
RESEARCH ARTICLE National Science Review
7: 620–628, 2020

doi: 10.1093/nsr/nwz177
Advance access publication 13 November 2019

MATERIALS SCIENCE

Algorithm-improved high-speed and non-invasive
confocal Raman imaging of 2D materials
Sachin Nair 1,†, Jun Gao 1,∗,†, Qirong Yao3, Michael H. G. Duits1, Cees Otto2

and Frieder Mugele1,∗

1Physics of Complex
Fluids, MESA+
Institute for
Nanotechnology,
University of Twente,
Enschede 7500 AE,
The Netherlands;
2Medical Cell
BioPhysics, TechMed
Centre, University of
Twente, Enschede
7500 AE, The
Netherlands and
3Physics of Interfaces
and Nanomaterials,
MESA+ Institute for
Nanotechnology,
University of Twente,
Enschede 7500 AE,
The Netherlands

∗Corresponding
authors. E-mails:
jun.gao@utwente.nl;
f.mugele@utwente.nl
†Equally contributed
to this work.

Received 27 August
2019; Revised 22
October 2019;
Accepted 27 October
2019

ABSTRACT
Confocal Raman microscopy is important for characterizing 2Dmaterials, but its low throughput
significantly hinders its applications. For metastable materials such as graphene oxide (GO), the low
throughput is aggravated by the requirement of extremely low laser dose to avoid sample damage. Here we
introduce algorithm-improved confocal Raman microscopy (ai-CRM), which increases the Raman
scanning rate by one to two orders of magnitude with respect to state-of-the-art works for a variety of 2D
materials. Meanwhile, GO can be imaged at a laser dose that is two to three orders of magnitude lower than
previously reported, such that laser-induced variations of the material properties can be avoided. ai-CRM
also enables fast and spatially resolved quantitative analysis, and is readily extended to 3Dmapping of
composite materials. Since ai-CRM is based on general mathematical principles, it is cost-effective, facile to
implement and universally applicable to other hyperspectral imaging methods.
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INTRODUCTION
Confocal Raman microscopy (CRM) has become
one of the most widely used analytical methods to
investigate the physico-chemical properties of 2D
materials [1,2]. Compared to othermethods such as
optical microscopy [3–6], atomic force microscopy
[3,7], and fluorescence quenching microscopy
[8,9], Raman microscopy has the advantage to
provide label-free, spatially resolved, compositional
and structural information of the probedmaterial on
arbitrary substrates. Ramanmicroscopy has enabled
studies on the quality [10], defect [11], number
of layers [10,12], crystal boundary [13], strain
[5], oxidation state [14], and electron–phonon
interactions [15] of 2D materials. For example, to
determine the quality of fabricated graphene, it is
common to present the characteristic Raman spec-
trum showing an intense G′ peak (∼2700 cm−1),
which is also referred to as the 2D peak (to avoid
confusion with ‘two-dimensional’, we denote it
as G′), together with a weak or absent D band
(∼1350 cm−1) [10,16]. The quality can be further
quantified by comparing the ratio of G- andD-band

intensity [17]. For graphene oxide (GO), the
changes in the intensity and peak position of the D
and G (∼1600 cm−1) bands can be used to charac-
terize its thermal reduction behavior [18]. Formany
other 2D materials such as boron nitride (BN)
[19,20], transition metal dichalcogenides [2,21,22],
and phosphorene [23], Raman microscopy has also
become an important characterization tool.

