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Abstract: Efficient and comprehensive recycling of fiber-reinforced thermosets is particularly
challenging, since the irreversible degradation of the matrix component is necessary in order
to separate the fiber component in high purity. In this work, a new approach to fully recyclable
thermoset composites is presented, based on the thermal reversibility of an epoxy-based polymer
network, crosslinked through Diels–Alder (DA) chemistry. Carbon fiber composites, fabricated by
compression molding, were efficiently recycled through a simple solvolysis procedure in common
solvents, under mild conditions, with no catalysts. Specifically, the purity of reclaimed fibers, assessed
by thermogravimetric analysis and scanning electron microscopy, was very high (>95%) and allowed
successful reprocessing into second generation composites. Moreover, the dissolved matrix residues
were directly employed to prepare smart, thermally healable coatings. Overall, DA chemistry has
been shown to provide a convenient strategy towards circular economy of thermoset composites.
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1. Introduction

The increasing global demand for lightweight materials is generating a continuous growth
of the composite industry. In particular, carbon reinforced composites are progressively entering
novel application sectors such as the automotive field, in addition to more established markets like
aerospace and wind power. Therefore, beside the technological challenge of ensuring greater volumes
at competitive costs, the composite industry has to address the recycling issue [1], as a dramatic increase
in waste from end-of-life composites is foreseen in the next few years, landfilling being progressively
forbidden [2].

Available technologies for carbon composite recycling are mainly focused on the recovery of the
fiber component, while the resin component is generally considered waste due to its lower market
value [3]. Composite recycling methods are generally grouped into three categories: Mechanical,
thermal, and chemical processes. Mechanical recycling is probably the least expensive treatment,
but at the same time it produces low quality recyclates. Since fibers are broken and not liberated,
mechanical shredding and milling do not achieve a clean separation between fiber and resin. Thus,
the obtained powders can only be proposed as cheap, low-performing fillers for new composites [4].
As a result, this method was not scaled to industrial level, at least for carbon-based composites. On the
contrary, thermal treatments like pyrolysis were commercially exploited, since they allow to achieve
high fiber purity [3]. In these approaches, the grinded or cut composite is treated at high temperature
(typically 400–700 ◦C) in an inert or oxidative environment in order to selectively degrade the resin
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component into volatile products and char, which is then deposited on the fibers. The char residues can
be minimized in oxidative or more severe conditions but at the expense of unavoidable worsening of
mechanical strength. Comparatively, chemical recycling provides cleaner fibers, since in this approach
a solvent selectively degrades the matrix at lower temperature compared to pyrolysis, with negligible
damage to the fibers. Typically, solvolysis in acid media [5] can be performed at moderate temperature
(lower than 200 ◦C) and atmospheric pressure. However, from a process point of view, this approach
presents some limitations because concentrated acids are difficult to handle as they pose some safety
and environmental issues. The recent introduction of solvents like water or alcohols in critical or
supercritical conditions has represented a greener alternative to traditional solvolysis [6,7], but currently
costs are still too high to envision an industrial scale up of this technology.

Beside the specific advantages and limitations of the mentioned methods, a common drawback
of all these approaches is that the reuse of the matrix is generally not considered. Therefore,
these methods are not fully compliant with circular economy principles. More specifically, thermolysis
produces a liquid fraction, which is burnt for energy recovery, while liquid residues of solvolysis
are complex mixtures of monomers and oligomers that require expensive separation steps for their
profitable valorization [3]. This limitation is largely ascribable to the intrinsic nature of the matrix
(often an amine-cured epoxy), which is not designed to be soluble or reworkable as a result of its
thermosetting network.

Within this framework, the recyclability of crosslinked epoxies has been recently demonstrated by
re-designing the polymer network with the introduction of specific functionalities on the monomers,
which could form cleavable bonds upon crosslinking. The concept underlies the proprietary technology
of Connora [8,9], based on epoxy crosslinked with amine hardeners, which can be cleaved under
moderate conditions (70–100 ◦C) thereby obtaining a thermoplastic epoxy as byproduct. The system
was used to recover carbon and flax fibers from epoxy composites [10,11]. Analogous approaches
require the introduction of tertiary amine [12] or acetal functionalities [13] into an epoxy cleavable
network that could undergo de-crosslinking and allow fiber recovery from acidic media. A step
forward in the valorization of the recovered matrix was made possible with the introduction of the
concept of covalent adaptable networks (CANs) [14], which enables re-crosslinking the matrix after
fiber recovery. In particular, Yu et al. demonstrated full recyclability and repairability of a reversible
thermoset composite based on transesterification exchange reactions in the presence of ethylene glycol
at 180 ◦C [15]. Similarly, Wang et al. used ethanol to de-crosslink a reversible novolac boronate network,
which enabled recovery of glass or carbon fibers. When ethanol was removed, the matrix could be
re-crosslinked [16].

Among the different chemical approaches involving the use of CANs, the Diels–Alder (DA) is a
click reaction [17], consisting in the cycloaddition between a 1,3 conjugated diene and a dienophile (i.e.,
a molecule containing a double or triple bond) [18]. The product of the reaction is a cyclic adduct DA
in a dynamic equilibrium with the diene/dienophile. As temperature is increased, the equilibrium can
be reverted to the formation of reactants (retro-Diels–Alder reaction) [19]. In particular, the addition
reaction between furan (diene) and maleimide (dienophile) is particularly versatile due to its fast
kinetics and high yields. Upon proper choice of functional precursors, such diene/dienophile couples
can be used to design thermally reversible polymer networks [20,21]. Compared to other CANs,
furan/maleimide networks can be prepared from readily available chemicals and exhibit excellent
reversibility at mild temperatures in the absence of catalysts, thus making this approach potentially
interesting for a wider-scale implementation. DA matrices were demonstrated to enable thermal
healability to carbon reinforced composites [22–24]. This synthetic tool was also used to impart
thermal repairability and recyclability to a wide number of epoxy-based networks [25–43]. However,
the recovery of both fiber and resin component from carbon composites based on the thermal
reversibility of epoxy-based DA matrices has not been reported yet.

