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Introduction
Hodgkin lymphoma (HL) is a relatively rare 
malignant disease of the hematological system. 
HL can be divided into classic Hodgkin lym-
phoma (cHL) and nodular lymphocyte-predomi-
nant HL (NLPHL). cHL can also be further 
subdivided into four subtypes, namely, nodular 
sclerosis HL (NSHL), mixed cellularity HL 
(MCHL), lymphocyte-rich HL (LRHL), and 
lymphocyte-depleted HL (LDHL).1 Because 
NLPHL accounts for only about 10% of HL, this 
review will focus mainly on cHL.

The main tumor cells of cHL are HRS cells 
(Hodgkin Reed-Sternberg), which are currently 
thought to originate from the germinal center, pos-
sess gene expression similar to that of CD30+ 
extrafollicular B-cells, and lack markers, including 
CD19 and CD79α. Although such cells will be 
quickly cleared under immune system surveillance, 
some of them not only survive the immune system 
but also transform into HRS cells through mecha-
nisms such as constitutive activation of NFκB, 
JAK-STAT, and other signaling pathways.2

Research has identified genetic lesions and related 
pathways for HL (Table 1), as technologies such 
as next-generation sequencing (NGS) have 
matured and become widespread, an increasing 
number of disease-related mutant loci are being 
identified. More and more patients are choosing to 
include genetic sequencing as part of their general 
screening program. Therefore, here, we summa-
rize the genetic lesions, related pathways, and tar-
geted therapy for HL, and by reviewing previous 
studies on the functions of these genes, we gener-
ated hypotheses regarding the mechanisms by 
which these genes increase the risk of HL and pro-
vide directions for future therapy. The genetic 
lesions related to HL include somatic mutations, 
germline mutations, and structural variations. The 
included literature was obtained from PubMed.

Genetic lesions and related pathways
There are many pathways related to somatic muta-
tions and structural variations, including the JAK-
STAT pathway, NFκB pathway, immune evasion, 
cell cycle, and DNA repair. However, germline 
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genetic abnormalities also play an important role 
in HL. In a study of 153,115 patients with pri-
mary malignant hematologic disease in the 
Swedish Family-Cancer Database, researchers 
measured the familial relative risks (FRRs) of 
malignant hematologic disease by calculating the 
standardized incident ratios (SIRs) of a total of 
391,131 first-degree relatives of these patients, 
ultimately finding that familial risk exists.68 Similar 
conclusions have been drawn in several other anal-
ogous studies.69–71 In a cohort of 13,922 HL 
patients with 57,475 first-degree relatives in five 
European countries, the cumulative risk (CR) of 
HL in first-degree relatives of a patient with HL 
was 0.6%,72 showing a three-fold increased risk 
over the general population [standardized inci-
dence ratio: 3.3; 95% confidence interval (CI): 
2.8–3.9]. Besides, the familial risks were higher in 

siblings (6.0-fold) than those in parents and/or 
children (2.1-fold). Some subtypes showed signifi-
cantly high familial risks, especially in lympho-
cyte-rich (81-fold; 95% CI, 30- to 177-fold) and 
nodular sclerosis patients (4.6-fold; 95% CI: 2.9- 
to 7.0-fold). Even so, further research is still 
needed to better understand the potential mecha-
nism of the familial aggregation of HL as no major 
high-penetrant gene has yet been identified till 
now. These studies are sufficient to prove that 
there are indeed familial predisposition and 
genetic risk factors for HL, representing the 
impact of germline genetic lesions.

Primary immunodeficiency-related genetic lesions
Epstein–Barr virus (EBV) mainly infects human 
B cells. It is considered the pathogen of 

Table 1. Frequencies of gene mutations and related SVs involved in different pathways in HL.

Subgroup Gene

Primary immunodeficiency ITK3,4 (8/21); MAGT15 (7/37); RASGRP14,6 (2/9); CD277–9 (9/33); CD706,10 (9/21); 
TNFRSF911,12 (2/9); STK4,13,14 (2/29); CTLA46 (3/21)

JAK-STAT SOCS-115,16 (20/34); SOCS-617 (16%); PTPN118,19 (2/34); PTPN220 (3%)a; 
STAT621,22 (11/34); STAT321 (2/34); STAT5B21 (1/34); JAK123,24 (2/34); JAK217,25 
(11/33); GNA1321 (8/34); ITPKB21 (4/25); XPO126,27 (6/34)

NFκB TNFAIP328–30 (42/90); NFKBIA31–35 (11/59); CYLD36,37 (18/42); NFKBIE31 (1/6); 
TRAF338 (3/20); REL39–43 (56/138); MAP3K1438,41 (18/69); TNFRSF1441,44 
(15/72); BCL345–47, b

Immune evasion PDL148, c; PDL248, c; FAS49–51 (4/16); CIITA52,53 (2/23); B2M54 (39%); PRF155 (1/6); 
CD5856,57, a

DNA repair ATR58 (3/7)

Clonal hematopoiesis DNMT3A59 (3/40); KRAS59 (3/40); TET2 (3/40)59,60

Cell cycle KLHDC8B61, d; TP5362,45 (3/34); NPAT63 (16/177)

Cell adhesion CDH1,64, e

Mirna related DICER1,65, d

Chromosome instability POT1 (5/124)

Other PTPN11,66, f; ATM63,46 (1/8); PRSS1,47, a; PRSS2,47, a; PRSS3,47, a; ZHX2,67, a; 
FOXC1a

DNA, deoxyribonucleic acid; JAK-STAT, janus kinase–signal transducer and activator of transcription; NFκB, nuclear factor 
kappa-B.
aIn HL cell lines.
b8/32 (gains), 4/107 (translocations).
c61/108 (copy gain), 39/108 (amplification).
dIn a family with multiple cases of cHL.
e12/15 (9q21 loss); 9/15 (16q23 loss).
fCase report.
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infectious mononucleosis (IM) and is closely 
associated with oral hairy leukoplakia, Burkitt’s 
lymphoma, and so on. EBV invades the body and 
further infects primitive B-cells in the tonsils, 
wherein EBV can activate these cells to differen-
tiate into quiescent memory B-cells (latent state). 
Under certain circumstances, these cells will 
transform into an activated state to differentiate 
and proliferate massively, releasing EBV to infect 
new B-cells, which may be associated with HL.73 
In this process, the main immune response of the 
organism to EBV + B-cells is performed by cyto-
toxic T-lymphocytes (CTLs),73,74 whereas the 
spread of EBV is mainly prevented by cells such 
as natural killer NK, γδ T, and CD8 T-cells. 
Thus, the function of immune cells is particu-
larly important for the development of EBV-
associated HL.