However, the potential of Raman microscopy is
severely hindered by its low throughput, due to the
extremely low efficiency of the Raman scattering
cross section: on average, 1out of 10million incident
photons are Raman scattered. Typically, a single
Raman spectrum of graphene takes hundreds of
milliseconds to tens of seconds to acquire [24–30].
Consequently, a diffraction-limitedmapdone across
a 50 × 50 μm2 region, created by raster-scanning
focal spots at a typical integration time of 1 s, would
take half a day. As a result, many previous studies
only collected single spectra from a few spots, de-
spite the fact that large-area scanning and volumetric
scanning are highly desired for accurate and system-
atic studies of material properties. In principle, the
Raman signal intensity per pixel is proportional to
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the light dose,which is theproduct of the laser power
and measurement time per pixel (and therefore
inversely proportional to the scanning rate). A better
signal-to-noise ratio (SNR) could be achieved by
increasing the laser power.However, the laser power
cannot generally be increased without considering
potential light-induced damage to the sample. For
graphene, structural changes are observed in re-
sponse to laser irradiation in the mW range [31,32].
To mitigate this problem, an electron-multiplying
charge-coupled device (EMCCD), available in
manymodern Raman instruments, has been used to
amplify theSNRsuch that ahigher scanning speedof
several tens of milliseconds per spectrum can be de-
livered at 1 mW laser power [30,33]. Higher speed,
however, is still needed for large-scale volumetric
scanning. Recently, wide-field Raman imaging was
introduced to map large-area graphene sheets in a
few seconds [34]. However, this technique requires
additional hardware components and is typically
limited to one or a few frequency bands, undermin-
ing its performance for quantitative characterization
of many physico-chemical properties such as
defect density. The applicability in depth-resolved
volumetric 3D scanning also remains challenging.
For GO, the low throughput problem is even more
severe due to the requirement of an extremely low
laser dose to suppress reduction. A recent study sug-
gested that even a laser dose of 48 μJ, i.e. 48 μW in
1 s, is still too high to prevent sample damage [35].

In recent decades, numerous studies demon-
strated that imaging-related challenges can often be
addressed with post-data-analysis using classical or
modern algorithms [36–38]. Principal component
analysis (PCA), an algorithm that is widely used in
signal processing andmachine learning to find com-
mon features in the dataset [39], has been applied to
improve the SNR of hyperspectral datasets [40,41].
The idea is that, by analyzing the variance between
spectra within the whole dataset, PCA can distin-
guish signal features from noise features and thereby
allow a reconstruction of the dataset with predom-
inantly signal features. The performance of PCA-
guided denoising generally increases with the size of
the dataset, because larger datasets enable a more
thorough extraction of the signal features.Therefore,
it is ideal for large-scale hyperspectral analysis.

In this work, we introduce algorithm-improved
confocal Raman microscopy (ai-CRM), combining
PCA and EMCCD, to image 2D materials. Briefly,
we first collect spectrawith anEMCCDat high scan-
ning speed and low laser power. The combination
of short measurement time per pixel and low laser
power results in ‘noisy’ spectra with an SNR below
one.Thenwe recover the faint signal, invisible in the
noise, with the help of PCA. With this technique,

Raman mapping of GO can be performed with an
extremely low laser power of 5 μW, close to the
hardware limitation, together with short integration
times of 10msper spectrum.Meanwhile,wedemon-
strate that such a low laser dose per spectrum can
effectively prevent GO reduction. Graphene can be
mapped at a hardware-limited scanning rate of 1 ms
per spectrum at 1 mW laser power. For graphene
and GO, the power-averaged scanning rate (scan-
ning rate divided by power for fair comparison) in
our work is more than one order of magnitude faster
than state-of-the-art works. Finally, we demonstrate
that ai-CRMcanbe extended to fast imagingof other
2Dmaterials includingMoS2,WS2, andBN, and fast
volumetric imaging of composite materials.

