC O1:K1 and

O2:K1 serotypes isolates in China through four animal models

showed that they were high virulent for avian colisepticemia and

able to cause septicemia and meningitis in neonatal rats,

suggesting these APEC O1:K1 and O2:K1 isolates had zoonotic

potential. Our comparative genomics studies and the pathogenic-

ity tests will promote the investigation of APEC/ExPEC patho-

genesis and zoonotic potential of APEC, and pave the way to

development of strategies in their prevention and treatment.

Supporting Information

File S1 Figure A. Gene clusters of T6SS1 (GI-7) and T6SS2 (GI-

16) in IMT5155 chromosome. Genes encoding conserved domain

proteins were represented by the bule colors. And white arrows

indicate other unknown proteins, which were not identified as part

of the conserved core described by Ma et al. [65]. The flanking

core genes were indicated by the black arrows. A) IMT5155

T6SS1 (GI-7); B) IMT5155 T6SS2 (GI-16). Figure B. Synteny

analysis based on common ORFs between p1ColV5155 and 5

plasmids (pAPEC-O1-ColBM, pAPEC-O2-ColV, pMAR2, pO8

3_CORR, and pUTI89). Grey ribbons are common ORFs in

p1ColV5155 and pAPEC-O2-ColV; Pink ribbons are common

ORFs in p1ColV5155 and pAPEC-O1-ColBM; Yellow ribbons are

common ORFs in p1ColV5155 and pMAR2; Purple ribbons are

common ORFs in p1ColV5155 and PO83-CORR; Green ribbons

are common ORFs in p1ColV5155 and PUTI89. Red blocks are

repA genes; Purple blocks are repB genes; Blue blocks are Tra
genes.

(RAR)

File S2 Table A. General feature of IMT5155 genome and other

E. coli strains. Table B. The virulence factors in B2 ExPEC pan-

genome among 10 E. coli strains. Table C. The genomic islands of

IMT5155. Table D. The information of 15 ExPEC isolates for

simultaneous presence of T6SS1 and T6SS2. Table E. Common

genes shared with IMT5155 for 15 E. coli strains. Table F. The

number and percentage of common genes of other E. coli
pathotype’s plasmids shared with p1ColV5155. Table G. The

specific genes of IMT5155 relative to other 9 B2 ExPEC strains.

Table H. The detail information of the 13 selected strains for

pathogenicity testing.

(RAR)

File S3 File A. Detailed description for 47 E. coli genomes data.

File B. The scripts for comparative genomic analysis. File C.

Detailed description for annotated ORFs in the chromosome

sequence of IMT5155. File D. Detailed description for annotated

ORFs in p1ColV5155. File E. The original data for chick

colisepticemia assay. File F. The original data for mouse sepsis

assay. File G. The original data for rat neonatal meningitis assay.

(RAR)
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