To bridge this gap, in this work, a DA polymer network was synthetized from the crosslinking
of furan-modified epoxides with an aromatic bismaleimide in order to obtain a moldable polymer.
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After demonstrating the thermal reversibility of such new system, the material was used as a binder for
different classes of carbon fibers in order to obtain polymer-based composites. Mechanical properties
were assessed by tensile tests and dynamic mechanical analysis (DMA). The fiber components were
recovered by solvolysis in common solvents and embedded into new composites. Their quality was
assessed by thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). Closing
the loop, liquid byproducts of solvolysis were directly employed to produce coatings, which were
found to be healable, owing to the intrinsic thermal reversibility of the polymer matrix. To the
best of our knowledge, the method proposed in this work represents the first demonstration of the
use of DA chemistry to fully recover and recycle fiber and matrix components from a thermoset,
without downcycling.

2. Materials and Methods

2.1. Materials

Bisphenol A diglycidyl ether (DGEBA), N,N-diglycidyl-4-glycidyloxyaniline (DGGO),
furfurylamine (FA), 1,1′-(methylenedi-4,1-phenylene)bismaleimide (BM), tetrahydrofuran (THF),
propylene carbonate, N,N-dimethylformamide (DMF), and dimethyl sulfoxide (DMSO) were purchased
from Sigma-Aldrich (Milan, Italy) while methanol was obtained from Fisher Chemical (Milan, Italy).
Reagents and solvents were used as received. Epoxy resin Araldite BY158 and hardener Aradur 2992
CH were provided by Huntsman (Varese, Italy). Milled carbon fibers (PX30, average fiber length
150 µm), carbon nonwoven mats (Optiveil, 20 g/m2 area density), and carbon unidirectional fabric
(30 g/m2 area density) were purchased from ZOLTEK (Nyergesujfalu, Hungary), TFP (Kendal, UK),
and R&G Faserverbundwerkstoffe (Waldenbuch, Germany), respectively.

2.2. Synthesis of Furan Precursors

Furan derivatives of DGEBA (2F) and DGGO (3F) were synthesized according to a reported
procedure [35]. Typically, DGEBA (6.0 g, 17.6 mmol) was dissolved in 10 mL of methanol in
a round-bottom flask equipped with magnetic stirrer, reflux condenser, and oil bath for heating.
FA (3.43 g, 2:1 molar ratio with respect to DGEBA) was added, and the solution was stirred for 5 h at
85 ◦C. Upon drying under vacuum, a yellow solid was obtained (bis-furan, 2F). Tri-furan (3F) was
obtained as an orange solid by reacting DGGO (6.0 g, 21.6 mmol) with FA (6.3 g, 3:1 molar ratio respect
to DGGO) following the same procedure. Yields were nearly quantitative in both cases. Complete
conversion of epoxide rings was confirmed by FTIR spectroscopy, monitoring the disappearance of
band at 910 cm−1 (C–O stretching in the oxirane ring).

2.3. Synthesis of Diels–Alder Polymer Networks

The 3F and 2F macromers, fed at different molar ratios, were dissolved in THF (20 wt %)
in a round-bottom flask equipped with a magnetic stirrer, an oil bath, and a reflux condenser.
A stoichiometric amount of BM (considering a 1:1 molar ratio between maleimide and furan groups)
was added to the mixture, and the reaction (DA cycloaddition) was allowed to proceed for 24 h under
agitation at 50 ◦C. The obtained gels were dried in a vacuum oven at 50 ◦C until constant weight and
grinded through ball milling. The reaction is depicted in Scheme 1.
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phenylene)bis-maleimide (BM). 
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min, 200 bar) and cooled down (2.5 h) to room temperature. Composites with short carbon fibers 
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stoichiometric amount of BM, the reaction mixture was heated on a hot plate at 50 °C under agitation 
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Scheme 1. Schematic representation of cross-linking and de-cross-linking of furan-modified
bisphenol A diglycidyl ether (DGEBA, 2F) and N,N-diglycidyl-4-glycidyloxyaniline
(DGGO, 3F) blends via Diels–Alder (DA) and retro-Diels–Alder (r-DA) reaction with
1,1′-(methylenedi-4,1-phenylene)bis-maleimide (BM).

2.4. Composite Fabrication

Composite films were prepared by compression molding in a JBT Engineering press. Briefly,
powdered DA polymer samples were spread in a mold over a polytetrafluoroethylene (PTFE) foil
and covered with a sheet of the unwoven mat or the unidirectional fabric. A second layer of polymer
powder was spread on the top, and an additional PTFE foil was placed on the sample. The weight
ratio between matrix and fibers was 20:1. The stack was heated (1 h at 120 ◦C or 140 ◦C), pressed
(30 min, 200 bar) and cooled down (2.5 h) to room temperature. Composites with short carbon fibers
were prepared by dispersing the fibers in a THF solution of 3F and 2F. Upon addition of stoichiometric
amount of BM, the reaction mixture was heated on a hot plate at 50 ◦C under agitation until most of
the solvent was evaporated. The resultant highly viscous liquid was poured in a polydimethylsiloxane
(PDMS) mold and dried in a vacuum oven (50 ◦C, 24 h).