RESULTS AND DISCUSSION
Fast mapping of GO
We first demonstrate our protocol (Fig. 1) with a
typical Raman mapping of GO nano-sheets. Aque-
ous GO dispersion (1 mg/mL) was drop-cast on a
plasma-cleaned 300-nm-SiO2/Si wafer. Confocal
Raman mapping (Fig. 1a) was conducted by raster
scanning over 25 × 25 μm2 with a step size of
0.25 μm, using a laser with a wavelength of λ =
532 nm. To avoid sample damage, the laser power
was kept at a power of 5 μW underneath the objec-
tive. A 100 × objective with a numerical aperture
(NA) of 0.9 was used, and the estimated laser spot
size d is 1.22λ/NA = 0.72 μm, where λ is the laser
wavelength, corresponding to a power density of
12.3μW/μm2.The diffraction-limited resolution is
d/2= 0.36μm. An EMCCDwas used to collect the
spectra with an integration time of 20 ms for each
spectrum. After the scan, Raman spectra from all
pixels were assembled into a data matrix where each
row contained a spectrum (Fig. 1b). The Raman
spectrum from 41 to 3692 cm−1 was selected for
analysis. The collected spectra are extremely noisy,
as shown by the representative spectrum in Fig. 1c.
The Raman signal of GO cannot be identified.
Subsequently, we applied PCA to decompose the
dataset into its principal components (PCs; note
that these components are not real spectra, but spec-
tra of the variance in the dataset) whose number is
equal to that of the number of wavenumber steps
(1571 in this case).The PCs are ranked according to
their percentage of total variance described, which
represents the importance to the dataset [39]. Since
the noise in the spectra is random, while signals are
a recurring feature in a fraction of the pixels in the
dataset, the PCs containing signals will contribute
much more to the variance than those containing
mostly noise (Supplementary Fig. 1). Typically,
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Figure 1. Schematic illustrating the ai-CRM procedure. (a) Raw dataset containing m× n pixels is collected using an EMCCD, and (b) assembled into
a matrix in which each row contains a spectrum of a pixel and each column represents a wavenumber. (c) A representative noisy spectrum from a
dataset recorded on a GO sample. (d, e) The PCs from a PCA of the measured dataset. PCA effectively decomposes the dataset into a low-dimensional
space (here the first six PCs) containing mostly signal and a high-dimensional space (PCs seven to end) that contains mostly noise. PCs carrying signal
information are used to reconstruct the dataset (e), whereas the rest of the PCs are set to ‘zero’ in the reconstruction. (f) Reconstructed spectrum of the
same pixel as in (c) with dramatically improved SNR clearly showing the D and G bands of GO.

only the first few PCs contain obvious signal in-
formation. We use a scree test to determine the
number of PCs (here, six) that need to be retained
for further analysis (Supplementary Fig. 1) [42].
Relatively clear band-like features are observed in
these first PCs (Fig. 1d), but not in the subsequent
ones, which contain mostly noise. Using the first
six PCs to reconstruct the dataset and rejecting
1565 ‘noise-dominated PCs’ out of the total of 1571
PCs, we obtain Raman spectra with dramatically
improved SNR that clearly display the distinct D
and G bands (Fig. 1f). The criteria to choose the
number of PCs are loose. A few more or less than
that suggested by the scree test is typically accept-
able (Supplementary Fig. 2). The spectra in Fig. 1c
and f correspond to the same pixel in the image.

To demonstrate the efficiency of our method for
mapping, we imaged the GO nano-sheet with an
atomic forcemicroscope (AFM) (Fig. 2a), and com-
pared it with the Raman images (Fig. 2b and c) cre-
ated by integrating theG band, with and without ai-
CRM, respectively. For clarity, peak intensities will
be denoted by I and integrated band area intensi-
ties will be denoted by A. The two images show the

same region of interest. The distribution of single-
layer (1 L), double-layer (2 L), and triple-layer (3 L)
GO can be clearly resolved after applying ai-CRM
(Fig. 2c). The integrated G-band intensity (A(G))
and AFM height profile on a selected line through
the same positions (green line in Fig. 2b and blue
line in Fig. 2a) shown in Fig. 2d demonstrates an
excellent correspondence. In contrast, with normal
CRM (i.e. without denoising), the GO nano-sheet
can only be vaguely observed in the Raman inten-
sity profile of Fig. 2b and the number of layers can-
not be distinguished, evenwhen the integration time
per pixel is increased to 500 ms (Fig. 2e). Using
ai-CRM, we can reduce the integration time even
further down to 10 ms per pixel: the GO layers in
the nano-sheet (Fig. 2f) are still clearly visible, con-
firming the efficiency of our method to facilitate fast
mapping.