Previous studies have shown that elevated levels 
of anti-EBV antigen antibodies can be detected in 
patients with HL and that such elevated antibody 
levels occur before the development of HL.75 
EBV is associated with approximately 40% of 
cases in developed countries, and previous stud-
ies showed MCHL is more likely to be EBV-
associated.76 Furthermore, adolescent and older 
adult patients are particularly likely to be EBV+.76 
However, young adults with HL in developed 
countries are usually EBV negative. Taken 
together, the association of EBV and HL varies 
with age, subtype, and region of the world.77

A large number of studies have reported genetic 
susceptibility genes associated with EBV + HL, 
and their pathogenesis can be broadly categorized 
into three stages: (1) genetic defects lead to 
immunodeficiency, (2) immunodeficiency causes 
EBV susceptibility, and (3) EBV infection trig-
gers HL. These genes and their possible mecha-
nisms for triggering EBV + HL will be described 
next, with a focus on the stage in which these 
genetic susceptibility genes lead to immunodefi-
ciency (Figures 1–3).

The process of killing EBV + B-cells by CTLs is 
the main pathway by which immune system 
responds to EBV infection, a process that involves 
the activation, expansion, and killing of 
CD8 + T-cells. The proliferation of CTLs can be 
mediated by molecules such as TCR and 
CD27-CD70, in which pathways such as the 
MAPK pathway are involved and crossover 
occurs, ultimately initiating downstream signals 

and activating the target gene. It has been sug-
gested that defective T-cell expansion is probably 
the primary explanation for a predisposition to 
severe/chronic EBV infection.74

ITK is also associated with EBV + HL,3,4 and its 
encoded product is an interleukin (IL)-2-induced 
tyrosine kinase belonging to the TEC/BTK  
family, which is expressed exclusively in 
T-lymphocytes and NK cells. ITK can partici-
pate in T-cell receptor (TCR) signaling by phos-
phorylating and activating PLC-γ1, and the 
activated PLC cleaves PIP2 to generate two sec-
ond messengers, namely, IP3 and DG. These two 
second messengers lead to processes such as the 
opening of calcium channels, activation of ERK 
(part of the MAPK pathway), the release of 
cytokines, and the reorganization of actin.78 In 
mice, it has been shown that the absence of ITK 
affects CTL expansion and delays the expression 
of cytolytic effectors during activation.79 Thus, 
ITK deficiency can lead to defective expansion 
and maturation of EBV-specific CTLs by inter-
fering with TCR activation signaling.6

The MAPK pathway plays an important role in 
the amplification of CTLs and NK cells. 
RASGRP1 has been reported to be one of the sus-
ceptibility genes of HL4,6 which is highly expressed 
in T-cells and NK cells, and encodes a small G 
protein RAS acting in the downstream RAF-
MEK-ERK kinase cascade (also known as the 
MAPK pathway). In T-lymphocytes and NK 
cells, RASGRP1 is a major activator of the MAPK 
pathway, and RASGRP1-deficient cells show 
defective MAPK pathway activation accompanied 
by downregulation of CTPS1 expression,74 which 
sustains the proliferation of activated lymphocytes 
by the MAPK pathway. CTPS1 encodes CTP 
synthase 1, and CTP is a precursor required for 
the metabolism of DNA, RNA, and phospholipids 
involved in DNA synthesis in lymphocytes.80

CD27 encodes a protein belonging to the TNF 
receptor superfamily (TNFSFR), also known as 
TNFSFR7. CD27 binds to CD70 (also called 
TNFSF7), a ligand of the TNF superfamily, and 
is a co-stimulatory molecule for T-cell activation. 
The expression of CD70 is upregulated on EBV-
infected B-cells, and CD70 drives EBV-specific 
CTL proliferation via TCR-CD27-dependent 
co-stimulation. Defects in CD27/CD70 are asso-
ciated with EBV + HL,4 with reports showing 
EBV + HL in four of six CD70-deficient 
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Figure 1. Relationship between EBV, genetic lesions, and HL.
The genes in the yellow box are the ones with abnormalities seen in HL.
EBV, Epstein–Barr virus; NKG2D, natural-killer group 2, member D; MICA, MHC class I chain-related molecule A; MHC, 
major histocompatibility complex; TCR, T-cell receptor.

Figure 2. The activated pathway in T-cells after the recognition of EBV-infected B-cells.
The transcription factors YAP, TAZ, and NFκB promote cell growth, proliferation, and differentiation. The gray boxes refer to 
molecules involved in the pathway.
MHC, major histocompatibility complex; TCR, T-cell receptor; NKG2D, natural-killer group 2, member D; MAGT1, 
magnesium transporter 1.
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patients7–9 and 3 of 18 CD27-deficient patients.6 
It was found that the expansion of EBV-specific 
cytolytic T-cells depends on CD70 expressed on 
the surface of EBV-infected B-cells via the co-
engagement of TCR (actually CD3) and CD27 
on T-cells.7 Although the exact mechanism by 
which CD27-CD70 mediates CD8 + T-cell pro-
liferation remains unclear, it has been suggested 
that CD27 can function as a co-stimulatory mol-
ecule of the TCR-dependent lymphocyte activa-
tion pathway,7,81 to some extent reinforcing the 
importance of CD27 and CD70 for EBV-specific 
T-cells. When CD70 is not available on EBV-
infected B-cells or CD27 is not available on 
T-cells, the proliferation of EBV-specific T-cells 
is blocked, resulting in a reduced cytotoxic 
response to EBV-infected B-cells.82

MAGT1 is a kind of magnesium ion transporter 
protein gene, and its loss-of-function mutation 
can lead to XMEN (X-linked immunodeficiency 
with magnesium defect, EBV infection, and neo-
plasia).6 The function of MAGT1 mainly involves 
two aspects: driving magnesium ions into the cell 
and N-linked glycosylation (NLG). TCR activa-
tion was found to promote magnesium entry into 
cells as well as calcium release from the ER, and 

loss of MAGT1 impaired PLCc1 activation. 
However, the TCR-stimulated influx of both 
magnesium and calcium ions were reduced in 
normal human T-cells after the knockdown of 
MAGT1. The influx of both calcium and magne-
sium was restored in patients.83 Recent studies 
have revealed that MAGT1, a subunit of the OST 
(oligosaccharyl transferase) complex,5 is primarily 
localized to the ER and is a facilitator of NLG. 
MAGT1 deficiency negatively affects processes 
such as N-glycosylation. The reduced level of gly-
cosylation of the EBV killing-related activating 
receptor NKG2D in such patients leads to its 
degradation and decreased expression in NK and 
T-cells. Decreased level of glycosylation and 
expression of CD28, CD70 and other genes were 
reported,5 which affected the expansion of CTL 
activation and the killing of EBV + B-cells by 
CTLs and NK cells.