2.5. Characterization

DA polymer samples were characterized in terms of infrared spectroscopy, determination of
insoluble fraction, and thermal properties. Fourier transform infrared (FTIR) spectra were recorded
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using a Thermo Nicolet Nexus 670 instrument (Thermo Fisher scientific, Waltham, MA, USA).
Measurements were performed on powders dispersed in KBr discs over a spectral range from 4000
to 600 cm−1 at a resolution of 4 cm−1, averaging 32 scans. For gel content analysis, dried samples
(prepared by compression molding) were weighed (w0) and immersed in THF (about 70 mL per 0.25 g
of material) for 24 h at room temperature under stirring. Samples were removed and dried in a vacuum
oven at 50 ◦C until constant weight (wf) was reached. Gel content was then calculated as the percentage
ratio between wf and w0. Differential scanning calorimetry (DSC) analyses were performed with a
DSC 823e Mettler Toledo instrument (Mettler Toledo, Columbus, OH, USA) by applying the following
thermal cycle: from 25 ◦C to 180 ◦C, from 180 ◦C to 0 ◦C, and from 0 ◦C to 200 ◦C, with a heating/cooling
rate of 20 ◦C/min. Thermogravimetric analyses (TGA) were performed with a Q500 TGA system (TA
Instruments, Milan, Italy) from ambient temperature to 800 ◦C at a scan rate of 10 ◦C/min both in air
and nitrogen atmosphere.

Scanning electron microscopy (SEM) images were obtained using a Zeiss Evo 50 EP SEM apparatus
(acceleration voltage of 20.0 Kv, Carl Zeiss, Oberkochen, Germany) on freshly crio-fractured surfaces
of fibers and composite samples.

Mechanical characterization was performed in terms of tensile tests and dynamic mechanical
analysis (DMA). Tensile properties were determined on the DA matrix and on the composites using
a Zwick/Roell Z10 universal testing machine (Zwick Roell, Ulm, Germany) equipped with a 10 kN
load cell and a long-stroke extensometer. Samples were 50 mm long, 5 mm wide, and 0.3 mm-thick
rectangular bars. A strain rate of 0.4 mm/min was applied. For each sample, at least 10 specimens
were tested, and the results were averaged. DMA was performed in tension mode, using a Mettler
Toledo DMA/SDTA861 apparatus (Mettler Toledo, Columbus, OH, USA). Samples were heated from
room temperature to 180 ◦C at 3 ◦C/min−1 rate and oscillation frequency of 1 Hz.

3. Results and Discussion

3.1. Synthesis and Characterization of Diels–Alder (DA) Polymer Networks

Furan precursors 2F and 3F were combined in different proportions in order to assess the role of
different degree of functionality and reacted with aromatic bismaleimide (BM) in solution (reaction
scheme reported in Scheme 1). The formation and precipitation of yellow-to-orange solids from
the THF solutions visually gave indication of successful crosslinking. An overview of the different
systems prepared is reported in Table 1. Samples have been coded using the targeted average furan
functionality (fav), calculated as follows,

fav =
2·n2F + 3·n3F

n2F + n3F
(1)

where n2F and n3F are the number of moles of the bis-furan and tri-furan compounds, respectively.

Table 1. Average furan functionality of 2F/3F blends and properties of the DA networks obtained
after crosslinking with BM, namely predicted critical extent of reaction (pc), Diels–Alder conversion,
and insoluble fraction in THF.

Sample 2F:3F
(mol:mol) fav f % pc

a DA Conv b

(%)
Gel Content

(%)

M25 1:1 2.5 3 0.60 0.79 70 ± 1 98.5 ± 0.5
M22 4:1 2.2 3 0.27 0.89 85 ± 2 98.6 ± 0.8
M21 9:1 2.1 3 0.14 0.94 85 ± 2 96.5 ± 0.5

a predicted according to Flory–Stockmayer model b calculated from FTIR.
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FTIR spectroscopy was used to assess the occurrence of the DA reaction between the furan
precursors and BM. Spectra of the crosslinked samples are shown in Figure 1.
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Figure 1. FTIR spectra of crosslinked samples M21, M22, M25 with different furan average functionality,
compared to aromatic bismaleimide (BM). In the inset, the peak associated to C–H in maleimide rings
(690 cm−1) is highlighted.

The peaks at 1774 cm−1 and 1185 cm−1, ascribed to C=O stretching and C–N–C stretching in
succinimide rings respectively, are characteristics of DA adducts [28,44,45] and were observed in all
the crosslinked polymers, while absent in the BM monomer. Comparing the BM spectrum with the
crosslinked polymers, the intensity of the band at 690 cm−1 (C–H out-of-plane bending in maleimide
rings) strongly decreased (inset of Figure 1), indicating reaction of maleimide groups.

The extent of DA reaction was estimated in terms of percent ratio of maleimide groups converted,
according to the following equation,

DA conv =

1− I690/I1712

IBM
690 /IBM

1712

× 100 (2)

where I690 and I1712 are the intensities of absorption bands of crosslinked samples at 690 cm−1 and at
1712 cm−1 (C=O stretching of maleimide, used as reference), respectively, while IBM

690 and IBM
1712 are the

intensities of the same bands in the bismaleimide spectrum. Results are reported in Table 1.
For M25 sample (equimolar ratio of 3F and 2F), a 70% conversion was obtained, significantly

higher than the one reported previously on the same material [35], where crosslinking was performed
by a thermal treatment at 80 ◦C in vacuum, up to 10 h. This result could be due to the longer curing steps
(24 h in THF and 24 h in vacuum) used in our procedure. In M22 and M21, an increase in the conversion
of maleimide groups (up to 85%) was observed. Critical extent of reaction (pc), that represents the
extent of reaction at the gel point was calculated according to the Flory–Stockmayer model [46] from
the equation

pc = [1 + ρ( f − 2)]−
1
2 (3)
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where f is the number of reactive functional groups on the branch unit (3F in our case), and ρ is the ratio
between the number of furan groups in the tri-functional monomer (3F) and the total number of furan
groups of the system. Thus, f was a constant and was equal to 3 for all formulations, while ρ varied
according to the different stoichiometry. Resulting pc values indicate that higher conversion at gel
point should be obtained by lowering the functionality of the system. Indeed, higher conversions were
obtained for M22 and M21 samples, compared to M25. Despite incomplete conversion of maleimide
groups, extraction experiments in THF indicated a very high insoluble (gel) fraction confirming the
high efficiency of crosslinking achieved through DA addition. M22 formulation can be considered the
best compromise between conversion at the gel point and gel fraction and was selected for most of the
following experiments.

