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Abstract

Introduction: The last 12 years have seen remarkable progress in the isolation and characterization of at least five different
epitope classes of HIV-specific broadly neutralizing antibodies (bnAbs). Detailed analyses of these bnAb lineages, maturation
pathways and epitopes have created new opportunities for vaccine development. In addition, interest exists in passive admin-
istration of monoclonal antibodies as a viable option for HIV prevention.

Discussion: Recently, two antibody-mediated prevention (AMP) trials of a passively administered monoclonal antibody tar-
geting the HIV envelope CD4 binding site, called VRCO1, provided proof-of-concept that monoclonal antibody infusion could
offer protection against HIV acquisition. While the trials failed to show overall protection against HIV acquisition, sub-analyses
revealed that VRCO1 infusion provided a 75% prevention efficacy against HIV strains that were susceptible to the antibody.
The study also demonstrated that in vitro neutralizing activity, measured by the TZM-bl/pseudovirus assay, was able to predict
HIV prevention efficacy in humans. In addition, the AMP trials defined a threshold protective concentration, or neutralization
titer, for the VRCO1 class of bnAbs, explaining the observed low overall efficacy and serving as a benchmark for the clinical
testing of new bnAbs, bnAb cocktails and neutralizing antibody-inducing vaccines. Newer bnAbs that exhibit greater potency
and breadth of neutralization in vitro than VRCO1 are available for clinical testing. Combinations of best-in-class bnAbs with
complementary magnitude, breadth and extent of complete neutralization are predicted to far exceed the prevention efficacy
of VRCO1. Some engineered bi- and trispecific mAbs exhibit similar desirable neutralizing activity and afford advantages for
manufacturing and delivery. Modifications that prolong the serum half-life and improve genital tissue persistence offer addi-
tional advantages.

Conclusions: Iterative phase 1 trials are acquiring safety and pharmacokinetic data on dual and triple bnAbs and bi- and
trispecific antibodies in preparation for future AMP studies that seek to translate findings from the VRCO1 efficacy trials and

achieve acceptable levels of overall prevention efficacy.
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1 | INTRODUCTION

Despite tremendous effort for the past 30 years to develop
an effective HIV vaccine, the field remains challenged. The
HIV envelope protein (Env), found on the surface of viri-
ons and the major target of neutralizing antibodies, is highly
genetically diverse, covered by a glycan shield, and expressed
at a relatively low density [1]. Over the last decade, there has
been remarkable progress in the isolation and characterization
of several different classes of HIV-specific broadly neutraliz-
ing antibodies (bnAbs), defined by their ability to neutralize
multiple genetically distinct strains. There are essentially five
regions of Env that neutralizing antibodies bind: CD4 binding
site (CD4bs), variable loop 2 (V2)-apex, V3-glycan, glycopro-
tein (gp)41/gp120 interface, and membrane proximal external
region (MPER) [2-7]. Antibodies targeting all of these sites

have been identified, each analyzed for its breadth (number
of viral strains it can neutralize) and potency (concentration
required for neutralization).

The breadth/potency of these bnAbs fostered the idea of
passive administration of monoclonal antibodies (mAb) as an
option for HIV prevention, a technique used to prevent res-
piratory syncytial virus in high-risk infants and, most recently,
COVID-19 [8,2]. Advances in next-generation sequencing and
B-cell cloning have led to numerous potential bnAbs for effi-
cacy testing. The recently published antibody-mediated pre-
vention (AMP) trials jointly conducted by the HIV Vaccine
Trials Network (HVTN) and HIV Prevention Trials Network
(HPTN) demonstrated the feasibility of this approach [10].
This commentary focuses on recent results from the first effi-
cacy trials testing bnAbs for HIV prevention and provides a
roadmap to move the field forward.
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2 | DISCUSSION