The ai-CRM data also allow quantitative analy-
sis of the properties of GO. For example, the re-
sults (Fig. 2g) show that the integral intensity of the
G band is linearly related to the number of layers
and the integration time, which ranges here from 5
to 35 ms. This stems from the fact that the Raman
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Figure 2. Fast Raman mapping of GO (G band) with ai-CRM. (a) AFM image of the probed GO sheets, showing the distribution of single layer (1 L),
double layer (2 L), and triple layer (3 L) on a 300 nm SiO2/Si substrate (S). (b) Normal CRM raw image prior to denoising. At 20 ms integration time,
the configuration of GO can only be vaguely discerned. (c) After denoising with ai-CRM, the configuration of the GO sheets can be clearly resolved, and
(d) matches the AFM image in the pixel scale, as demonstrated by the largely overlapped AFM height profile and Raman intensity profile crossing the
same positions (blue line in (a) and green line in (c)). (e) Normal CRM map with a high integration time of 500 ms. (f) ai-CRM image with integration
time lowered to 10 ms, depicting the fastest mapping possible with our method without compromising on the layer identification. (g) Variation of the
intensity with layer number for four different integration time, showing the possibility of fast quantification with ai-CRM. The dashed lines are guides
to the eye. (h) Variation of SNR with integration time, depicting the amplification of the SNR achieved with ai-CRM as compared to normal CRM data.
Scale bars are 5 μm and the resolution of the Raman maps are 100 × 100 pixels.

intensity linearly scales with the volume of material
within the confocal laser spot. This also implies that
the 2 L and 3 L GO here are weakly coupled, sug-
gesting that ai-CRM could be used for fast counting
of layer numbers in the current system.

To quantify the SNR enhancement by our
method, the average and the standard deviation of
400 randomly selected spectra were calculated for
both normal CRM and ai-CRMdatasets for each in-
tegration time.TheSNRwas then determined from:

SNR = I (G) /�Inoise, (1)

where I(G) is the peak intensity of the G band in
the averaged spectrum and �Inoise is the standard
variation calculated from the same spectrum at a
wavenumber region (2000–2200 cm−1), which is
a region where no bands of these materials occur.
Figure 2h shows that with CRM, the SNR is lower
than 1 for all integration times from 5 to 500 ms,
leading to noisy images (Fig. 2b, e and Supplemen-
tary Fig. 3a). Note that an SNR below 1 implies that
the signal cannot be clearly distinguished fromnoise,
and therefore the values of SNR are only a rough es-
timation.With ai-CRM, however, the SNR increases
dramatically and progressively increases with inte-
gration time. Importantly, even the SNR for 10 ms

integration is much higher than for any of the inte-
gration times without denoising. This suggests that
ourmethod can increase the scanning speedbymore
than 50 times from 500 ms to 10 ms at an improved
SNR. In addition, a literature review suggests that
the power-averaged scanning rate (scanning rate di-
vided by power for a fairer comparison since Raman
signal intensity is proportional to dose) in our work
is two to seven orders of magnitude higher than pre-
vious works (Supplementary Fig. 5a).

Non-invasive mapping of GO
For GO, reliable Raman characterization has been a
major challenge due to laser-induced sample dam-
age [35,43]. Tomitigate this problem, the laser dose
needs to be reduced as much as possible [11,35,43].
Many previous works usedmW scale power to char-
acterize GO [44–48]. A recent study [35] suggested
that laser-induced reduction of GO cannot be pre-
vented even when the laser intensity is down to a
dose of 8× 107 J/m2, which corresponds to 48μW
during 1 s in the confocal spot. Such laser intensity is
already a few orders of magnitude lower compared
to preceding studies [47,48]. Further reduction of
the laser power, however, resulted in Raman spectra
with insufficient SNR. However, the results in Fig. 2
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Figure 3. Reliable Raman mapping of GO at minimum laser power with ai-CRM. (a–c) Raman maps of GO (A(G)) done at
the same location, one after the other using a CCD, with a laser power of 4 mW. (e–g) Raman images of GO done using
ai-CRM, at 1000x reduced laser power (4 μW) showing minor loss of contrast and integrated intensity. (d, h) Variation of the
normalized intensity of the G peak of GO, obtained from single-pixel time series data for 4 mW (d) and for 4 μW (h). The
insets show the variation of the spectra as well as the FWHM of the G peak. All data recorded at 50 ms integration time per
pixel. All scale bars correspond to 5 μm and all Raman maps have a resolution of 50 × 50 pixels.

suggest that ai-CRMenables characterization ofGO
at two orders of magnitude lower intensity (tens of
ms with a laser power of 5μW).