In addition, TNFRSF9 deficiency (CD137/4-
1BB) affects the function of CTLs and NK cells, 
which may be related to HL [2/8 in reported IEI 
(inborn errors of immunity) patients].11,12 CD137 
can be induced by CD137L (mainly expressed on 
dendritic cells, macrophages, activated T-cells, 
and B-cells) after the activation of CTLs and NK 

Figure 3. The activated pathway in NK cells after the recognition of EBV-infected B-cells.
The transcription factors YAP, TAZ, and NFκB promote cell growth, proliferation, and differentiation. The gray boxes refer to 
molecules involved in the pathway.
NKG2D, natural-killer group 2, member D; MAGT1, magnesium transporter 1.
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cells. Previous studies have shown that the 
CD137L-CD137 pathway results in the release of 
perforin and cytokines [such as interferon (IFN)] 
and that CD137-deficient patients often show a 
deficiency in this area.4

Defects in CTLA4 can lead to CTLA4 haploin-
sufficiency (HI), an immune dysregulation disor-
der characterized by overactive T-lymphocytes and 
a generalized lymphoproliferative and autoim-
mune disorder.6 Patients with CTLA4 haploinsuf-
ficiency have a dysregulated T-cell response to 
EBV infection secondary to excessive T-cell activa-
tion and apoptosis, senescence, and shedding.

JAK-STAT pathway and related genetic lesions
The JAK-STAT pathway plays an essential role 
in the occurrence of HL20 (Figure 4). The persis-
tent activation of the JAK-STAT pathway is also 
a feature of HL. Activation of these receptors 
activates receptor-associated JAK, which acts as a 
kinase to phosphorylate tyrosines in specific 
regions of the receptor and recruit proteins, 
including STAT. This pathological process can 
lead to hyperphosphorylation  
of a variety of STAT proteins, which induces 

carcinogenesis by transcriptionally regulating the 
activation of downstream targets, such as the 
proto-oncogene MYC, and abnormalities of  
this channel in cancer also influence the effect  
on tumor cells of cytokines secreted in the 
microenvironment.84,85

In HRS cells, cytokine receptors on the cell sur-
face undergo conformational changes and bind to 
JAKs when activated by specific cytokines, caus-
ing the phosphorylation of JAKs. Phosphorylated 
JAKs continue to activate downstream mole-
cules, such as STAT and PI3K, and regulate the 
expression of various survival molecules described 
above through the JAK-STAT, PI3K-ATK, Ras-
MAPK, and other pathways.20

Indeed, although constitutive activation of the 
JAK-STAT pathway is common in HL, muta-
tions in the JAK gene are not. A JAK1 activating 
mutation that promotes constitutive activation of 
the JAK-STAT pathway has been reported in HL 
cell lines, but the mutation is relatively rare in 
patients. In addition, researchers have identified a 
gain-of-function mutation, namely, JAK2 V617 
F, which maintains a sustained activation state 
and transmits signals to downstream signaling 

Figure 4. Graphical representation of the pathways in HL where genetic abnormalities frequently occur.
The gray boxes refer to molecules involved in the pathway.
NPC, nuclear pore complex; PD1, programmed cell death protein 1; PDL1, programmed cell death 1 ligand 1; MHC, major 
histocompatibility complex; TCR, T-cell receptor.
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molecules even though no cytokine binds to the 
corresponding receptor.23,24 In another study 
involving JAK2 and HL, the investigators also 
identified a genetic abnormality caused by a 
translocation: t (4;9) (q21; p24), leading to the 
production of the fusion protein SEC31A-JAK2. 
SEC31A-JAK2 is present in approximately 3% of 
HL patients and promotes constitutive activation 
of the JAK-STAT pathway.25 Notably, both of 
these JAK2 gene abnormalities are sensitive to 
JAK2 inhibitors, suggesting that targeted therapy 
with JAK2 antagonists may be effective in these 
patients. In a study involving 23 patients with 
new-onset HL, HRS cells were isolated from 
biopsied tumor tissues, and whole-exome 
sequencing was performed. The results revealed 
the presence of 9p/9p24.1 copy gain in approxi-
mately 13% of the cases, suggesting an associa-
tion of JAK2 with HL, given that JAK2 was 
localized to 9p24.1.17 Mutations in STATs, a 
downstream molecule of JAKs, are also more 
common in HL patients,21 such as missense 
mutations occurring in the DNA binding domain 
of STAT6 (11/34), the activating mutation 
D661Y in the SH2 domain of STAT3,22 and the 
activating mutation T628S in the SH2 domain of 
STAT5B.

Both SOCS and PTPN are negative regulatory 
molecules of the JAK-STAT pathway and inhibit 
the JAK-STAT pathway by dephosphorylating 
JAKs. Studies have found a possible association 
between genetic abnormalities in these genes and 
HL.15,16,86,87 In a study that included 105 cHL 
patients, researchers found that 61% of patients 
(64/105) had mutations in the SOCS1 gene and 
that patients with these mutations often had a 
worse prognosis than HL patients without SOCS1 
mutations (P = 0.03), as judged by overall sur-
vival. In another study, PTPN1 mutations were 
found in 20% of HL patients (6/30) versus 67% 
of HL cell lines (6/9), and functional studies of 
mutant cells revealed enhanced JAK-STAT path-
way activity and increased phosphorylation of 
some molecules, including JAK, in these cells, 
suggesting a possible association between PTPN1 
gene mutations and HL pathogenesis. Similarly, 
abnormalities in the genes corresponding to 
GNA13 and ITPKB, which are regulatory mole-
cules of the JAK-PI3 K-AKT pathway, were also 
found to be associated with HL.21 In addition, the 
expression product of the XPO1 gene can assist 
molecules (transcription factors, etc.) in entering 
the nucleus through the nuclear pore complex, 

and through this mechanism, XPO1 is involved 
in multiple pathways regulating gene expression, 
including JAK-STAT and NFκB. A study found 
that the XPO1 E571 K mutation was present in 
approximately 24.2% of HL patients and that 
patients carrying this mutation had shorter pro-
gression-free survival (p = 0.0601), suggesting its 
potential value in the diagnosis and prognosis of 
HL.26,27

NFκB pathway and related genetic lesions
Persistent activation of the NFκB transcription 
factor is one of the hallmarks of HL and activated 
NFκB can be detected in almost all malignant 
HL cells. Unlike the NFκB pathway of T-cells 
mentioned previously, this is the NFκB pathway 
of HRS cells, whose downstream actions include 
the regulation of anti-apoptotic factors, the 
expression of proinflammatory CK, and B-cell 
reprogramming2 (Figure 4).

