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Development and binding affinity predictions of inhibitors targeting protein–protein interactions (PPI) still

represent a major challenge in drug discovery efforts. This work reports application of a predictive non-

empirical model of inhibitory activity for PPI inhibitors, exemplified here for small molecules targeting the

menin–mixed lineage leukemia (MLL) interaction. Systematic ab initio analysis of menin–inhibitor complexes

was performed, revealing the physical nature of these interactions. Notably, the non-empirical protein–li-

gand interaction energy comprising electrostatic multipole and approximate dispersion terms (E(10)El,MTP +

EDas) produced a remarkable correlation with experimentally measured inhibitory activities and enabled ac-

curate activity prediction for new menin–MLL inhibitors. Importantly, this relatively simple and computa-

tionally affordable non-empirical interaction energy model outperformed binding affinity predictions de-

rived from commonly used empirical scoring functions. This study demonstrates high relevance of the

non-empirical model we developed for binding affinity prediction of inhibitors targeting protein–protein in-

teractions that are difficult to predict using empirical scoring functions.

I. Introduction

Protein–protein interactions (PPI) between Mixed Lineage
Leukemia (MLL) or MLL fusion proteins and menin are asso-
ciated with a subtype of acute leukemia named MLL leuke-
mia,1 which constitutes 5–10% of acute leukemia in adults2

and about 70% of acute leukemia in children.3 The treatment
of MLL leukemia patients is currently ineffective,4 with a 5
year survival rate of about 35%.5 The menin–MLL protein–
protein interaction has been well validated as a therapeutic
target in MLL leukemia using both genetic1 and pharmaco-
logic approaches.6–11 Therefore, inhibition of the menin–MLL
interaction appears to be of crucial importance for the devel-
opment of novel targeted therapy against aggressive leukemia
resulting from the leukemogenic activity of MLL fusion
proteins.

Our recently identified inhibitors disrupting the oncogenic
activity of MLL fusion proteins by blocking the protein–pro-
tein interaction between menin and MLL belong to the
thienopyrimidine class of compounds.6,7 These compounds
directly bind to menin at MLL binding sites with low nano-
molar binding affinities. We have also demonstrated that
substantial improvement in inhibitory activity resulted from
incorporation of fluorine atoms into an ethyl group on the
thienopyrimidine scaffold.7 In particular, the MI-2-2 com-
pound bearing a trifluoroethyl substituent exhibited an over
20-fold increase in the binding affinity compared to its non-
fluorinated counterpart.6,7 Indeed, compounds with fluorine
atoms are estimated to constitute about 20–25% of currently
known drugs, as fluorine substituents affect both binding
affinity and physicochemical properties of small
molecules.12–14 While a rational approach for designing favor-
able fluorine interactions with proteins has recently been
proposed,10 complementary methods providing insight into
the physical nature of protein–ligand interactions would pos-
sibly augment these predictions. Furthermore, development
of potent small molecule inhibitors targeting protein–protein
interactions still constitutes a major challenge in the drug
discovery field,15–17 and therefore identification of computa-
tional methods for effective prediction of binding affinities
for PPI inhibitors represents a very important task and
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should attract a lot of attention in the drug discovery
community.

Currently available methods used to estimate inhibitory
activity are mostly based on empirical scoring functions or
force fields, yielding widely different predictions.18,19 Due to
significant computational cost, more accurate quantum
chemical estimates are impractical in high throughput drug
design and their applicability to protein–ligand interactions
has been rather limited.20,21 However, alternative non-
empirical models could be systematically derived by
partitioning the ab initio energy of the corresponding inhibi-
tor–receptor interactions into well defined components using
state-of-the-art perturbation or variational theories.22 Analyti-
cal formulas for separate binding energy terms can be the
subject of subsequent approximations leading to affordable
non-empirical scoring models of general applicability. We
have previously shown that the electrostatic term alone was
sufficient to rank polar or charged inhibitors of phenylala-
nine ammonia-lyase (PAL),22 leucine aminopeptidase (LAP)22

and urokinase (uPA).23 Further results characterizing essen-
tially nonpolar inhibitors of fatty acid amide hydrolase
(FAAH)24 indicated that supplementing the electrostatic
multipole term with the long-range dispersion contribution
was required to afford reasonable correlation with experimen-
tal binding affinity data.

In contrast to empirical scoring functions derived from
limited training sets, unified non-empirical models based on
long-range multipole electrostatic and dispersion interactions
might be more universal and less arbitrary. Assessment of
the performance of non-empirical interaction energy analysis
is especially important in the context of inhibitors targeting
protein–protein interactions. Compared to widely studied en-
zyme–inhibitor interactions, experimental and computational
characterization of small molecule PPI inhibition faces nu-
merous challenges.25 Unlike buried binding cavities present
in enzymes, binding sites at protein–protein interfaces are
relatively flat and solvent exposed.26 Although several empiri-
cal and semi-empirical approaches have been successfully ap-
plied to rank selected PPI inhibitors,27–30 empirical scoring
methods and knowledge-based potentials have not been
trained to work with ligands that bind to PPI interfaces.31,32

Therefore, models of inhibitory activity derived from ab initio
quantum mechanical methods might then be particularly
useful to describe the activity of PPI inhibitors more accu-
rately as no parameterization is required here and the appli-
cability of these methods might be more general.