3.2. Thermal Reversibility

DSC measurements were performed in order to study the thermal behavior of the DA polymer as
a function of multiple thermal cycles. Heating scans on M22 samples with different thermal histories
are reported in Figure 2.
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Figure 2. Differential scanning calorimetry (DSC) traces (heating scans) of M22 DA polymer network:
Freshly synthetized (2 consecutive thermal cycles); compression molded; after five molding processes.
Dashed lines indicate peak temperatures of retro-Diels–Alder.

The curve recorded during the first heating scan on the freshly synthetized material showed a broad
endothermic transition in the 120–180 ◦C temperature range, which is related to the retro-Diels–Alder
(r-DA) reaction. After cooling and re-heating the sample in the DSC apparatus (II scan), the transition
(while slightly shifted to higher temperature) was still present, thus confirming the reversibility of the
crosslinking process [35].

Thermal reversibility was practically established by processing the crosslinked polymer by
compression molding, where a longer thermal cycle (1 h at 120 ◦C, to allow de-crosslinking via r-DA,
followed by slow cooling to room temperature for DA) was applied, compared to DSC scans. Traces
of molded materials showed that the polymer network was still able to undergo r-DA transition.
Moreover, pressed samples were repeatedly recycled by grinding and re-molding under the same
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conditions, up to 5 times. DSC traces still exhibited a r-DA transition, proving the ability of the system
to retain its reversibility. The minimum observed in the r-DA temperature interval (TrDA) shifted to
higher temperature values over consecutive thermal cycles, suggesting an increasing chemical fatigue
in the DA-rDA process. This trend has been reported for similar furan/maleimide networks [47] and
ascribed to a change in the ratio between the two possible conformers of DA adducts [48] or to the
occurrence of other side reactions [37,49].

Further proof of thermal reversibility was obtained from simple gelation tests. The 2F and 3F
precursors are soluble in DMF at room temperature. On the other hand, once crosslinked with BM,
the resulting DA polymer becomes insoluble under the same conditions. Upon heating at 120 ◦C,
complete dissolution was achieved in 10 min (de-crosslinking through r-DA). The solution was cooled
down to room temperature and underwent gelation overnight (crosslinking through DA). Analogous
reversibility was observed in DMSO and propylene carbonate solutions.

3.3. Composites Preparation and Characterization

Composite films were prepared by compression molding (30 min, 120 ◦C, 200 bar followed by
slow cooling) a stack made of a foil of fibers (nonwoven mat or unidirectional) between two layers of
finely grinded MA22 (DA polymer with fav = 2.2), as shown in Figure 3. A matrix/fiber weight ratio of
20:1 was applied in order to visually impregnate and completely cover the fiber foils surfaces. Upon hot
pressing, the matrix forms a smooth and transparent layer, and it is possible to see the reinforcement
texture beneath. This can be an indication of satisfactory impregnation due to the lowering in viscosity
caused by the r-DA de-crosslinking [22].Polymers 2019, 11, x FOR PEER REVIEW 9 of 19 
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Figure 3. Steps of composites preparation: (A) Nonwoven mat, (D) unidirectional fibers covered with
a layer of powdered DA polymer (B,E) and after compression molding (C,F).

A study on the morphology of the two types of composites, reinforced with nonwoven mat or
with unidirectional fibers, was carried out by means of scanning electron microscopy (SEM) on freshly
fractured surfaces (Figure 4).
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Figure 4. Cross-sectional SEM micrographs of fractured surfaces of DA polymer composites with
(A,B) nonwoven carbon mat and (C,D) unidirectional carbon fibers.

As can be observed in Figure 4A, the DA/nonwoven mat composite has a sandwich-like structure,
where a layer of fibers is embedded between two layers of DA resin. At higher magnification (Figure 4B)
it can be noticed that the surface of fibers looks neat, and there are some voids in the matrix phase,
possibly resulting from pulling out of fibers during fracture. These features suggest that, while
impregnation is good enough, the fiber/matrix adhesion is not optimal. As for the DA/unidirectional
fibers composite, impregnation was not homogeneous along the fractured surface. In some points
fibers, are dispersed in the matrix phase (Figure 4C) while in other regions the matrix does not wet the
bundle of fibers (Figure 4D).

Mechanical properties of the composites were determined through tensile tests and were compared
to reference composites prepared from commercial epoxies (Figure 5). Notably, oligomeric DGEBA
(Araldite BY158) and amine crosslinker (Aradur 2992 CH) were mixed (100:34 w/w), roll painted on
both sides of fiber foils (nonwoven mat or unidirectional) and cured for 2 h at 100 ◦C.
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Figure 5. Tensile test results for neat DA polymer and its composites with nonwoven carbon mats
(DA/mat) and unidirectional carbon fibers (DA/UD) compared to reference composites (epoxy/mat
and epoxy/UD): (A) Median stress-strain curves, (B) Young’s modulus E, (C) tensile strength σmax,
and (D) maximum strain εmax.

Representative stress-strain curves (Figure 5A) show that all samples broke without apparent
plastic deformation. In particular, the neat DA polymer has a tensile strength (σmax) of 6 MPa,
similar to the one reported in the previous study [35]. Reinforcement provided superior properties,
as expected, markedly with unidirectional carbon fibers (DA/UD). Given that stress was applied along
the orientation of the fibers, unidirectional fabric provided better reinforcement than randomly oriented
ones in the mat. To rationalize from a theoretical standpoint the effect of the reinforcing fibers on the
mechanical properties of DA/UD composites, a theoretical value for Young’s modulus was calculated
(Ec), according to a rule of mixtures model [50],

Ec = ϕ · E f + (1−ϕ) · Em (4)

where ϕ is the volume fraction of the fibers and Ef and Em are the moduli of the fibers and of the
matrix, respectively. For DA/UD samples, ϕ was found to be 0.03 (calculated from the densities of
the fibers, 1.85 g/cm3 and of DA polymer, 1.15 g/cm3), Ef was 230 GPa (according to the specifications
provided by the manufacturer), and Em was 2.3 GPa (as determined experimentally). Therefore,
a maximum theoretical modulus of 9.16 GPa was calculated, in close agreement with the measured
value. Furthermore, mechanical properties obtained from the reference samples (epoxy/mat and
epoxy/UD) are similar but systematically higher than the DA composites, possibly due to the higher
content of embedded fibers (6.7 wt %).