Generally, the NFκB pathway can be divided into 
two categories: the classical pathway and the non-
classical pathway. In the classical pathway, CD40 
and CD30 activate the IKK complex via TRAFs, 
and the activated IKK complex promotes the 
degradation of the NFκB factor (p50/p65) inhibi-
tors IκBα and IκBκ. The released NFκB enters 
the nucleus through the nuclear pore complex 
and regulates gene expression. Similarly, CD40 
activated by CD40L in the nonclassical pathway 
activates the IKK complex through MAP3K14, 
and the activated IKK complex promotes the 
conversion of p100 to p52, which in turn pro-
motes the formation of the NFκB factor (p52/
RelB).88,89

In the classical NFκB pathway, the genetic 
abnormalities reported thus far focus on several 
positive or negative regulators. The gene expres-
sion products of TNFAIP3 and CYLD are nega-
tive regulatory molecules. The coding product of 
TNFAIP3, A20, can degrade the classical NFκB 
pathway through the LUBAC (linear ubiquitin 
chain assembly complex)-A20 axis by ubiquit-
ination.90 Mutations in TNFAIP3 are more com-
mon in EBV-negative HL, with several studies 
finding TNFAIP3 mutations in approximately 
40% of cHL patients.28–30 Follow-up functional 
assays have revealed the diminished function of 
the LUBAC-A20 axis after mutation. CYLD, 
similar to TNFAIP3, can also act as a tumor sup-
pressor by encoding a deubiquitinating enzyme 
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that inhibits the NFκB pathway, but in known 
studies, CYLD mutations (mostly deletions) are 
mainly present in HRS cell lines36,37 and are less 
common in HL patients. NFKBI encodes NFκB 
inhibitors, including IkBα and IkBε. NFκB inhib-
itors inhibit the NFκB pathway by binding to 
NFκB and inhibiting its function. Common 
NFKBI genetic abnormalities include SNVs and 
deletions,31–35 leading to a decrease in its function 
and promoting the persistent activation of the 
NFκB pathway. The coding product of REL is 
one of the transcription factors of the classical 
NFκB pathway, and the most common REL 
abnormality in HL patients is amplification 
(56/138), so there is no doubt that genetic abnor-
malities of REL are potentially associated with 
the persistent activation of the NFκB path-
way.39–43 In addition, there is an important gene 
(BCL3) in the classical NFκB pathway that fre-
quently undergoes CNV or translocation.39,91,92 
The BCL3 protein promotes NFκB activity by 
binding to the p50 homodimer and increasing its 
activity.

In the nonclassical NFκB pathway, genetic lesions 
of the MAP3K14 and TRAF3 genes are relatively 
common. As mentioned above, MAP3K14 
(NFκB-inducing kinase, NIK) activates the IKK 
complex after receiving CD40 signals and pro-
motes the formation of the NFκB factor (p52/
RelB). In contrast, TRAF3, an inhibitory mole-
cule of the nonclassical NFκB pathway, leads to 
the degradation of NIK. In the absence of 
upstream signals of the nonclassical NFκB path-
way, NIK is degraded by TRAF3 and kept at a 
low level. In contrast, in the presence of upstream 
signals, TRAF3 is degraded, and the level of NIK 
increases, mediating the conduction of the non-
classical NFκB pathway. According to the study, 
a common abnormality of the MAP3K14 gene is 
copy number gain,38,41 while the TRAF3 gene 
often undergoes deletions,38 with the former pro-
moting NIK activation of the IKK complex and 
the latter decreasing the inhibitory effect of 
TRAF3 on NIK.

In addition, there are genes whose functions are 
not fully defined or cannot be classified solely as 
classical/nonclassical NFκB pathways. For exam-
ple, TNFRSF14 (CD270, HVEM) is considered 
to be a tumor suppressor gene in other B-cell lym-
phomas, and its deletions are found in approxi-
mately 20% of cHL patients.41,44 The AKT1 gene 
often undergoes copy number gain and is thought 

to be associated with the NFκB pathway.93 
NOTCH1, one of the transcription factors of the 
NFκB pathway, also frequently undergoes copy 
number variation.93

Immune evasion in HRS cells and related 
genetic lesions
Previous studies have shown that the human 
immune system is capable of killing tumor cells, 
but malignant tumors often possess the ability of 
immune escape. The mechanisms of immune eva-
sion are diverse and include the tumor microenvi-
ronment, genetic alterations, and so on. Specifically, 
in cHL, previous studies have identified chromo-
some 9p/9p24.1 abnormalities as one of the most 
common genetic abnormalities in cHL, and corre-
spondingly, increased 9p/9p24.1 copy number 
often leads to increased expression of PD1 ligands 
in HRS cells. These HRS cells bind to PD1 recep-
tor-positive cells and undergo immune evasion 
through the PD1 signaling pathway.94 In other 
words, the immune evasion by HL not only pre-
vents the immune system from killing itself but also 
facilitates the participation of these immune cells in 
the formation of the tumor microenvironment, 
which contributes to the survival of HRS cells.