2.1 | VRCO1 proof-of-concept AMP trials

VRCO1, an antibody isolated and characterized from an indi-
vidual with immunologically controlled HIV, targets the Env
CD4bs [11]. VRCO1 can neutralize a large percentage of
HIV reference strains in vitro using a pseudovirus neu-
tralization assay (see subsequent section) [12,13] and pro-
tect against infection in nonhuman primates (NHPs) [14-18].
Several concentrations of VRCO1, up to 40 mg/kg, deliv-
ered intravenously (IV) were safe and non-immunogenic in
HIV-uninfected adults and decreased plasma viral load peo-
ple living with HIV [19-21]. Recent analyses of participants
from a phase 1 trial (who received either 10 or 30 mg/kg
VRCO1) identified VRCO1 in genital tissue, and tissue explants
were protected from ex vivo HIV challenge [22]. As such, the
proof-of-concept phase 2b AMP studies were designed to test
whether VRCO1 could prevent HIV infection. AMP partici-
pants received either 10 mg/kg VRCO1, 30 mg/kg VRCO1 or
placebo IV every 8 weeks for a total of 10 infusions. These
studies were carried out in populations at high risk of acquir-
ing HIV: 2699 men and transgender women who have sex
with men in the Americas and Europe (HVTN 704/HPTN 085)
and 1924 heterosexual women in sub-Saharan Africa (HVTN
703/HPTN 081) [23,24]. The studies also aimed to establish
whether a pseudovirus neutralization assay using TZM-bl cells
was a reliable biomarker of HIV prevention and to identify a
threshold serum neutralization titer required for protection.

Analyses of the AMP trials indicated that while VRCO1
did not provide overall efficacy against HIV acquisition, pre-
specified analyses indicated a 75% prevention efficacy (PE)
against strains that were susceptible to VRCO1 [10]. This
PE was irrespective of gender, route of transmission, or viral
subtype, indicating the innate susceptibility/resistance of the
circulating strains to the antibody was the primary determi-
nant of efficacy. While viruses with this level of susceptibil-
ity accounted for only 30% of circulating strains at the trial
sites [10], the study indicated that bnAbs, when sufficiently
potent against infecting viruses, can prevent HIV. As such,
subsequent antibodies need to be broader and more potent
than VRCO1. Another hallmark finding from the AMP trials
was that the in vitro TZM-bl neutralization assay was predic-
tive of in vivo HIV sensitivity to antibody. This finding sets the
stage for testing new mAbs/mAb cocktails iteratively to down
select clinical trial contenders and allow accelerated develop-
ment of higher potency and more easily manufactured anti-
bodies.

2.2 | Evolution of HIV neutralization assays and
reference strains

Neutralization assays with Env-pseudotyped viruses and sta-
ble engineered target cells, together with well-characterized
reference strains, were transformative and immensely valu-
able in the discovery and in vitro characterization of bnAbs
leading up to the VRCO1 AMP trials. A plethora of assays
and virus strains used early in the pandemic (1984-2003)
produced conflicting results. Attempts to understand these
contradictory data pointed to differences in the cells used

for virus production and infection target, type of serologic
reagent employed (e.g. serum or mAb), and, perhaps most
importantly, viral strain used [25,26]. The gold standard assay
for many years utilized viruses grown and assayed in periph-
eral blood mononuclear cells with the assumption that this
format best mimicked natural infection; however, these assays
were highly variable, low throughput, labour intensive and
resisted intensive efforts to standardize. The pseudovirus
technology that emerged in 2003 [27,28] afforded superior
sensitivity, precision and high throughput capability. Moreover,
clonal Envs with distinct sequences enabled detailed func-
tional studies of neutralization epitopes and their escape path-
ways. A consensus in 2004 emphasized the value of the pseu-
dovirus technology and recommended that well-characterized
panels of Env-pseudotyped viruses be developed as standard
reference reagents [29]. Subsequently, the Env-pseudotyped
virus assay in TZM-bl cells (TZM-bl assay) [30] used in the
AMP trials was optimized, qualified, validated [31] and trans-
ferred to multiple laboratories around the world [32]. In addi-
tion, a formal proficiency testing program was implemented in
2009 to evaluate equivalency of TZM-bl assay performance
across multiple laboratories [33]. These efforts improved the
accuracy and comparability of results to enable aggregate
bnAb datasets to be evaluated with confidence.

Early HIV neutralization studies also suffered from a lack
of understanding of the virus. Although a deep appreciation
existed for Env sequence diversity, little knowledge was avail-
able on the molecular structure and conformational plastic-
ity of native Env trimers. Studies revealed that native-like
Env trimers spontaneously transition through open, closed
and intermediate conformations, with the open conforma-
tion exposing immunodominant epitopes to a greater extent
than when the trimer is in an intermediate or closed con-
formation [34-36]. These conformational states have pro-
found effects on the neutralization phenotype of the virus.
An open conformation explains why early studies with T-
cell line adapted strains grossly overestimated vaccine-elicited
responses [37-39]. Most circulating strains exhibit a more
closed trimer conformation that is not susceptible to the
bulk of easily induced Env-specific antibodies. To help dis-
tinguish these properties, a tiered categorization of HIV-1
isolates was developed based on their neutralization pheno-
type when assayed with polyclonal HIV-1 sera; from most
promiscuously neutralized (open trimer; tier 1; rarely in cir-
culation) to harder-to-neutralize (intermediate/closed trimer;
tiers 2 and 3; majority of circulating strains) [35,40].