This work aims to develop systematic non-empirical
models of inhibitory activity for small molecule inhibitors
blocking the protein–protein interaction between menin
and MLL. The choice of the protein system and compounds
was made to address the accuracy of description of PPI in-
hibition by small molecules using computational ap-
proaches. As already mentioned, we successfully applied
this non-empirical model to FAAH inhibitors with the inter-
action energy being expressed by the long-range electrostatic
and dispersion terms.24 To determine whether such a

model can be applied to PPI inhibitors represents a major
focus of this work.

The theoretical model of inhibitory activity reported here in-
volves a representative model of the MLL binding site on
menin (Fig. 1) and a set of menin–MLL inhibitors that we have
already characterized experimentally6,7,10 (Table 1). To limit the
computational cost required for reference ab initio calculations
of binding energy, only a subset of menin–MLL inhibitors
reported in ref. 6, 7 and 10 was selected. Compound selection
was made to accommodate the menin–MLL inhibitors with dis-
tinct substituents on the thienopyrimidine scaffold and a range
of activity broad enough for the resulting model to be reliable.
This system was used to develop a non-empirical model for ac-
tivity prediction of menin–MLL inhibitors. Predictive capabili-
ties of this approach were tested against new thienopyrimidine
inhibitors of the menin–MLL interaction, developed indepen-
dently to examine the influence of varying substituents to this
scaffold on their inhibitory activity. Remarkably, nearly quanti-
tative agreement was achieved between theoretically assessed
and experimentally measured IC50 values. Competitive compu-
tational cost and more favorable performance of the non-
empirical method applied here over those of commonly used
empirical scoring functions indicate that this method can be
successfully applied to rank newly designed inhibitors
targeting protein–protein interactions.

II. Methods
Physical nature of the menin–inhibitor interactions

To analyze the physical nature of interactions between menin
and small molecule inhibitors blocking the menin–MLL
interaction, the binding energy was calculated according to
the Hybrid Variational-Perturbation Theory (HVPT).33,34 This
approach enables the study of relatively large systems (e.g.,

Fig. 1 Representative model of a menin binding site with an MI-2-2
inhibitor bound. The model was derived from the structure of the
menin–MI-2-2 complex (4GQ4 in PDB).
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enzyme–inhibitor complexes modelled as representative sets
of protein amino acid residues and the corresponding li-
gands) at a reasonable computational cost.22,35–39 The HVPT
decomposition scheme of the interaction energy defines
partitioning of the second-order Møller–Plesset (MP2) bind-
ing energy (EMP2) into the electrostatic multipole (E(10)EL,MTP),
penetration (E(10)EL,PEN), exchange (E(10)EX ), delocalization (E(R0)DEL)
and correlation (E(2)CORR) terms, as shown in eqn (1):

Table 1 Structures and experimental activity6,7,10 of inhibitors targeting
menin–MLL interaction

Inhibitor Structure IC50 [μM]

MI-2-2a 0.046

MI-859b 0.065

MI-319b 0.082

MI-2-3b 0.092

MI-836b 0.260

MI-2c 0.45

MI-273b 0.674

MI-20c 0.75

MI-2-4a 0.765

MI-326b 0.779

Table 1 (continued)

Inhibitor Structure IC50 [μM]

MI-19b 1.200

MI-333b 1.653

MI-12c 14

MI-16c 46

MI-4c 52

MI-10c 58

MI-11c 87

MI-6c 193

a Inhibitory activity values are taken from ref. 7. b Inhibitory activity
values are taken from ref. 10. c Inhibitory activity values are taken
from ref. 6.
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(1)

The subsequent contributions to the MP2 binding energy
are characterized by increasing computational cost, as indi-
cated by OĲX) scaling, where N and A stand for the number of
atomic orbitals and atoms, respectively (see eqn (1)).

The E(10)EL,MTP term in eqn (1) represents the long-range
electrostatic multipole binding energy calculated from atomic
multipole expansion.40 This term includes interactions of
Mulliken atomic charges in addition to interactions of atomic
dipoles, quadrupoles, hexadecapoles, etc., representing the
anisotropy of atomic charge distribution.

The short-range penetration term E(10)EL,PEN is defined as E(10)EL,PEN

= E(10)EL − E(10)EL,MTP, where E(10)EL represents the first-order electro-
static energy. The first-order repulsive exchange term E(10)EX is cal-
culated from the first-order Heitler–London energy, E(10) :E(10)EX =
E(10) − E(10)EL . The classical induction and charge transfer terms
are represented by the higher order delocalization energy, E(R0)DEL,
which is obtained as the difference between the counterpoise-
corrected self-consistent field (SCF) variational energy, ESCF, and
the first-order Heitler-London energy, E(10). The correlation term,
accounting for dispersion and exchange–dispersion interactions
as well as the intramolecular correlation contribution, is defined
as: E(2)CORR = EMP2 − ESCF. As emphasized in eqn (1), all the subse-
quent corrections to EMP2 interaction energy could be catego-
rized into long- and short-range interactions varying with the
intermolecular distance, R, as R−n(n ∈ ) and exp−γR(γ > 0), re-
spectively. In the above equations, the zero value of the second
superscript represents uncorrelated interaction energy contribu-
tions, and the E(2)CORR term denotes the inter- and intra-molecular
correlation contributions.