As mentioned above, the PD1-PDL1 pathway 
plays a significant role in immune evasion in HL 
patients, and abnormalities in related genes are 
often associated with the amplification of 
9p24.1.17,48,94 In addition, there are other immune 
evasion-related pathways. For example, CD4 and 
CD8 cells kill HRS cells through TCR-MHC I/II, 
but MHC copy loss is often present in cHL 
patients.95,96 In addition, B2M, which is one of the 
components of the MHC I molecule, also fre-
quently undergoes inactivating mutations.54 The 
coding product of CIITA (Class II Major 
Histocompatibility Complex Transactivator) is 
located in the nucleus and functions as a positive 
regulatory molecule of MHC II transcription. 
This study identified tandem duplication and bal-
anced translocations of the CIITA gene (HLA-
DQB1).52,53 The significance of the former is 
unclear, but functional assays have found that the 
latter can lead to CIITA inactivation and down-
regulation of MHC II expression. FAS (TNFRSF6, 
APT1, CD95) molecules carry the death domain 
(DD) and are involved in the formation of the 
death-inducing signaling complex (DISK), acti-
vating caspase molecules and leading to proteo-
lytic cell destruction. In vitro experiments have 
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shown that HRS cells are resistant to apoptosis 
induced by the FAS pathway and that this resist-
ance is associated with mutations in FAS.49–51,97 
The germline mutation p.I1711M in Dicer raises 
the risk of HL,65 and the coding product of Dicer 
is an endonuclease containing highly conserved 
tandem endonuclease structures, namely, RNase 
IIIA and RNase IIIB, which are required for 
microRNA (miRNA) biosynthesis and several 
other RNA interference phenomena. Their muta-
tions lead to impaired expression of tumor sup-
pressor miRNAs.65,98

The somatic hypermutation of immunoglobulin 
genes in B-cells results in different B-cell recep-
tors (BCRs). In the dark zone of the germinal 
centers, these B cells can be divided into two cat-
egories according to the affinity of the BCR 
(Figure 5). B-cells with a high-affinity BCR or 
non-self-reactive BCR can differentiate into 
plasma cells, memory B cells, and so on. B-cells 
expressing a low-affinity BCR or self-reactive 
BCR will be eliminated by Fas-mediated apopto-
sis in the light zone of germinal centers.99 It has 
been postulated that HRS cells may be derived 
from B cells that escape Fas-mediated apoptosis 
in the dark zone, although the details remain to 
be uncovered.99,100 Mutation of the FAS gene 
may participate in this process to some extent.

Genetic lesions in nodular lymphocyte-
predominant HL
NLPHL is a kind of follicle-derived germinal 
center B-cell lymphoma,1 whose tumor cells are 
not HRS cells but LP cells (lymphocyte-predom-
inant). Typical immunophenotype for NLPHL is 
CD20+, CD45+, CD79a+, BCL6+, PAX-5+; 
CD3–, CD15–, CD30–. For cHL, the type is 
CD15+, CD30+, PAX-5+ (weak); CD3–, 
CD20– (majority), CD45–, CD79a–. LP cells 
without CD30 and CD15 expression are consist-
ently positive for CD20. Due to the absence of 
CD30 and CD15, NLPHL is not associated with 
EBV infection.2 The first-line treatment of stage 
IA NLPHL is involved in Site Radiation Therapy. 
And in intermediate-stage and relapsed NLPHL, 
the active treatment consists of conventional 
chemotherapy, anti-CD20 antibodies, and radio-
therapy. Individuals with NLPHL usually have a 
good prognosis.101 Notably, genetic susceptibil-
ity genes associated with tumor cells have also 
been identified in NLPHL, including NPAT and 
TET2T.

Due to the mutation of SOCS1, the constitutive 
activation of JAK/STAT and NF-κB pathway is 
also shown in LP cells.87 However, many muta-
tions frequently found in HRS cells seem to be 
less frequent in LP cells, and the distinct genetic 
lesions of NLPHL have not been observed in 
cHL.102

Three highly recurrently mutated genes (DUSP2, 
JUNB, and SGK1) were revealed in an analysis of 
62 genes in NLPHL by targeted ultradeep 
sequencing.103 DUSP2 is a negative regulator of 
MAP, ERK, and JNK, though the role of DUSP2 
in NLPHL remains to be clarified.104 Truncating 
mutations of JUNB are frequently observed in LP 
cells,103 and Szremska AP’s study indicates that 
the JUNB possesses the tumor suppressor func-
tion in B-cells.105 The inhibition of SGK1 can 
induce apoptosis of NLPHL cell line DEV, which 
highlights the potential value of SGK1 in the 
treatment of NLPHL.103 Moreover, the translo-
cations affecting BCL6 have been identified in 
one-third of NLPHL cases.106,107

In an NLPHL family containing four cousins, an 
investigator found a truncating germline mutation 
of NPAT (nuclear protein, ataxia-telangiectasia 
locus) associated with NLPHL.63 The encoded 
product of NPAT is closely related to the regula-
tion of the cell cycle, and NPAT can be phospho-
rylated by the cell cycle protein E-dependent 
kinase 2 (CDK2) complex. Its expression level in 
the G1 to S phases of the cell cycle is consistent 
with the activity of the cell cycle protein E-CDK2 
complex, which promotes the shift of cells to S 
phase. Mutations in NPAT can lead to cell cycle 
NPAT, which also contributes to the activation of 
the ATM promoter, and mutations in ATM can 
be seen in a variety of hematological malignan-
cies.63 TET2T is a gene that predisposes to famil-
ial DNA demethylation. Its mutations lead to an 
increase in the methylation levels in the binding 
regions of major transcription factors involved in 
hematopoiesis,60 thus affecting the function of 
transcription factors with a binding preference for 
nonmethylated DNA, including RUNX1/2/3 and 
PU.1, leading to hematological aberrations. The 
association of these NLPHL-related genes with 
cHL has not yet been reported.

Treatment of HL
The treatment of HL has a long history, and the 
most commonly used chemotherapeutic regimen, 
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namely, ABVD (adriamycin, i.e., doxorubicin, 
bleomycin, vinblastine, and dacarbazine), was 
introduced more than 40 years ago.108 For 
relapsed/refractory cHL, several novel therapies 
have been put into clinical use, and most of these 
novel therapies are related to the signaling path-
ways mentioned above109,110 (Table 2). As seen in 
Table 2, targeted therapies for HL have focused 
on molecules such as CD30 and PD1. The for-
mer is upregulated in HRS cells and is involved in 
the hyperactivation of the NFκB pathway, while 
the latter is often abnormal at the genetic and 
chromosomal levels in HL patients, leading to 
immune evasion. In addition, the overactivated 
JAK-STAT pathway is one of the common tar-
gets, for example, ITF2357 was found to kill cells 
with mutated JAK2 (V617F), and idelalisib and 
everolimus can target molecules of the PI3K/
AKT pathway, which can be activated by JAK.