For a comparative study with ai-CRM, we
selected two levels of laser power, 4 μW and 4 mW
(Fig. 3), to determine the influence of laser power
on the Raman signal of GO. Note that for the 4 mW
case, normal CCD instead of EMCCD was used,
because at such high laser power in the EMCCD
mode, the intensity of the silicon peak exceeds the
upper detection limit. This has no effect on the
sample damage analysis. Figure 3a–c shows the
Raman images obtained at 4 mW of one nano-sheet
of GO and Fig. 3d–f shows the Raman images at
4 μW of another nano-sheet of GO. All images in
the same series are presented against the same color
scale. Each pixel was measured for 50 ms in both
situations. The loss in A(G) in going from Fig. 3a to
Fig. 3c is apparent from the reduction of contrast at
4 mW (4.9 × 108 J/m2 intensity), which indi-
cates the gradual increase in sample damage upon
repeated illumination.Thedecrease inRaman inten-
sity is also seen in the average spectra for each image
(insets in Fig. 3a–f). Laser-induced reduction (to re-
duced graphene oxide, rGO) duringRaman imaging
has been observed on all GO nano-sheets (see e.g.
Supplementary Fig. 6). This was further confirmed
by measuring Raman spectra of a single spot during
500 s of continuous laser irradiation of 4 mW with
a spectrum obtained every 50ms.The Raman inten-
sity decreased rapidly by∼ 70% in the first 100 s and
gradually decreased further to a weak plateau value
of residual scattering (Fig. 3d). In addition, the

full width half maximum (FWHM) of the G band
decreased monotonically with time (inset Fig. 3d),
and the I(D)/I(G) ratio changes with time (Supple-
mentary Fig. 6a), which is a typical consequence of
the reduction of GO [35]. In contrast, the intensity
loss is substantially reduced when illuminated with
4μWof laser irradiation (4.9× 105 J/m2 intensity)
for 500 s with 50 ms per spectrum (Fig. 3h and the
insets, respectively). In addition, scanning did not
cause any obvious optical changes to the bright-field
image of the sample (Supplementary Fig. 6). After
500 s exposure at the same pixel, the change in I(G)
is less than 10%. The change in A(G) during the
illumination time per pixel in a Raman image is then
less than 1 in 10 [5], which is negligible for most
purposes. The change in FWHM is also negligible
as it is close to the wavenumber resolution of the in-
strument (∼ 2 cm−1). These results clearly confirm
the efficiency of ai-CRM to suppress sample damage
after reduction of the experimental laser intensity.

Fast mapping of graphene and its use in
sample quality analysis
Ourmethod can also be applied for fast Ramanmap-
ping of graphene. To demonstrate this, we made a
scratch on a single layer of graphene grownby chem-
ical vapor deposition (CVD) on a 300-nm-SiO2/Si
wafer. Then we performed a Raman scan across
25 × 25 μm2 with a step size of 0.25 μm at 1 mW
laser power, which was previously confirmed to be
non-destructive for graphene [33]. Similar to the
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Figure 4. Fast Raman mapping and quality analysis of graphene with ai-CRM. (a) Normal CRM map of CVD-grown graphene
on 300 nm-SiO2/Si wafer at 1 mW laser power and 5 ms integration time. The inset shows the spectra corresponding to
the markers on a double single-layer (blue) and single-layer (yellow). (b) ai-CRM map of the same region. The spectra show
the evolution of the D, G and G′ peaks after denoising, useful for quantitative analysis. (c) Color-coded defect density map,
derived from the peak intensity ratio of the D and G bands (Eq. 2), of the same region depicting that the average distance
between defects is around 20 nm, showing the high quality of the CVD-grown graphene. (d) Variation of the SNR of the G′

peak for various integration time, illustrating the amplification of the SNR with ai-CRM.

results ofGO, significant SNR improvementwas ob-
served, as shownby theRaman images of the integral
G′-band intensity generated at 5ms integration time
before and after applying ai-CRM (Fig. 4a and b).
Before denoising, theD,G, andG′ bands can hardly
be seen (bottom spectrum in Fig. 4a). Although dif-
ferent layer numbers can still be distinguished, an ac-
curate quantitative analysis is hardly possible. After
denoising, a weak D band, a sharp G band, together
with a sharp and strong G′ band are clearly resolved
(bottom spectrum in Fig. 4b), indicating the high
quality of the graphene sample (refer to Supplemen-
tary Fig. 4 for mapping at other integration times
using ai-CRM). The Raman intensity (I(G’), I(G)
and I(D)) of the double-layer graphene (labeled as
2× 1 L in Fig. 4a) is roughly twice that of the single-
layer graphene, confirming that the double layer is
composed of two weakly coupled single layers.