Within the HVPT decomposition scheme, the dispersion
component is included in the computationally demanding
E(2)CORR correlation energy term, scaling with the fifth power of
molecular size expressed by the number of atomic orbitals,
N. The recently derived atom–atom potential function, EDas,
fitted to benchmark values of dispersion interactions41,42 has
been a far more affordable alternative to these costly calcula-
tions, as they scale with the square number of atoms OĲA2),
in contrast to ab initio calculations scaling at least with the
fifth power of the number of orbitals, OĲN5). Following the re-
markable performance of the EDas function to describe

noncovalent interactions in hydrogen-bonded complexes,43

we applied this approximate dispersion term in our model
for inhibitory activity prediction.

Calculation of binding energy

The structures of menin–MLL inhibitors considered herein
are given in Table 1. The crystal structure of menin in com-
plex with the MI-2-2 inhibitor (PDB accession code 4GQ4;7

1.27 Å resolution) was used for modeling of the geometry of
the remaining complexes. The structures of inhibitors were
built using Schrödinger Suite 2012 (ref. 44) and further re-
fined by all-atom optimization in the Maestro44 implemented
OPLS 2005 force field,45 with the convergence set to a non-
hydrogen atom RMSD of 0.1 Å. The preparation of the pro-
tein structure involved: (i) determination of the optimal hy-
drogen bonding network for the protein crystal structure with
Protein Preparation Wizard46 PROPKA implementation,47–50

at pH 7.5, i.e. the pH matching the experimental conditions
for the measurements of inhibitory activities, (ii) building of
missing hydrogen atoms with Maestro, and (iii) optimization
of the hydrogen atoms in Maestro and the OPLS 2005 force
field, following the optimization protocol provided by Protein
Preparation Wizard (heavy atoms were kept frozen and the
convergence criterion was defined as the hydrogen atom
RMSD of 0.3 Å). The same protein receptor structure was
used for the following binding energy calculations and scor-
ing of all the menin–MLL inhibitors considered herein. Non-
empirical interaction energy evaluation involved a limited-
size model of the receptor, composed of selected amino acid
residues, as described in the following discussion.

Binding energy calculations involved a menin binding site
represented by 15 amino acid residues (Fig. 1) selected by
their closest proximity to the ligand, namely within approxi-
mately 4 Å from MI-2-2 (see Table S1, ESI,† for the distances
between MI-2-2 and menin residues). Negatively charged
Asp180 and positively charged His199 residues constituted
an ionic pair, and such a pair was included in further calcula-
tions (i.e., as a neutral Asp180–His199 dimer formed by
counter-charged residues). There were no counter-charged
amino acid residues in close proximity to the remaining neg-
atively charged residues (Glu179, Asp285 and Glu363). The
dangling bonds arising from cutting the residues out of the
protein structure were saturated by hydrogen atoms.

The menin–inhibitor binding energy was calculated as the
sum of the above defined intermolecular energy components
obtained for each inhibitor–amino acid residue pair with a
modified34 version of GAMESS51 program using the
6-31G(d)52–54 basis set. Counterpoise correction was applied
to eliminate the basis set superposition error.55

Binding affinity predictions using empirical scoring
functions

To perform empirical scoring with the menin–inhibitor com-
plexes obtained in a way described in the previous section,
the following functions implemented in Discovery Studio 3.5
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Suite56 were used: LigScore,57 Piecewise Linear Potential
(PLP),58,59 Jain,60 Potential of Mean Force (PMF),61,62

Ludi,63,64 and Discovery Studio binding free energy.65 Two
commonly used docking programs, AutoDock Vina66 and
GOLD 4.0,67 were also employed in the scoring of the en-
zyme–inhibitor interactions. Calculations performed with
AutoDock Vina and GOLD involved no docking to avoid the
influence of the docking procedure on the scoring results. All
available Gold scoring functions were tested, i.e., GoldScore,
ChemScore, and Astex Statistical Potential (ASP). PyMOL68

and the PyMOL AutoDock/Vina plugin69 were used for the
preparation of the receptor and inhibitors for scoring in
AutoDock Vina. The latter was carried out with a 22.5 Å cubic
grid centered on the MI-2-2 inhibitor. A GOLD scoring run
was performed with a spherical grid centered in the same
way and encompassing the amino acid residues within 15.0 Å
radius from the point of origin.