Antibody-drug conjugate
ADCs (antibody-drug conjugates) represent the 
coupling of an antibody to a cytotoxic drug, which 
are connected by a special chemical bond and 
contain three parts: the monoclonal antibody, 
connector, and cytotoxic small molecule (pay-
load).110 The main choice of mAb is IgG1, which 
has the advantage of a strong half-life and can 
mediate potent ADCC and CDC processes.  

In addition to IgG1, IgG2, and IgG4 and immu-
noglobulins other than IgG can be used as mAbs 
for ADCs. The ADC currently approved for HL 
is brentuximab vedotin (BV), which has the struc-
ture of anti-CD30 mAb + protease-cleavable 
linker + MMAE (a microtubule inhibitor). As 
mentioned earlier, HL patients tend to have 
genetic abnormalities in the NFκB pathway and 
enhanced signaling in this pathway, and CD30, 
an upstream molecule of the NFκB pathway, is 
upregulated in HRS cells, so BV can be used to 
target and kill HRS cells.

Immunotherapy
As mentioned above, immune evasion is very 
common in HL patients. This process encom-
passes multiple signaling pathways as well as mul-
tiple genetic abnormalities, such as PD1-PDL1 
and FAS. Immunotherapy has been applied to 
relapsed refractory HL, including pembrolizumab 
and nivolumab, which are PD1 antagonists that 
act mainly by inhibiting PD1-PDL1, which is 
upregulated in HL patients. The PD1-related 
mechanisms are described above. However, 
reports have shown that patients with HL treated 
with immunotherapy are at risk of developing an 
autoimmune reaction. This process may be caused 
by overactive T-cells, and patients often present 
with skin rash, pneumonitis, and so on.111–113

Figure 5. The selection of B-cells in germinal centers in classical Hodgkin lymphoma.
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Table 2. Clinical trials related to pathways above with exact results.

Drug Target Patient population Trial referencea Efficacy

ITF2357 HDAC, JAK2 
(V617F)

HL NCT00792467 PR: 20.83%
SD: 29.17%
PD: 37.50%
PFS: 164.53 days

Idelalisib PI3Kδ HL NCT01393106 ORS: 20% (95% CI: 6.8%–40.7%)
The median time to response: 2.0 months
The median duration of response: 8.4 months
median PFS: 2.3 months

Rituximab CD20 HL NCT00003820 CR: 67%
PR: 33%
Estimated 5-year PFS: 58.9% (95% CI: 38.0%–
91.2%)
Estimated 5-year OS: 85.7% (95% CI: 69.2%–100%)

Everolimus mTOR HL NCT01022996 ORS: 45.6% (95% CI: 32.4%–59.3%)
CR: 8.8% (5/57)
PR: 36.8% (21/57)
Median PFS was 8.0 months (95% CI: 5.1–11.0)

SGN-30 CD30 HL NCT00337194 OS at 1 year: 86% (95% CI: 61%–95%)
OR: 65.2% (15/23)
EFS: 11.3 months (4.7 to N/A)

Brentuximab 
vedotin

CD30 Relapsed or 
refractory HL

NCT01990534 ORR: 50%;
CR: 12%;
median PFS: 4.8 months (95% CI: 3.0 to 5.3)

Brentuximab 
vedotin

CD30 Childhood Hodgkin 
Lymphoma

NCT01920932 CR: 27 (35%) at ERA (early response assessment)
3-year EFS was 97.4%
OS was 98.7%

Brentuximab 
vedotin

CD30 HL NCT01712490 CR: 73/664
5-year PFS: 82·2% (95% CI: 79·0–85·0)

Brentuximab 
vedotin plus AVD

CD30 Limited-stage HL NCT01534078 CR: 96.9% (31/32)

Brentuximab 
vedotin plus ICE

CD30 Relapsed or 
refractory HL

NCT02227199 CR: 74% (95% CI: 58.8–86.5)

Brentuximab 
vedotin plus 
gemcitabine 
hydrochloride

CD30 Relapsed or 
refractory HL 
younger than 30 
years

NCT01780662 CR: 57% (95% CI: 41%–72%) within the first four 
cycles of treatment
PR: 31%

Brentuximab 
vedotin combined 
with bendamustine

CD30 HL NCT01874054 CR: 73.6% (95% CI: 59.67%–84.74%)
PFS: 44.2 months (95% CI: 20.9–49.0)
Duration of response: 43.0 (95% CI: 18.7–47.8)

Brentuximab 
vedotin combined 
with nivolumab

CD30, PD1 HL NCT02572167 ORR: 85%
CR: 67%
Estimated PFS rate at 3 years: 77% (95% CI: 
65%–86%); Overall survival at 3 years was 93% 
(95% CI: 85%–97%)

(Continued)
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Ongoing HL clinical trials
In addition to conventional chemotherapy, 
ADC, immunotherapy, and HSCT, novel thera-
pies for relapsed refractory HL are under inves-
tigation, such as Camidanlumab tesirine and 
CAR-T therapy (Chimeric Antigen Receptor 
T-Cell Immunotherapy).114–116 The former is an 
ADC based on an anti-CD25 monoclonal anti-
body with tesirine.117 The latter is an emerging 
therapy characterized by the artificial construc-
tion of CAR-T cells that recognize any cell sur-
face structure and produce cytotoxicity. In HL, 
clinical studies of CAR-T focus on anti-CD30 
CAR-T (Table 3). CD30 is upregulated on the 
surface of HRS cells and plays an important role 
in the sustained activation of the NF-κB path-
way (Figure 4).

Considering the frequent genetic lesions and 
associated pathways in HL patients as well as in 
HRS cells, treatment combined with genetic 
testing may be of some benefit. As mentioned 
above, the main genetic abnormalities in HL 
patients are most commonly found in the JAK-
STAT, NFκB, and other pathways, especially in 
the REL and TNFAIP3 genes. Therefore, 
patients with these genetic abnormalities can be 
treated with drugs such as inhibitors of the rele-
vant pathways. In addition to the above men-
tioned treatments, there are many drugs targeting 
HL that are still in clinical trials (Table 4), for 
example, various PD1 inhibitors, such as 
CS1001 and TQB2450; ipilimumab, which tar-
gets CTLA-4; itacitinib, which inhibits the 

JAK-STAT pathway; and LMP-specific CTLs 
for EBV-positive lymphoma.