Dynamic-mechanical thermal analysis (Figure 6) was carried out on the composites in order to
assess the response of storage modulus (E’) and damping factor (tan δ) to a temperature increase
(20–180 ◦C) during oscillatory loading.
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Figure 6. Storage modulus E’, loss modulus E” and damping factor tan δ from Dynamic mechanical
thermal analysis (DMTA) of M22 DA polymer reinforced with nonwoven mat.

The plot of the storage modulus exhibits a well-defined plateau up to 100 ◦C, followed by a
drop due to a transition from elastic to viscous behavior, ascribed to the r-DA reaction. Indeed,
the softening temperature, determined as the peak of the dissipative factor tan (δ) of the matrix
component (T = 145 ◦C), nicely corresponds to the TrDA peak observed in DSC traces (Figure 2).
The transition confirms thermal reversibility of crosslinked matrix while establishing an upper limit in
the application temperature of the composite. This limitation is characteristic of reversible thermosets
based on furan/maleimide DA chemistry [21].

3.4. Fiber Recovery through Solvolysis and Reuse

Recovery of the carbon fibers was performed by a solvolysis-like approach, based on the evidence of
reversibility of crosslinks in the DA matrix, gained from reversible gelation experiments. Three different
classes of carbon reinforcements were recovered: Milled fibers from the solution-cast composites,
non-woven mat, and unidirectional fabric from compression-molded composites.

Solvolysis experiments were performed by immersing samples of the different composites in
different high boiling solvents (about 10 ml per gram of sample), such as DMF, DMSO, and propylene
carbonate. Upon raising the temperature up to 120–125 ◦C (r-DA range) the solvent turned to
orange-to-brown color. After 30 min, black solids (mostly fibers) were collected by hot filtration over
a PTFE filter and dried in a vacuum oven at 50 ◦C until constant weight was reached. A very high
recovery yield (>96%) was achieved in all the tests. Purity of recovered fibers was estimated by TGA
measurements in inert atmosphere, preliminarily performed on the neat components (Figure 7A).
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Figure 7. (A) TGA plot of neat matrix (DA polymer) compared to the neat carbon fibers: Milled,
nonwoven mat, and unidirectional. Insert: Mass loss values recorded at 450 ◦C; (B) expanded
TGA plot of nonwoven mats recovered through solvolysis in different solvents compared to virgin.
TGA performed in inert atmosphere.

The thermogram of the matrix exhibits a single major decomposition event in the 350–450 ◦C
range, assigned to the parent epoxide monomer [51]. Residual weight (34.9%) recorded at 800 ◦C
indicates the formation of char due to the non-oxidative environment. This behavior has also been
reported for commercial epoxy resins [52] as well as for epoxy-based polymer networks based on DA
chemistry [36]. As for the reinforcements, milled fibers significantly degrade above 600 ◦C, owing to
the very high C content (>99%) as declared by the manufacturer, while nonwoven mats and UD fibers
start to decompose at lower temperatures due to the presence of organic binder or sizing. As a result,
the volatile content at a selected reference temperature (450 ◦C) significantly changes with the type of
fibers (insert of Figure 7A). Those values were compared with the weight loss of recovered fibers at the
same temperature, which are reported in Table 2 along with the experimental conditions used for the
solvolysis tests.
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Table 2. Solvolysis tests on M22 composites and results of TGA on the recovered fibers, namely weight
loss at 450 ◦C and estimated amounts of residual matrix. TGA performed in inert atmosphere.

Fiber Type Solvent Weight Loss at 450 ◦C
(%)

Estimated Matrix Residue
(%)

milled DMF 2.1 4.4

mat DMF 14.7 31.0
mat propylene carbonate 10.2 21.5
mat DMSO 2.3 4.9

UD propylene carbonate 17.7 37.4

Milled fibers exhibit a very low volatile content (2.1%) after recovery, clearly ascribed to the
presence of matrix residues. TGA curves of recovered mats from all the solvents are comparable with
the curve of the virgin mat (Figure 7B). In particular, for the mat recovered from DMSO, the volatile
content at 450 ◦C is even lower than the virgin mat, suggesting that DMSO was able to remove part of
the organic binder. However, the degradation step of the fiber sizing agent is overlapped with the one of
the matrix, thus it is not possible to ascribe this weight loss to the sizing or to the resin residue uniquely.
Since degradation of the matrix at 450 ◦C is not complete (Figure 7A), weight loss values would
represent just a fraction (47.5%) of the total residue on the fiber. Therefore, more conservative estimates
of the matrix residue on the fibers were calculated (Table 2), taking into account these considerations.

Overall, the purity of reclaimed fibers appears comparable to that obtained by means of low
or high temperature solvolysis procedures [53,54] and the more recent processes based on critical
or supercritical fluids [55–58]. Indeed, the recovery efficiency is high, considering that fibers were
recovered in a single step, batch process, while some of the most efficient solvolysis processes entail
semi-continuous conditions [58] and/or several washing steps [57] in order to reach low matrix residues
(<5 wt %).

A visual evidence of the fiber quality was obtained by SEM analysis. Specifically, images recorded
on the virgin non-woven mat (Figure 8A) confirmed the presence of the organic sizing wetting the
randomly oriented fibers. As a representative example, recovered samples from propylene carbonate are
found to contain matrix residues (Figure 8B), in agreement with the TGA results previously discussed.