The performance of particular scoring methods was evalu-
ated by means of the Pearson's correlation coefficient calcu-
lated with respect to experimentally determined inhibitory ac-
tivity6,7,10 (see Table 1). Scoring functions, for which the
higher score indicates the greater binding potency, were
assigned to the opposite of the calculated value of the corre-
lation coefficient to enable direct comparison with the results
of non-empirical binding energy calculations, assigning lower
interaction energy values to more potent inhibitors. The re-
sults were additionally compared in terms of the success rate
of prediction, Npred (the predictivity). Following nonparamet-
ric statistics, the predictivity refers to the percentage of con-
cordant pairs among all possible pairs of complexes within a
given set. A concordant pair denotes two complexes with
computationally evaluated relative stability being of the same
sign as the relative experimental binding affinity (see ref. 70
for details).

Development of novel menin–MLL inhibitors

The development and synthesis of compounds: MI-2-2, MI-
859, MI-319, MI-2-3, MI-836, MI-2, MI-273, MI-20, MI-2-4, MI-
326, MI-19, MI-333, MI-12, MI-16, MI-4, MI-10, MI-11, and
MI-6 which were used to develop the theoretical model of in-
hibitory activity, was described before.6,7,10 Novel menin–MLL
inhibitors (compounds 1, 2, 3, 4, 5, 6, and 7) were designed
using the menin–MI-2-2 complex7 to test the effect of varying
substituents on the MI-2-2 scaffold. These new compounds
were obtained from synthesis on demand from the contract
research organization. All compounds were provided with the
certificate of analysis and in addition were fully characterized
in-house by MS and NMR (see the ESI† for characterization
of compounds 1, 2, 3, 4, 5, 6, and 7).

Biological activity of menin–MLL inhibitors

The inhibitory activity of compounds: MI-2-2, MI-859, MI-319,
MI-2-3, MI-836, MI-2, MI-273, MI-20, MI-2-4, MI-326, MI-19,
MI-333, MI-12, MI-16, MI-4, MI-10, MI-11, and MI-6, was
reported before.6,7,10 Inhibition of the menin–MLL interac-

tion by compounds 1–7 was assessed by the fluorescence po-
larization (FP) assay using the protocol described previ-
ously.6,71 Briefly, the fluorescein-labeled MLL (MBM1)
peptide at 10 nM, menin at 100 nM and compounds at vary-
ing concentrations were used for IC50 determination in FP
buffer (50 mM Tris, pH 7.5, 50 mM NaCl, 1 mM DTT). The
compounds (5% final DMSO concentration) were added to
the menin–MLL peptide complex and incubated for 1 h be-
fore changes in fluorescence polarization were measured
using a PHERAstar microplate reader (BMG).

III. Results and discussion
Interaction energy calculations for menin–inhibitor
complexes

We performed the ab initio quantum mechanics calculations
of the non-empirical interaction energy between menin and
the thienopyrimidine class of our recently developed menin–
MLL inhibitors with inhibitory activity spanning over the five
orders of magnitude (Table 1). Eighteen compounds were ini-
tially selected to calculate their interaction energy with the
representative model of the menin binding site comprising
15 amino acid residues positioned in the closest proximity to
the ligand molecules (Fig. 1). The total binding energy values
at the subsequent levels of theory, obtained as a sum of the
interaction energy values calculated in a pairwise manner for
each amino acid residue on menin and the corresponding li-
gand molecule, for all menin–inhibitor complexes are listed
in Table 2. The total interaction energy calculated at the
highest level of theory, EMP2 (eqn (1)), has negative values for
all inhibitors included in this study, ranging from −37.8 to
−26.8 kcal mol−1 (Table 2), which supports their favorable in-
teractions with menin. The dominant component of the total
interaction energy is the electrostatic term E(10)EL , which
changes from −49.6 to −41.0 kcal mol−1, supporting the im-
portance of the electrostatic contribution to the ligand bind-
ing affinity for this class of menin–MLL inhibitors. The posi-
tive values of the E(10) energy, originating from the repulsive
E(10)EX term, suggest the presence of short contacts between in-
hibitors and binding site residues.23 ESCF energy values are
also mostly positive, but substantially smaller than E(10)

values due to stabilizing delocalization interactions. Finally,
the correlation term (E(10)CORR) restores the stabilizing character-
istics reflected by the negative values of the total interaction
energy calculated at the reference MP2 level of theory. The
interaction energy estimate composed of the multipole com-
ponent of the electrostatic energy and the approximate dis-
persion term (E(10)EL,MTP + EDas), has resulted in the lowest (the
most negative) values (Table 2) due to the lack of repulsive
contributions in this particular energy expression.

For all menin–inhibitor complexes included in this study,
Tyr276 serves as a hydrogen bond donor interacting with the
nitrogen atom of the thienopyrimidine ring in the menin–
MLL inhibitors. Compared to the remaining residues, Tyr276
significantly contributes to the total interaction energy of all
inhibitors (Table S2, ESI†). The interaction energy values
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associated with essentially all Tyr276–inhibitor pairs fluctuate
around −15 and −6 kcal mol−1 for E(10)EL and EMP2 energy, re-
spectively, indicating the presence of strong hydrogen bond-
ing in all menin–inhibitor complexes studied here. In addi-
tion, Asn282, Met278, and Glu179 also appear to have a
pronounced impact on inhibitor binding affinities due to
their substantial contribution to the total binding energy (Ta-
ble S2, ESI†). The involvement of the remaining menin resi-
dues in inhibitor binding seems to be less significant.