Hundreds of reference Envs representing all major genetic
subtypes and circulating recombinant forms are available and
in wide use as pseudotyped viruses for neutralization assays
[41-46]. As new bnAbs were discovered and assayed against
large panels of reference strains, the magnitude and breadth
of bnAb activity was, and continues to be, compared and used
to prioritize candidates for clinical development. Testing com-
binations of bnAbs for possible synergy is also of interest.
One large study examined bnAbs targeting four different epi-
topes (CD4bs, V2-apex, V3-glycan and MPER) in all possi-
ble dual, triple and quadruple combinations against a panel of
125 Env-pseudotyped viruses and found the combined effects
were mostly additive, being explained by the complementary
neutralization profiles of the individual bnAbs [47]. Based on
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these additive effects, and using raw data from the study, a
Bliss—Hill model was developed that enabled the neutraliza-
tion magnitude and breadth of various bnAb combinations to
be predicted using single bnAb data [48]. Use of the Bliss—Hill
model accelerated the identification of optimal bnAb combi-
nations to explore for HIV prevention and treatment without
the need for time-consuming and labour-intensive experimen-
tal testing of all possible combinations against large panels of
viruses [48-50]. Viruses from infected placebo recipients in
the AMP trials, representing more contemporary genetic and
antigenic diversity, are additional useful reference reagents
for single and combination bnAb evaluation.

2.3 | Estimation of protective neutralization titers
for future bnAb trials

When the first-in-human VRCO1 trials were designed, VRCO1
neutralization, measured by the in vitro 50% inhibitory con-
centration (ICy), surpassed 90% of viral reference strains at
an ICsy <50 meg/ml and 72% of strains at an 1Csq <1 mcg/ml
(or 86% at an 1Cqy <50 mcg/ml and 42% <1 mcg/ml) [12,13].
When administered at 10 mg/kg, for example, the in vivo
VRCO1 trough levels were predicted to be 4 mcg/ml, which
corresponds to a neutralization breadth based on IC5y/ICqq
values of 94%/93% against subtype B strains and 80%/73%
against subtype C isolates [51]. Results from the AMP tri-
als permitted an estimation of protective serum neutraliza-
tion titers in vivo (50% and 80% inhibitory dilutions, or IDs,
and 1Dgq). 1Dgy/IDg, titers were calculated by dividing the
median mid-infusion VRCO1 concentration across the 10 infu-
sions by the ICs, or ICg, of VRCO1 against the participant’s
acquired virus. Achieving 50%, 75% and 90% PE was pre-
dicted to require IDs, titers of 1:116, 1:252 and 1:565,
respectively, with corresponding 1Dg, titers of 1:32, 1:82 and
1:194 (Gilbert et al. submitted). With this information in hand,
it now is possible to design future mAb trials to achieve such
neutralizing titers and, thus, clinical efficacy.

2.4 | Comparison of NHP and human data

The rationale for the VRCO1 AMP trials was based in part
on studies from several laboratories showing that mAbs
against multiple Env epitopes could protect against high-
dose intrarectal and intravaginal SHIV challenge in NHPs.
Early NHP studies showed that neutralizing titers of 50-
100 were required for 50% protection [18] and that V2-apex
and V3-glycan-specific antibodies protected at remarkably low
titers, consistent with their high in vitro neutralizing potencies
[52,53]. The AMP study serum neutralization titers now allow
validation of NHP challenge models for preclinical predictive
efficacy.