The simple setup shown in Figure 8C allowed to recover the nonwoven mat reinforcement as a
whole, with no visible damage. After drying (50 ◦C, 24h) the mat was directly (re-)used in order to
fabricate a composite by hot pressing between two layers of freshly powdered DA polymer, as described
above. The obtained material was not visibly damaged by reprocessing. Tensile tests exhibited a
Young’s modulus of 3.2 GPa (97% of the original value) and a maximum stress of 8 MPa (13 MPa
in the virgin composite). The reduction in the tensile strength suggests the need for reprocessing
the fibers prior to further use in second generation composite by adding a suitable sizing that could
possibly improve adhesion with the matrix [3]. An additional recovery in propylene carbonate was
performed on the composite with the reprocessed mat. A 10.4% weight loss (10.2% after first solvolysis)
detected at 450 ◦C by TGA analysis in inert atmosphere substantially confirmed the reproducibility of
the recovery approach based on the DA chemistry proposed here.
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To assess the influence of the chemical composition of the matrix on the efficiency of the fiber
recovery process, solvolysis tests were also performed on composites based on M25 as matrix (DA
polymer with fav = 2.5) and non-woven fibers as reinforcements. For the fabrication of these composites,
a compression-molding temperature as high as 140 ◦C (20 ◦C higher than the one used to fabricate M22
composites, but still in the r-DA temperature range) was necessary in order to obtain homogeneously
and completely covered mats. The higher functionality of M25 required more severe processing
conditions compared to M22, in order to ensure proper flow of the material. The recovery process
performed in DMSO and DMF at 120–130 ◦C resulted in visually impure carbon mats covered with
insoluble gelled material. TGA measurements detected a weight loss of 30.0% and 55.4% at 450 ◦C
after solvolysis in DMF and DMSO respectively, confirming the high content of the residual matrix on
the fibers. This behavior can be attributed to the occurrence of side reactions during the composite
fabrication that could lead to formation of irreversible crosslinks. Indeed, given the temperature
employed and the presence of amine groups in the macromers and maleimide moieties from BM at the
applied temperature, Michael addition and/or radical polymerization cannot be excluded [22].
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3.5. Matrix Reuse as a Smart Coating

Solvolysis of composites resulted in the production of DA polymer solutions (with an average
concentration of about 0.1 g/mL) which, upon cooling to room temperature, spontaneously turned
to swollen gel (DA crosslinking). A potential reuse of such recovered DA polymer solutions as
smart repairable coatings was studied in this work by using a simple procedure that exploits thermal
reversibility coupled with the presence of the solvent used during the recovery. Thus, gels of DA
polymer swollen in DMF were heated to 120 ◦C until complete solubilization was achieved (r-DA
de-crosslinking). The so-obtained hot solutions of DA polymer in DMF were drop cast on pre-heated
glass slides. After the evaporation of most of the solvent, the obtained coatings were treated at 50 ◦C
in vacuum until constant weight was reached in order to ensure complete drying and crosslinking
through DA. In order to check their thermal repairability, coatings were manually scratched with a
scalpel (Figure 9A) and healed upon thermal heating followed by slow cooling to room temperature.
The scratch completely disappeared after heating at 120 ◦C for 1 h (Figure 9B), due to the ability of the
polymer to flow when the de-crosslinking (r-DA) temperature range is reached.
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Interestingly, the matrix material retains its reversibility after several thermal cycles (namely
compression molding, recovery in solvent, redissolution). This represents a clear advantage compared
to common thermochemical recycling processes, where the resin is irreversibly degraded during the
recovery of the fibers [6]. Furthermore, differently from cleavable epoxies [8,11–13] the matrix is
recovered, while preserving the ability of being re-crosslinked and directly re-employed, without the
need of being separated from the solvent, reprocessed, or added with fresh material or curing agents.
Finally, compared to other CANs approaches, re-crosslinking does not need expensive or unstable
catalysts [59] and results in a coating with the added value of self-healing, which, paired with its
epoxy-based nature, makes it attractive for potential corrosion protection application [60].

4. Conclusions

An innovative approach towards an efficient circular economy of carbon reinforced thermoset
composites is presented. A polymer network, synthetized from the reaction of furan-modified
commercial epoxides with a bismaleimide through DA addition, was employed as the matrix phase.

Thermal reversibility of the polymer network, demonstrated by solubility tests and DSC, allowed to
embed carbon nonwovens or fabrics in the matrix. Most notably, reversible crosslinking was the key to
reclaim the fiber content and the matrix at the same time through a one-step, selective dissolution in
common solvents. On one hand, purity of recovered fibers, assessed by TGA and SEM, reached 95%
and allowed reprocessing into composites with retention of Young’s modulus compared with the fresh
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ones. On the other hand, a first demonstration of direct reuse of the solution containing the residual
matrix in the production of a thermally healable coating was given.

In conclusion, the proposed recycling strategy, based on the intrinsic DA reversibility of the matrix,
enables higher sustainability than traditional solvolysis methods, since it employs common solvents,
in milder conditions of temperature, with full recovery of the composite components.
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27. Štirn, Ž.; Ručigaj, A.; Karger-Kocsis, J.; Krajnc, M. Effects of Diels–Alder Adduct and Lass Transition on the
Repeated Self-Healing of Aliphatic Amine-Cured Epoxy Resin. Macromol. Mater. Eng. 2018, 303. [CrossRef]

28. Moazzen, K.; Zohuriaan-Mehr, M.J.; Jahanmardi, R.; Kabiri, K. Toward poly(furfuryl alcohol) applications
diversification: Novel self-healing network and toughening epoxy–novolac resin. J. Appl. Polym. Sci. 2018,
135. [CrossRef]

29. Li, M.; Liu, N.; Chen, J.; Shi, K.; Li, Q. Development of reprocessable novel sulfur-containing epoxy based on
thermal treatment. RSC Adv. 2018, 8, 28386–28394. [CrossRef]