Correlation of interaction energy with inhibitory activity of
menin–MLL inhibitors

The highest absolute values of EMP2 and E(10)EL were obtained
for the most potent inhibitors described here (Table 2). Like-
wise, the weakest MI-6 inhibitor is characterized by the low-
est absolute values of EMP2 and E(10)EL energies, suggesting a
possible correlation with the ligand binding affinity. To
quantify the relationship between the interaction energy and
inhibitory activity, the interaction energy values calculated at
different levels of theory were correlated with the IC50 values
of menin–MLL inhibitors measured using the fluorescence
polarization assay (Table 1). The relationship between the to-
tal interaction energies calculated at selected levels of theory
and the inhibitory activity of respective inhibitors is plotted
in Fig. 2.

Very strong correlation was obtained for E(10)EL energy,
resulting in a remarkably high correlation coefficient R, equal
to −0.87 (Fig. 2). Furthermore, the electrostatic multipole
term E(10)EL,MTP also demonstrates correlation with the inhibi-
tory activity of menin–MLL inhibitors (R = −0.63; Fig. 2).
These results indicate that the electrostatic interaction energy

appears to be sufficient to represent the differences in the
menin–inhibitor binding affinities within this class of com-
pounds. This is likely related to the nature of the protein
binding site, as the inhibitor binding pocket on menin fea-
tures a number of polar amino acid residues. Indeed, only
four out of 15 residues included in these calculations possess
non-polar side chains, while the remaining 11 amino acid
residues bear polar or charged side chains (e.g., Glu179,
Asp285, Glu363, Asp180, His199, Ser178, and Asn282; see
Fig. 1). Accordingly, the dominant contribution of the electro-
static effects in the interaction energy is reflected by its good
correlation with the binding affinity characterizing these
compounds.

In contrast, the remaining components of the interaction
energy, i.e., E(10) and ESCF energy terms, do not exhibit

Table 2 Total menin–inhibitor interaction energya at the consecutive levels of theory

Inhibitor E(10)EL,MTP E(10)EL E(10) ESCF EMP2 E(10)EL,MTP + EDas

MI-2-2 −26.0 −48.1 20.3 2.2 −37.6 −100.2
MI-859 −25.0 −48.8 22.9 5.4 −35.3 −98.0
MI-319 −25.6 −47.0 19.5 2.6 −35.5 −97.7
MI-2-3 −26.1 −47.4 19.6 2.7 −35.7 −99.2
MI-836 −25.9 −49.6 20.4 2.8 −37.8 −96.8
MI-2 −23.3 −45.9 21.9 3.4 −36.8 −94.7
MI-273 −22.1 −49.3 31.9 14.5 −28.0 −101.8
MI-20 −21.6 −44.1 23.9 5.7 −35.7 −95.5
MI-2-4 −19.9 −48.3 33.4 17.2 −26.8 −92.3
MI-326 −26.2 −47.2 17.9 1.1 −36.7 −97.4
MI-19 −22.1 −44.1 22.8 5.0 −34.8 −92.3
MI-333 −26.8 −48.2 17.9 1.0 −36.9 −97.4
MI-12 −25.7 −43.9 11.7 −3.5 −34.6 −80.9
MI-16 −19.3 −41.7 22.4 6.4 −30.3 −80.9
MI-4 −23.4 −41.6 14.0 −1.0 −32.4 −78.5
MI-10 −20.9 −41.7 23.3 7.0 −30.9 −88.4
MI-11 −20.9 −41.0 21.0 5.2 −30.8 −86.0
MI-6 −19.3 −41.0 22.1 6.2 −30.2 −80.5
Npred

b 69.3 81.7 49.0 55.6 69.9 81.1
Rc −0.63 −0.87 0.17 0.03 −0.55 −0.87
SEd 2.1 1.6 5.2 5.1 2.9 3.9

a In units of kcal mol−1. b Percentage of successful predictions [%]. c Correlation coefficient for the correlation of the energy obtained at a
given level of theory and the experimental inhibitory activity expressed as pIC50.

d Standard error of estimate, in units of kcal mol−1.

Fig. 2 Menin–inhibitor binding energies at different levels of theory as
a function of inhibitory activity.
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satisfactory correlation with the inhibitory activity of the
thienopyrimidine class of menin–MLL inhibitors (Table 2).
The lack of correlation between the inhibitory activity and
E(10) interaction energy presumably arises from including the
short-range interaction energy component, which is very sen-
sitive to any inaccuracies that might occur in the modelled
protein–ligand complexes. The repulsive exchange term de-
pends exponentially on the intermolecular distance and
shortening of the intermonomer separation has a large im-
pact on the corresponding binding energy.23,72 Recent sys-
tematic analysis of 66 biomolecular complexes72 indicated
that considering only the long-range electrostatic term (with-
out taking into account the repulsive exchange term) leads to
much better estimates of relative ligand binding affinities.
More importantly, this phenomenon is valid even for short-
ened intermolecular distances resulting from force field inad-
equacy73 or the basis set superposition error.74 Interestingly,
it has been shown that augmenting the multipole electro-
static term with EDas dispersion approximation can further
improve predictions of relative stabilities within a particular
set of protein–ligand complexes.24