To date, there are many similarities between the data
derived from NHP high-dose mucosal challenge models and
the AMP trials. A meta-analysis of 17 studies involving 274
NHPs and all classes of bnAbs showed that neutralizing activ-
ity in serum at the time of challenge was the primary deter-
minant of protection irrespective of challenge virus, route of
infection or mAb epitope specificity [54,55]. IDs, titers of
1:91, 1:219 and 1:685 were required for 50%, 75% and 95%
protection, respectively, which is remarkably similar to titers

predicted from the AMP trials mentioned above. These data
suggest that neutralization titer in serum has the potential to
be a surrogate marker for predicting PE similar to viral load
RNA in plasma as a predictor of antiretroviral efficacy. This
observation also has important implications for defining the
serum titers required for vaccines intended to elicit protective
antibodies.

A major priority now is to develop one or more mAb cock-
tails or multi-specific mAbs that provide high-level (>80%)
protection against HIV acquisition in multiple geographic
regions and risk groups. This goal is likely achievable, on the
basis of the breadth and potency of current mAbs under
study and their ability to prevent SHIV infection in NHPs
[14,16,18,52,53,56-64). For example, a recent study showed
a mAb cocktail was required for complete protection, as sin-
gle antibodies failed to protect due to differential resistance
profiles of the challenge viruses [62]. These data support the
notion that mAb cocktails can enhance PE against diverse HIV
strains.

One caveat to using the meta-analysis data is that each
NHP experiment used a homogeneous SHIV stock as the
challenge virus [54], which is distinct from viral swarms that
humans are typically exposed to. In most of these studies,
each NHP was administered one bnAb followed by challenge
with a single viral strain. Going forward, NHP studies should
use strain mixtures to more accurately reflect what occurs
during human transmission and provide a better comparative
strategy for designing combinations of bnAb cocktails for HIV
prevention.

25 |

As the VRCO1 concentration predicted to protect against
HIV was insufficient for the majority of circulating strains
observed in the AMP trial, future mAbs/mAb cocktails will
need wider in vivo coverage and higher potency [63,64]. As
with first-generation antiretrovirals, resistance to drug abro-
gated single drug efficacy and stimulated the use of drug
cocktails. The same will most likely be required for mAb pre-
vention strategies.

As the AMP study was ongoing, a series of phase 1 tri-
als were designed and conducted to determine the best anti-
body or antibody cocktail to move forward clinically. Table 1
lists the current or planned clinical trials for single, double
or multiple mAb cocktails, which display a broad range of
neutralization potency and breadth [19,65-70]. Great strides
have been made in improving upon both breadth and potency
[71-73] as well as manufacturability, stability, epitope affin-
ity and serum half-life through antibody screening and tar-
geted engineering [2,74-76). For example, antibody recycling
and turnover is regulated through Fc binding the neonatal Fc
receptor, which then limits lysosomal degradation, and mod-
ifications to the Fc region can prolong plasma half-life [77].
A leucine and serine double mutation in the Fc region of
VRCO1, VRCO1-LS, increases serum half-life and genital tissue
persistence [15,78]. The LS mutation has been subsequently
engineered into many anti-HIV bnAbs for clinical trial testing
(Table 1).

bnAbs with greater potency and breadth
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Table 1. Clinical status of the mAb pipeline for HIV prevention trials

Antibody Target Clinical trial completed Ongoing/in development
VRCO1 CD4bs NCT02568215, NCT02716675, NCT02256631, NCT02140255,
NCT02797171, NCT0O3831945, NCT04860323, NCT04801758,
NCT02579083, NCT02165267, NCT02591420
NCT01993706, NCT01950325,
NCT02471326, NCT02664415,
NCT02411539, NCT03208231,
NCT02463227
VRCO1-LS CD4bs NCT02797171, NCT02599896, NCTO03707977, NCT02256631
NCT02840474
VRCO07-523-LS CD4bs NCT02840474, NCT03205917, NCT03928821, NCT04212091,
NCT03015181, NCT03387150, NCT02256631, NCT04357821,
NCT03565315 (term), NCT03735849, NCT04340596, NCT03739996,
NCT03721510, NCT0O3803605
3BNC117 and CD4bs NCT02825797, NCT02824536, NCT04811040, NCT04319367,
3BNC117-LS NCT03571204, NCT02018510, NCT04720742 (susp), NCTO3837756,
NCT02850016, NCT03254277, NCT04173819, NCT03588715,
NCT02588586, NCT02446847 NCT03554408, NCT03526848,
NCT04250636, NCT0O3041012,
NCT04819347, NCT04560569
CAP256V2LS V/2-apex NCT04408963
PGDM1400 and V2-apex NCT03205917 NCT03928821, NCT03721510
PGDM1400-LS
PGT121 and PGT121-LS V3-glycan NCT03205917, NCT02960581 (NCT03928821, NCT03721510,
and PGT121.414.LS NCT04212091
10-1074 and 10-1074-LS V/3-glycan NCT02825797, NCT02511990, NCT03928821, NCT0O3707977,