30. Karami, Z.; Zohuriaan-Mehr, M.J.; Rostami, A. Biobased Diels-Alder engineered network from furfuryl
alcohol and epoxy resin: Preparation and mechano-physical characteristics. ChemistrySelect 2018, 3, 40–46.
[CrossRef]

31. Xu, X.; Fan, P.; Ren, J.; Cheng, Y.; Ren, J.; Zhao, J.; Song, R. Self-healing thermoplastic polyurethane
(TPU)/polycaprolactone (PCL) /multi-wall carbon nanotubes (MWCNTs) blend as shape-memory composites.
Compos. Sci. Technol. 2018, 168, 255–262. [CrossRef]

32. Fang, L.; Chen, J.; Zou, Y.; Xu, Z.; Lu, C. Thermally-induced self-healing behaviors and properties of four
epoxy coatings with different network architectures. Polymers 2017, 9, 333. [CrossRef]

33. Dello Iacono, S.; Martone, A.; Pastore, A.; Filippone, G.; Acierno, D.; Zarrelli, M.; Giordano, M.; Amendola, E.
Thermally activated multiple self-healing diels-alder epoxy system. Polym. Eng. Sci. 2017, 57, 674–679.
[CrossRef]

34. Coope, T.S.; Turkenburg, D.H.; Fischer, H.R.; Luterbacher, R.; Van Bracht, H.; Bond, I.P. Novel Diels-Alder
based self-healing epoxies for aerospace composites. Smart Mater. Struct. 2016, 25. [CrossRef]

35. Postiglione, G.; Turri, S.; Levi, M. Effect of the plasticizer on the self-healing properties of a polymer coating
based on the thermoreversible Diels-Alder reaction. Prog. Org. Coat. 2015, 78, 526–531. [CrossRef]

36. Li, J.; Zhang, G.; Deng, L.; Jiang, K.; Zhao, S.; Gao, Y.; Sun, R.; Wong, C. Thermally reversible and self-healing
novolac epoxy resins based on Diels-Alder chemistry. J. Appl. Polym. Sci. 2015, 132. [CrossRef]

37. Kuang, X.; Liu, G.; Dong, X.; Liu, X.; Xu, J.; Wang, D. Facile fabrication of fast recyclable and multiple
self-healing epoxy materials through diels-alder adduct cross-linker. J. Polym. Sci. Part A Polym. Chem. 2015,
53, 2094–2103. [CrossRef]

http://dx.doi.org/10.1039/C8TA01801D
http://dx.doi.org/10.1007/s13770-018-0152-8
http://www.ncbi.nlm.nih.gov/pubmed/30603577
http://dx.doi.org/10.1002/adfm.201806765
http://dx.doi.org/10.1039/C8PY01731J
http://dx.doi.org/10.1016/j.progpolymsci.2012.04.002
http://dx.doi.org/10.1016/j.polymer.2015.10.031
http://dx.doi.org/10.1016/j.compscitech.2015.08.015
http://dx.doi.org/10.1016/j.jcis.2014.05.007
http://www.ncbi.nlm.nih.gov/pubmed/24998055
http://dx.doi.org/10.3390/polym10050474
http://www.ncbi.nlm.nih.gov/pubmed/30966508
http://dx.doi.org/10.11777/j.issn1000-3304.2017.17083
http://dx.doi.org/10.1002/mame.201800284
http://dx.doi.org/10.1002/app.45921
http://dx.doi.org/10.1039/C8RA04151B
http://dx.doi.org/10.1002/slct.201702387
http://dx.doi.org/10.1016/j.compscitech.2018.10.003
http://dx.doi.org/10.3390/polym9080333
http://dx.doi.org/10.1002/pen.24570
http://dx.doi.org/10.1088/0964-1726/25/8/084010
http://dx.doi.org/10.1016/j.porgcoat.2014.05.022
http://dx.doi.org/10.1002/app.42167
http://dx.doi.org/10.1002/pola.27655


Polymers 2019, 11, 1007 18 of 19

38. Bai, N.; Simon, G.P.; Saito, K. Characterisation of the thermal self-healing of a high crosslink density epoxy
thermoset. New J. Chem. 2015, 39, 3497–3506. [CrossRef]

39. Luo, K.; Xie, T.; Rzayev, J. Synthesis of thermally degradable epoxy adhesives. J. Polym. Sci. Part A Polym.
Chem. 2013, 51, 4992–4997. [CrossRef]

40. Bai, N.; Saito, K.; Simon, G.P. Synthesis of a diamine cross-linker containing Diels-Alder adducts to produce
self-healing thermosetting epoxy polymer from a widely used epoxy monomer. Polym. Chem. 2013, 4,
724–730. [CrossRef]

41. Scheltjens, G.; Brancart, J.; De Graeve, I.; Van Mele, B.; Terryn, H.; Van Assche, G. Self-healing property
characterization of reversible thermoset coatings. J. Therm. Anal. Calorim. 2011, 105, 805–809. [CrossRef]

42. Tian, Q.; Rong, M.Z.; Zhang, M.Q.; Yuan, Y.C. Synthesis and characterization of epoxy with improved
thermal remendability based on Diels-Alder reaction. Polym. Int. 2010, 59, 1339–1345. [CrossRef]

43. Liu, Y.L.; Hsieh, C.Y. Crosslinked epoxy materials exhibiting thermal remendablility and removability from
multifunctional maleimide and furan compounds. J. Polym. Sci. Part A Polym. Chem. 2006, 44, 905–913.
[CrossRef]

44. Araya-Hermosilla, R.; Fortunato, G.; Pucci, A.; Raffa, P.; Polgar, L.; Broekhuis, A.A.; Pourhossein, P.;
Lima, G.M.R.; Beljaars, M.; Picchioni, F. Thermally reversible rubber-toughened thermoset networks via
Diels–Alder chemistry. Eur. Polym. J. 2016, 74, 229–240. [CrossRef]