Indeed, despite the prevalence of electrostatic interactions
in menin–inhibitor complexes, the E(10)EL,MTP + EDas model, in
which both electrostatic and dispersion interactions are incor-
porated, is characterised by the strong correlation with the in-
hibitory activity, reflected by the high value of the correlation
coefficient (R = −0.87; Fig. 2). Therefore, it seems that the in-
teractions of predominantly electrostatic nature could be ac-
curately and inexpensively described if the dispersion effects
are incorporated in addition to the electrostatic term. More-
over, the significantly improved predictivity of E(10)EL,MTP + EDas
compared to that of EMP2 energy is probably due to the ab-
sence of the repulsive exchange term, E(10)EX , which is included
at the MP2 level of theory. As mentioned above, this particular
term is very sensitive to the presence of intermolecular short
contacts commonly occurring in modelled structures of pro-
tein–ligand complexes.23,72 In fact, the preparation of the
menin–inhibitor complexes applied herein involved a simple
optimization procedure employing rigid receptor representa-
tion. More sophisticated refinement protocols were avoided to
verify the applicability of the proposed approach to quick as-
sessment of the structural modifications in, e.g., the lead opti-
mization stage. Possible unresolved steric clashes have proba-
bly resulted in the overly magnified repulsive exchange term,
E(10)EX , and the loss of correlation at the higher levels of theory
(up to the EMP2 energy), which include this particular interac-
tion energy contribution.

In general, dispersion interactions are not absolutely re-
quired to properly describe the inhibitor binding forces
within systems with dominant electrostatic interactions, such
as menin–inhibitor complexes. However, a simple electro-
static model of interaction energy is clearly insufficient in the
case of nonpolar hydrophobic systems.24 The performance of
the E(10)EL,MTP + EDas model proposed herein appears to be satis-
factory regardless of the physical nature of the inhibitory ac-
tivity, and thus such a model could be used universally in the

inhibitor design process without an unnecessary increase in
the computational cost.

Differences in ligand binding affinities might arise from
the interactions of inhibitors with a subset of amino acid res-
idues in the binding site. The significant contribution to the
total binding energy does not necessarily indicate that a
given amino acid residue is responsible for the observed in-
hibitory activity differences, as such interaction could be sim-
ilar for all tested inhibitors. Residues that contribute the
most to the relative inhibitory activity might be identified by
monitoring the changes in correlation coefficients upon re-
moval of particular residues from the binding site model (Ta-
ble S3, ESI†). Accordingly, the interaction of inhibitors with
Glu179, Asp285, Tyr276, and Tyr323 residues seems to be the
most important in terms of the differences in the binding po-
tencies. Upon removal of these residues from the model of
the menin binding site, the values of the corresponding cor-
relation coefficients become substantially worse (Table S3,
ESI†). Therefore, the interaction with Glu179, Asp285,
Tyr276, and Tyr323 residues appears to influence the relative
binding affinities and should be carefully studied while de-
signing novel menin–MLL inhibitors.

Scoring with empirical functions

We have also applied a number of empirical scoring ap-
proaches available in the Discovery Studio,56 GOLD 4.0,67 and
AutoDock Vina66 programs to compare their predictive capa-
bility with the quantum mechanics-based models presented
in Table 2. The performances of these empirical scoring
methods, reflected by the correlation of the calculated bind-
ing affinity estimate with the experimentally measured inhib-
itory activity, are compared in Table 3. Overall, the empirical
scoring functions tested herein yielded varying predictions
with respect to the experimentally established ranking of the
menin–MLL inhibitors. Only four out of 15 scoring functions
exhibited favorable predictive capabilities, as demonstrated
by the R correlation coefficient and Npred (defined as the per-
centage of successful predictions) values exceeding or close
to 0.8 and 75%, respectively. The best performance was
obtained for the LigScore1 scoring function implemented in
Discovery Studio (R = −0.81, Npred = 75.2%; Table 3). However,
the performance of the majority of the remaining empirical
scoring approaches evaluated here is unsatisfactory, with
poor correlation reflected by unsatisfactory R values (R < 0.7)
and insufficient predictivity (Table 3). Utterly different predic-
tive abilities of empirical scoring functions might originate
from the inherent parameterization carried out with training
sets, which are rarely applicable to all protein–ligand com-
plexes. Besides, selection of the best performing scoring func-
tion for new designed ligands represents a challenge due to
high variability of the results obtained from various scoring
functions applied. An additional challenge posed here is the
fact that we are dealing with inhibitors of protein–protein in-
teractions. Distinct features of binding pockets existing in
such complexes may not be accounted for by the empirical
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scoring methods calibrated with classical protein–ligand in-
teractions, such as enzyme–inhibitor complexes.31,32

While plausible predictions were obtained with selected em-
pirical scoring approaches, the E(10)EL,MTP + EDas model of inhibi-
tory activity appears to outperform the classical scoring func-
tions presented herein, resulting in remarkable agreement
with the experimental data characterized by R = −0.87 and Npred

= 81.1%. The computational cost of the E(10)EL,MTP + EDas function
is as attainable as that of empirical scoring models.24 Unlike
the latter, no parameterization employing empirical data was
involved to develop the E(10)EL,MTP + EDas model. Successful predic-
tion of the relative binding affinities of menin–MLL inhibitors
suggests that small molecule inhibitors that block protein–pro-
tein interactions are within the range of applicability of this
particular non-empirical scoring method.