NCT02824536, NCTO3831945,

NCT04340596, NCT04811040,

NCTO03571204

SAR441236 (Sanofi CD4bs, V2-apex,

NCT04357821, NCT04319367,

NCT04720742 (susp), NCTO3837756,

NCT03619278, NCT04173819,

NCTO3588715, NCT03554408,

NCT03526848, NCT04250636
NCT03705169)

NCT03875209

trispecific) MPER
iMAb/10E8v4 MPER
10E8-LS MPER NCT03565315 (term)

Note: Trials registered at clinicaltrials.gov. Includes trials in healthy adults, people living with HIV, and HIV-exposed infants.

Studies considered completed based on clinicaltrials.gov.
Abbreviations: Susp, suspended; Term, terminated.

2.6 | Optimizing mAb combinations and delivery

There are several considerations for mAb combination strate-
gies. The potency and breadth of mAb combinations are
greater than with single antibodies, double or triple cov-
erage targeting multiple epitopes can impede viral escape,
and combinations may reduce levels of incomplete neutral-
ization [47-50]. When tested in vitro against multiclade
panels of HIV-1 pseudoviruses, PGT121 and PGDM1400
displayed limited breadth, but also had complementary
coverage and outstanding potency, with among the lowest
median ICsy and 1Cg, titers among all bnAbs identified to
date [63].

In addition to using cocktails, the delivery route of antibod-
ies can be altered. IV infusion allows high mAb bioavailabil-
ity and has no volume limit, but requires clinic visits and is
typically expensive. Subcutaneous (SC) injection, on the other
hand, could be done virtually anywhere for lower cost, but
results in reduced plasma bioavailability compared to IV and
is limited by volume (reviewed in [79]). Co-administration with
hyaluronidase, however, can increase product uptake with SC
administration [79]. Of course, even the most potent bnAbs
will not effectively lessen the HIV pandemic unless they are
available in areas of most need, typically underserved low-
to middle-income countries, with global equitable access [80].
Manufacturing cost, cold-chain requirement, scalability and
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portable nature of mAb delivery will need to be optimized for
implementation even in low-infrastructure regions (reviewed
in [81]).

Bi- and trispecific antibodies have been constructed to
broaden neutralization coverage into a single manufacturable
antibody. The bispecific antibody 10E8-iMab that targets both
Env and host cell CD4 has shown remarkable promise with
high potency even at lower concentrations than best-in-class
single and combination bnAbs across multiple HIV subtypes
[50]. The 10E8 antibody has broad coverage, albeit some-
what lower potency, but when combined with the anti-CD4
mAb ibalizumab, has powerful in vitro activity [82]. A trispe-
cific antibody showing potent activity in NHP [83,84] has
also entered clinical trials (Table 1). One of the major unan-
swered questions of these artificially conceived therapeutics is
their uptake in patients and their durability to maintain effec-
tiveness. Monitoring for antidrug antibodies (ADA) will be an
important first step in their early evaluation, as they are more
“atypical” than human-derived antiviral mAbs, such as VRCO1,
which has not stimulated ADA in trial participants to date.

3 | CONCLUSIONS

Results from the VRCO1 AMP trials and iterative bnAb eval-
uation over the past decade place us in an opportune time
for the future of mAb prevention studies. Our advances in
bnAb screening and engineering have drastically increased
the potency and breadth of mAbs, identified additional epi-
topes for neutralization and opened the door for multi-
specificity and mAb cocktails. Moreover, antibody engineer-
ing efforts have generated antibody variants with increased
half-lives, potentially enabling administration schedules every
3-6 months and by the SC route, which would be a promis-
ing alternative to an antiretroviral-based prophylaxis regimen,
especially in regions with low access to IV infusion clin-
ics. In addition, the AMP trials provided critical insights into
the serum neutralizing antibody titer required for protection,
which will inform the development of next-generation HIV
vaccines. It will be of utmost importance for scientists in
academia, governmental bodies, commercial partnerships and
community stakeholders to collaborate as we build off the
first bnAb HIV efficacy trials.
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