Potential therapeutic targets
The essential role of JAK-STAT pathway and 
NF-κB pathway in HL has been proved in 
‘Genetic lesions and related pathways’, which 
emerged as promising targets for the treatment of 
HL, and parts of the novel therapies were listed in 
Tables 2–4. And the inhibitors of positive regula-
tors, transcription factors, and some kinases 
(Figure 2) are also promising targets for the treat-
ment of HL. For example, lestaurtinib, a multiki-
nase inhibitor, can inhibit the phosphorylation of 
JAK2, STAT5, and STAT3.118,119 PIM serine/
threonine kinases are downstream molecules of 
JAK-STAT and NF-kB pathways, and pan-PIM 
inhibitor targeting PIM kinases is included in the 
preclinical setting.120 As shown in Figure 2, the 
PI3K-AKT pathway is constitutively active in 
HRS cells, providing a strong rationale for target-
ing PI3K/AKT/mTOR in cHL patients.121,122 
Genetic lesions lead to the loss of function of 
some molecules in HL, especially those negative 
regulators and tumor suppressors. Recently, 
Boice et  al.123 have restored the tumor-suppres-
sive effects of TNFRSF14 in a xenograft mouse 
model through the HVEM ectodomain delivered 
by CD19 CAR-T cells.

Immune-related genetic lesions and pathways 
may broadly get involved in anti-EBV immunity 
and the immune surveillance of B-cells. The 

Drug Target Patient population Trial referencea Efficacy

Tislelizumab PD1 HL NCT03209973 CR: 67.1%
median PFS: 31.5 months
3-year PFS: 40.8%
OS rates: 84.8%

Pembrolizumab PD1 Untreated HL NCT03226249 CMR: 37% (11/30)

IBI308 PD1 Relapsed or 
refractory HL

NCT03114683 ORR: 85.4% (95% CI: 76.7%–91.8%)

Avelumab PD1 Advanced HL NCT02603419 CR: 19.4%

AVD, doxorubicin, vinblastine, and dacarbazine; CD, cluster of differentiation; CI, confidence interval; CMR, complete metabolic response; CR, 
complete remission; EFS, event-free survival; HDAC, histone deacetylase; HL, Hodgkin lymphoma; ICE, ifosfamide, carboplatin, etoposide; JAK, 
janus kinase; mTOR, mammalian target of rapamycin; N/A, Not available; OR, overall survival; ORR, objective response rate; ORS, overall response 
rate; OS, overall survival; PD, progression disease; PD1, programmed cell death protein 1; PFS, progression-free survival; PR, partial remission; 
SD, stable disease.
aTrial reference refers IDs found at ClinicalTrials.gov.

Table 2. (Continued)
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Table 3. Ongoing HL clinical trials evaluating CD30 CAR-T.

Trial referencea Status Study start date Locations Efficacy

NCT01192464 Active, not 
recruiting

2010/9/1 •  Houston Methodist Hospital Houston, 
Texas, United States.

•  Texas Children’s Hospital Houston, Texas, 
United States.

No results posted

NCT01316146 Active, not 
recruiting

2011/10/3 •  University of North Carolina Chapel Hill 
Chapel Hill, North Carolina, United States.

•  Houston Methodist Hospital Houston, 
Texas, United States.

•  Texas Children’s Hospital Houston, Texas, 
United States.

CR: 2/7
SD: 3/7
NR: 2/7
No adverse events 
related to CD30 CAR-T 
were reported

NCT02259556 Recruiting 2014/10/1 •  Chinese PLA General Hospital Beijing, 
Beijing, China.

No results posted

NCT02663297 Recruiting 2016/7/15 •  Lineberger Comprehensive Cancer Center 
at University of North Carolina–Chapel Hill 
Chapel Hill, North Carolina, United States.

•  Wake Forest University Winston-Salem, 
North Carolina, United States.

No results posted

NCT03383965 Recruiting 2017/3/1 •  Weifang People’s Hospital Weifang, 
Shandong, China.

No results posted

NCT02917083 Recruiting 2017/5/8 •  Houston Methodist Hospital Houston, 
Texas, United States.

•  Texas Children’s Hospital Houston, Texas, 
United States.

CR: 59% (19/32)
1-year PFS: 36% (95% CI: 
21% to 51%)
1-year OS: 94% (95% CI: 
79% to 99%)

NCT04288726 Recruiting 2020/9/16 •  Houston Methodist Hospital Houston, 
Texas, United States.

•  Texas Children’s Hospital Houston, Texas, 
United States.

No results posted

NCT04665063 Recruiting 2020/10/22 •  Hematology Department, Hebei Medical 
University Fourth Hospital Shijiazhuang, 
Hebei, China.

No results posted

NCT04653649 Recruiting 2020/12/4 •  Hospital Santa Creu i Sant Pau Barcelona, 
Spain.

No results posted

NCT04268706 Recruiting 2021/2/1 •  City of Hope Comprehensive Cancer 
Center Duarte, California, United States.

•  University of Chicago Medical Center 
Chicago, Illinois, United States.

•  Children’s Hospital of Philadelphia 
Philadelphia, Pennsylvania, United States.

• (And 2 more. . .).

No results posted

NCT04952584 Not yet 
recruiting

2021/9/1 •  Houston Methodist Hospital Houston, 
Texas, United States.

•  Texas Children’s Hospital Houston, Texas, 
United States.

No results posted

CAR-T, chimeric antigen receptor T-cell immunotherapy; CD, cluster of differentiation; CI, confidence interval; CR, complete remission; HL, 
Hodgkin lymphoma; NR, no response; OS, overall survival; PFS, progression-free survival; SD, stable disease.
aTrial reference refers IDs found at ClinicalTrials.gov.
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Table 4. Ongoing HL clinical trials evaluating other novel agents.