Binding affinity predictions of novel menin–MLL inhibitors

We then aimed to use the non-empirical interaction energy
calculations to predict the binding affinity of new menin–
MLL inhibitors. Rapid prediction of the inhibitory activity of
novel menin–MLL inhibitors can be made with the following
relationship derived from the linear least-squares regression
analysis of experimental pIC50 data and calculated E(10)EL,MTP +
EDas values (the latter are given in kcal mol−1), resulting in
the following equation:

(2)

To examine the applicability of this method to predict the
activity of new menin–MLL inhibitors, seven novel com-

pounds with varying substituents on the thienopyrimidine
scaffold of MI-2-2 were selected. The development, synthesis
and characterization of these compounds were performed as
a part of the structure–activity studies directed at optimiza-
tion of the lead compound. The structures and inhibitory ac-
tivities of seven novel menin–MLL inhibitors are presented in
Table 4. With the exception of the least potent compound 7,
the range of inhibitory activity characterizing these novel
menin–MLL inhibitors is similar to the reference set of com-
pounds listed in Table 1. The highest potency was obtained
for compounds 1 and 2 (IC50 = 193 nM and 650 nM, respec-
tively), while other compounds showed inhibitory activity in
the micromolar range (Table 4).

Table 3 Performance of various empirical scoring methods for ranking
the menin–MLL inhibitors (results for the non-empirical E(10)EL,MTP + EDas
model are provided for comparison)

Scoring function Ra Npred
b

E(10)EL,MTP + EDas −0.87 81.1

LigScore1 −0.81 75.2
Jain −0.80 77.8
Ebinding (Discovery Studio 3.5) −0.79 74.5
PLP2 −0.79 80.4
PLP1 −0.74 77.8
PMF04 −0.65 73.2
Ludi2 −0.62 72.6
LigScore2 −0.43 69.9
Ludi1 −0.40 58.8
Ludi3 −0.23 54.3
PMF +0.24 41.2

Goldscore −0.64 69.9
ASP −0.62 70.6
Chemscore −0.28 60.1

Binding affinity (AutoDock Vina) −0.67 73.2

a Correlation coefficient between the calculated binding affinity
estimate and the experimental inhibitory activity expressed as pIC50.
b Percentage of successful predictions [%].

Table 4 Structures and experimental activity of novel inhibitors targeting
menin–MLL interaction

Inhibitor Structure IC50 [μM]

1 0.193

2 0.65

3 1.30

4 1.40

5 2.00

6 20.00

7 200.00
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The predictive capabilities of eqn (2) were then tested
against the set of novel menin–MLL inhibitors (Table 4), and
the calculated interaction energy for the new compounds was
used to predict their theoretical IC50 values. The systematic
analysis of the interaction energy values calculated at the
subsequent levels of theory for these seven menin–MLL com-
plexes is provided in Table S4, ESI.† As observed in the case of
the initial set of 18 menin–MLL inhibitors (Table 2), the EMP2

binding energy is characterized by negative values, ranging
from −34.5 to −30.5 kcal mol−1 (Table S4, ESI†). The interac-
tions formed by these new menin–MLL inhibitors are essen-
tially electrostatic in nature, which is reflected by E(10)EL binding
energy values exceeding −35 kcal mol−1. Accounting for the re-
pulsive E(10)EX term, possibly overestimated due to shortened
intermonomer distances,23 results in positive values of both
E(10) and the subsequent ESCF binding energy terms. The delo-
calization and correlation contributions are both required to
restore the stabilizing nature of the interaction energy
obtained at the reference MP2 level of theory. The correlation
between the calculated EMP2 binding energy and the experi-
mental binding potency is reflected by the correlation coeffi-
cient R = −0.65 (Table S4, ESI†). Noticeably, the R values of
−0.83 and −0.84 characterize the electrostatic term, E(10)EL , and
the E(10)EL,MTP + EDas energy values, respectively, confirming the
prevalence of electrostatic interactions at the inhibitor–pro-
tein interface and the adequacy of the E(10)EL,MTP + EDas function
for the description of menin–MLL inhibition.