45. Liu, X.; Du, P.; Liu, L.; Zheng, Z.; Wang, X.; Joncheray, T.; Zhang, Y. Kinetic study of Diels–Alder reaction
involving in maleimide–furan compounds and linear polyurethane. Polym. Bull. 2013, 70, 2319–2335.
[CrossRef]

46. Flory, P.J. Molecular Size Distribution in Three Dimensional Polymers. I. Gelation. JACS 1941, 63, 3083–3090.
[CrossRef]

47. Toncelli, C.; De Reus, D.C.; Picchioni, F.; Broekhuis, A.A. Properties of Reversible Diels–Alder
Furan/Maleimide Polymer Networks as Function of Crosslink Density. Macromol. Chem. Phys. 2012,
213, 157–165. [CrossRef]

48. Canadell, J.; Fischer, H.; De With, G.; van Benthem, R.A.T.M. Stereoisomeric effects in thermo-remendable
polymer networks based on Diels–Alder crosslink reactions. J. Polym. Sci. Part A Polym. Chem. 2010, 48,
3456–3467. [CrossRef]

49. Tian, Q.; Yuan, Y.C.; Rong, M.Z.; Zhang, M.Q. A thermally remendable epoxy resin. J. Mater. Chem. 2009, 19,
1289–1296. [CrossRef]

50. Chawla, K.K. Composite Materials: Science and Engineering; Springer-Verlag: New York, NY, USA, 1987.
51. Bellenger, V.; Fontaine, E.; Fleishmann, A.; Saporito, J.; Verdu, J. Thermogravimetric study of amine

cross-linked epoxies. Polym. Degrad. Stab. 1984, 9, 195–208. [CrossRef]
52. Meyer, L.O.; Schulte, K.; Grove-Nielsen, E. CFRP-Recycling Following a Pyrolysis Route: Process Optimization

and Potentials. J. Compos. Mater. 2009, 43, 1121. [CrossRef]
53. Yang, P.; Zhou, Q.; Li, X.-Y.; Yang, K.-K.; Wang, Y.-Z. Chemical recycling of fiber-reinforced epoxy resin using

a polyethylene glycol/NaOH system. J. Reinf. Plast. Compos. 2014, 33, 2106–2114. [CrossRef]
54. Leroux, F.; Stimpfling, T.; Hintze-Bruening, H. Relevance and Performance of LDH Platelets in Coatings.

Recent Patents Nanotechnol. 2012, 6, 238–248. [CrossRef]
55. Keith, M.J.; Román-Ramírez, L.A.; Leeke, G.; Ingram, A. Recycling a carbon fibre reinforced polymer with a

supercritical acetone/water solvent mixture: Comprehensive analysis of reaction kinetics. Polym. Degrad.
Stab. 2019, 161, 225–234. [CrossRef]

56. Oliveux, G.; Bailleul, J.-L.; Gillet, A.; Mantaux, O.; Leeke, G.A. Recovery and reuse of discontinuous carbon
fibres by solvolysis: Realignment and properties of remanufactured materials. Compos. Sci. Technol. 2017,
139, 99–108. [CrossRef]

57. Keith, M.J.; Oliveux, G.; Leeke, G.A. Optimisation of solvolysis for recycling carbon fibre reinforced
composites. In Proceedings of the ECCM 2016—17th European Conference on Composite Materials,
Budapest, Hungary, 26–30 June 2016.

58. Henry, L.; Schneller, A.; Doerfler, J.; Mueller, W.M.; Aymonier, C.; Horn, S. Semi-continuous flow recycling
method for carbon fibre reinforced thermoset polymers by near- and supercritical solvolysis. Polym. Degrad.
Stab. 2016, 133, 264–274. [CrossRef]

http://dx.doi.org/10.1039/C5NJ00066A
http://dx.doi.org/10.1002/pola.26926
http://dx.doi.org/10.1039/C2PY20611K
http://dx.doi.org/10.1007/s10973-011-1381-4
http://dx.doi.org/10.1002/pi.2872
http://dx.doi.org/10.1002/pola.21184
http://dx.doi.org/10.1016/j.eurpolymj.2015.11.020
http://dx.doi.org/10.1007/s00289-013-0954-8
http://dx.doi.org/10.1021/ja01856a061
http://dx.doi.org/10.1002/macp.201100405
http://dx.doi.org/10.1002/pola.24134
http://dx.doi.org/10.1039/b811938d
http://dx.doi.org/10.1016/0141-3910(84)90049-1
http://dx.doi.org/10.1177/0021998308097737
http://dx.doi.org/10.1177/0731684414555745
http://dx.doi.org/10.2174/187221012803531529
http://dx.doi.org/10.1016/j.polymdegradstab.2019.01.015
http://dx.doi.org/10.1016/j.compscitech.2016.11.001
http://dx.doi.org/10.1016/j.polymdegradstab.2016.09.002


Polymers 2019, 11, 1007 19 of 19

59. Kuang, X.; Zhou, Y.; Shi, Q.; Wang, T.; Qi, H.J. Recycling of Epoxy Thermoset and Composites via Good
Solvent Assisted and Small Molecules Participated Exchange Reactions. ACS Sustain. Chem. Eng. 2018, 6,
9189–9197. [CrossRef]

60. Iacono, S.D.; Martone, A.; Amendola, E. Corrosion-resistant self-healing coatings. AIP Conf. Proc. 2018, 1990,
020010. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1021/acssuschemeng.8b01538
http://dx.doi.org/10.1063/1.5047764
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Materials 
	Synthesis of Furan Precursors 
	Synthesis of Diels–Alder Polymer Networks 
	Composite Fabrication 
	Characterization 

	Results and Discussion 
	Synthesis and Characterization of Diels–Alder (DA) Polymer Networks 
	Thermal Reversibility 
	Composites Preparation and Characterization 
	Fiber Recovery through Solvolysis and Reuse 
	Matrix Reuse as a Smart Coating 

	Conclusions 
	References