Drug Target Patient population Trial referencea Efficacy

SHR-1210 
(camrelizumab)

PD1 HL NCT03250962 Camrelizumab combined with 
Decitabine:
CR: 79% (95% CI 63%–90%);
Median PFS: 35.0 months (95% CI 
not reached)

SHR-1210 
(camrelizumab)

PD1 Advanced HL NCT04067037 No results posted

Nivolumab PD1 Relapsed or refractory HL NCT04091490 No results posted

Avelumab PD1 Advanced HL NCT03617666 No results posted

Pembrolizumab 
plus involved site 
radiation

PD1 Early stage relapsed or 
Refractory HL

NCT03179917 No results posted

CS1001 PD1 Relapsed or refractory HL NCT03505996 No results posted

Tislelizumab PD1 Early stage HL NCT04837859 No results posted

Tislelizumab PD1 Relapsed or refractory HL NCT04318080 No results posted

GLS-010 PD1 HL NCT03655483 CR: 32.9% (n = 28)
PR: 57.6% (n = 49)
12-month PFS: (95% CI: 67.5–85.6)
12-month OS: 99% (95% CI: 
91.9–99.8)

TQB2450 PD1 Relapsed or refractory HL NCT03800706 No results posted

Ibrutinib BTK HL NCT02824029 No results posted

Brentuximab 
vedotin

CD30 Early stage HL NCT04685616 No results posted

Brentuximab 
vedotin

CD30 Relapsed or refractory HL 
After ASCT

NCT03652441 No results posted

Brentuximab 
vedotin

CD30 Relapsed or refractory HL NCT01508312 PET-negativity rate: 27% (95% CI 
13%–40%, n = 12)

ADCT-301 CD25 Relapsed or refractory HL NCT04052997 No results posted

Basiliximab CD25 Relapsed or refractory HL NCT04871607 No results posted

Itacitinib plus 
everolimus

JAK1, mTOR HL NCT03697408 No results posted

Mocetinostat 
plus brentuximab 
vedotin

HDAC, CD30 Relapsed or refractory HL NCT02429375 No results posted

Ibrutinib plus 
nivolumab

BTK, PD1 Relapsed or refractory HL NCT02940301 No results posted

Magrolimab plus 
pembrolizumab

CD47, PD1 HL NCT04788043 No results posted

(Continued)
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Drug Target Patient population Trial referencea Efficacy

AZD4573 CDK9 Relapsed or refractory HL NCT05140382 No results posted

Nivolumab plus 
ipilimumab

CTLA-4, PD1 HIV associated relapsed 
or refractory HL

NCT02408861 Cell-associated unspliced (CA-
US) HIV RNA: 1.44-fold increase 
(interquartile range, 1.16–1.89) 
after the first dose of combination 
therapy (p = 0.031).

TAA-specific CTLs Tumor-associated 
antigens (TAAs)

HL NCT05134740 No results posted

Tinostamustine HDACs Relapsed or refractory HL NCT02576496 No results posted

LMP-specific CTLs LMP HL NCT01956084 2-year OS: 68%
There was one case of dose-related 
toxicity. (26 patients in this clinical 
trial)

MABEL CTLsb LMP, BARF-1, and 
EBNA1

HL NCT02287311 No results posted

ASCT, autologous stem cell transplant; BARF1, BamH1-A Reading Frame-1; BTK, Bruton’s tyrosine kinase; CDK9, cyclin-dependent kinase 9; CI, 
confidence interval; CR, complete remission; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; EBNA1, Epstein–Barr nuclear antigen 1; HDAC, 
histone deacetylase; HIV, human immunodeficiency virus; HL, Hodgkin lymphoma; JAK, janus kinase; LMP1, latent membrane protein 1; mTOR, 
mammalian target of rapamycin; OS, overall survival; PD, progression disease; PD1,  programmed cell death protein 1; PFS, progression-free 
survival; PR, partial response; RNA, ribonucleic acid.
aTrial reference refers IDs found at ClinicalTrials.gov.
bLMP, BARF-1, and EBNA1-specific cytotoxic T-lymphocytes.

alteration of those genes such as PD1 could ena-
ble malignant B cells to escape from T-cells, and 
the related abnormalities molecules can be opti-
mal targets for therapy since PD1 and CTLA4 
inhibitors are under clinical trials. For EBV-
associated HL with MAGT1 mutation, the role 
of magnesium supplementation in vivo and in 
vitro is being investigated.5 Moreover, the idea of 
using EBV-related antigens (LMP, EBER, and 
EBNA1.1) as therapeutic targets was suggested 
20 years ago.124 In primary immunodeficiency-
related HL with genetic lesions (such as  
ITK3, MAGT1, RASGRP14, CD27, CD70, 
TNFRSF9, and STK4), the restoration of nor-
mal immune function is helpful, which could  
be achieved through allogeneic BMT.125,126 
Furthermore, gene therapy is a promising direc-
tion for future research.

Future perspectives
Although the effect of some genetic aberrations 
that involve genes like JAK has been elucidated, 
the exact function of many genetic lesions remains 
less well defined. To solve these problems, animal 
models and in vivo studies are necessary. 

Furthermore, it may be meaningful to analyze the 
data from different HL groups. For example, 
sequencing of relapsed/refractory HL cases will 
be important to explore the mechanisms in resist-
ance, and the sequencing data from newly diag-
nosed patients would hint the causes of HL. 
Moreover, the appearance of ctDNA and single-
cell sequencing also will be helpful in identifying 
treatment-dependent patterns of clonal evolution 
and mirroring HRS cell genetics.

The introduction of the concept of precision 
medicine and the development of technologies 
such as sequencing have gradually highlighted the 
association between a patient’s genetics and dis-
ease, which is reflected in various aspects, such as 
diagnosis and prediction of prognosis. It has been 
found that next-generation sequencing of patients’ 
circulating tumor DNA (ctDNA), for example, 
can assist in determining the genetics and out-
come of HL patients at different clinical stages.127 
When combined with the common genetic lesions 
of HL mentioned above, ctDNA monitoring 
allows for the identification of the early-stage 
patients with refractory HL as well as the detec-
tion of residual disease in patients during 

Table 4. (Continued)
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treatment or remission. Besides, the cell genetics 
of HL can be mirrored by ctDNA, which could be 
further exploited as an easily accessible method to 
distinguish cHL genotypes. Fortunately, consist-
ent with the assumption, Camus et  al.128 and 
Spina et al.127 detected the variants of ctDNA to 
characterize the genetic features of cHL at the 
time of diagnosis, which greatly facilitate the 
assessment of early treatment response.

In addition, considering the existence of mecha-
nisms that can trigger chromosomal instability, 
such as POT1 gene abnormalities, as well as the 
association between primary immunodeficiency, 
EBV, and HL mentioned in the previous article, it 
can be speculated that specific genetic lesions may 
be associated with the development of HL. 
Therefore, by monitoring the presence of specific 
genetic lesions, it might be possible to predict the 
risk of patients developing hematological malignant 
diseases such as HL. In addition, for patients who 
already have HL, targeted therapies that target 
abnormal pathways involved in these abnormalities 
may be a new direction for future treatment.
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