The performance of empirical scoring functions already
considered for the training set of menin–MLL inhibitors
(Table 3) was also tested on the set of seven inhibitors ana-
lyzed herein. The predictive capabilities of these empirical
models are presented in Table S5, ESI.† Similarly to the re-
sults obtained in the training set of 18 inhibitors (Table 3),
only two of the empirical scoring approaches considered here
yielded predictions characterized with R correlation coeffi-
cients exceeding or close to 0.8 (Table S5, ESI†). The best esti-
mates of the experimental inhibitory activity of seven menin–
MLL inhibitors were obtained with the LigScore2 scoring
function implemented in Discovery Studio (R = −0.84 and
Npred = 66.7%; Table S5, ESI†). Most of the empirical scoring
models tested herein exhibited either weak or no agreement
with the experimental data. The fact that all but one of the
inhibitors within the test set are fluorine-rich compounds
might contribute to the poor performance of the empirical
functions when applied to this particular set. Unlike most of
the empirical approaches, the non-empirical E(10)EL,MTP + EDas
model also appears to exhibit satisfactory predictive capabili-
ties over the test set (R = −0.84 and Npred = 66.7%; Table S4,
ESI†).

As already noted, the E(10)EL,MTP + EDas energy was employed
for the prediction of binding potency of 7 new menin–MLL
inhibitors according to eqn (2). The comparison of the calcu-
lated and experimental pIC50 values for new menin–MLL in-
hibitors is provided in Fig. 3, resulting in a very good correla-
tion described by R = −0.84. As shown in Fig. 3, the
inhibitory activity of all these compounds reported here is

predicted with nearly quantitative accuracy. Compounds 1–5
are relatively similar in terms of their binding potency
(Table 4). When applied to the inhibition constant, an order
of magnitude change is associated with approximately 1.3
kcal mol−1 increment in the free energy of binding.75 There-
fore, it would not be reasonable to expect that such small dif-
ferences in the pIC50 values might be very accurately captured
by any computational method, as they exceed the accuracy of
most quantum chemical calculations. Accordingly, the perfor-
mance of the E(10)EL,MTP + EDas scoring function in predicting
the inhibitory activity of novel menin–MLL inhibitors is ade-
quate, with the binding potency of these compounds
reproduced with nearly quantitative agreement. Considering
that six out of seven inhibitors discussed here are fluorine-
rich compounds, these results also suggest that the E(10)EL,MTP +
EDas approach is capable of capturing the changes in the
binding properties resulting from fluorine substitutions.
Overall, very good agreement between the experimental and
theoretical data presented herein demonstrates the useful-
ness and applicability of the non-empirical interaction energy
calculations for successful predictions of inhibitory activity of
menin–MLL inhibitors and possibly other inhibitors targeting
protein–protein interactions.

IV. Conclusions

Binding affinity prediction for newly designed protein inhibi-
tors still represents a challenge, in particular for the more
complex systems, such as inhibitors of protein–protein inter-
actions. Here, we applied quantum chemical calculations of
the interaction energy for the complexes of menin–MLL in-
hibitors to formulate and test the non-empirical model of in-
hibitory activity. Systematic analysis of the binding energy
calculated at the consecutive levels of theory and comparison
of the interaction energy with inhibitory activity of the
menin–MLL inhibitors resulted in a strong correlation
obtained for the E(10)EL interaction energy component, indicat-
ing that electrostatic interactions are very important in the

Fig. 3 Predicted values of pIC50 for novel menin–MLL inhibitors.
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system. Furthermore, our studies resulted in the validation of
a simplified model, the E(10)EL,MTP + EDas non-empirical function
comprising long-range interaction energy components,
namely the electrostatic multipole and dispersion contribu-
tions. This model showed satisfactory correlation between
the calculated interaction energy and experimentally mea-
sured inhibitory activity for the menin–MLL inhibitors.
Importantly, the non-empirical E(10)EL,MTP + EDas model
outperformed numerous empirical scoring functions tested
here for comparison. As computationally inexpensive electro-
static multipole and approximate dispersion terms are
employed herein, such a non-empirical function could be-
come a computational approach as affordable as widely used
empirical scoring methods for activity prediction of protein
inhibitors, including inhibitors of protein–protein
interactions.

As revealed by the analysis of the interaction energy, bind-
ing of menin–MLL inhibitors is essentially electrostatic in na-
ture. The non-empirical E(10)EL,MTP + EDas model has already
been proven to be applicable to mostly nonpolar enzyme–in-
hibitor complexes.24 This contribution indicates the relevance
of the E(10)EL,MTP + EDas model to polar or charged complexes.
The range of applicability of this particular model for binding
affinity prediction seems to encompass inhibitors of protein–
protein interactions and ligands with multiple fluorine sub-
stitutions. Finally, the successful prediction of inhibitory ac-
tivity of new menin–MLL inhibitors validates the usefulness
of the E(10)EL,MTP + EDas model in the structure-based develop-
ment of novel inhibitors, including inhibitors of protein–pro-
tein interactions, for which majority of empirical scoring
functions provide rather poor predictions of ligand binding
affinity. As demonstrated by nearly quantitative agreement
between the predicted and experimental binding potency
within the validation set of inhibitors, the E(10)EL,MTP + EDas
model allows for the inexpensive and reliable assessment of
the influence of structural changes made to the parent scaf-
fold on the inhibitory activity of the resulting compounds.
Further computational efforts will be directed at determina-
tion of the applicability of the E(10)EL,MTP + EDas model for test-
ing of prospective PPI inhibitors characterized with more ex-
tensive structural differences.
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