Importantly, the ai-CRM data enable quantita-
tive analysis of the sample quality. The distance be-
tween defects, LD, can be estimated from the ratio of
I(G) to I(D) [17]:

L2
D

(
nm2) = 1.8 × 10−9λ4 I(G) /I(D), (2)

where λ is in nanometers. The distribution of
LD is then plotted in Fig. 4c. It is observed that
the graphene sample has a relatively uniform LD
of ∼20 nm across the scanned area, again con-
firming its high quality. Note that regions having
LD < 10 nm are not plotted (the scale bar in Fig.
4c starts from 10 nm) because Eq. (2) is not valid
in this case. Note that the reduction of GO is often
also quantified in terms of a reduction of the density
of oxygen-containing defects in an otherwise perfect
graphene lattice. The corresponding change in the
I(D)/I(G) ratio is shown in Fig. 3d. The above re-
sults suggest the potential of ai-CRM for spatially
resolved and fast characterization of the graphene

quality, which should help the quality control of
graphene fabrication.

Furthermore, to quantify the improvement in
scanning rate, we scanned the same sample using dif-
ferent integration times from 1 ms to 500 ms, and
calculated the SNR for all datasets before and after
applying ai-CRM. The results in Fig. 4d show that
the SNR at 500 ms without denoising is compara-
ble to the SNR at 5 ms with denoising, and is much
lower than that at 10 ms with denoising. Similar to
the results for GO, this demonstrates again that an
increase of more than 50 times in scanning rate can
be achieved when ai-CRM is applied. Compared to
the literature, the power-averaged scanning rate here
is around two orders ofmagnitude higher than state-
of-the-art works (Supplementary Fig. 5b).

Fast mapping of other 2D materials
ai-CRM was also tested on mechanically ex-
foliated MoS2, WS2, and BN nano-sheets
(optical and AFM images in Supplemen-
tary Fig. 7). MoS2 and WS2 can be imaged at
50 ms integration time under 20 μW laser (Fig. 5a
and b). BN, having a smaller Raman cross section,
can be imaged at 50 ms integration time under 500
μW laser (Fig. 5c). Note that the ai-CRMmaps and
spectra of thesematerials generated at 50ms integra-
tion time have similar or better quality than normal
CRM maps and spectra at 500 ms integration time
(compare Supplementary Fig. 8), suggesting that
ai-CRM increases the scanning speed by at least 10
times, still with an improvement in SNR.

Fast volumetric imaging of an rGO
composite
Volumetric imaging is another advantage of CRM,
which can help e.g. to assess the properties of
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the figures and the scale bars correspond to 5 μm. The resolution of the Raman maps
is 100 × 100 pixels.

50 µm
(a) (b)

rGO PAA

50 µm

10
 µ

m
, 2

0 
sl

ic
es

Figure 6. Volumetric 3D imaging of rGO-PAA composite using ai-CRM. (a) Denoised
x–y Raman maps of rGO and PAA, taken with a step size of 0.5μm. The laser power is
0.75 mW and the integration time is 1 ms. The spectra at the bottom correspond to rGO
(orange) and PAA (black), respectively. (b) The 3D Raman reconstruction of the same
nanocomposite, depicting the distribution of rGO in the polymer matrix. The orthog-
onal sections along the dashed lines show rGO embedded in the matrix. Total data
acquisition time: 12 min.

graphenic materials inside a composite or a device.
However, such a potential advantage has not been
taken advantage of in previous studies, due to the
required long measurement times. Since one 2D
Raman image across tens of micrometers at
diffraction-limited spatial resolution could take
half a day, a volumetric Raman image created by
stacked 2D images would take several days. With
our method, it is now possible to reduce the time
to around 10 min. To demonstrate this, a GO
dispersion was mixed with aqueous polyacrylic acid
(PAA), and the mixture was cured overnight in an
oven at 80◦C. After curing, GO is moderately re-
duced. Using ai-CRM with 0.75 mW laser power (a
higher laser power is used because GO is already re-
duced) at 1ms integration time, both rGOandPAA,
respectively bottom left and right spectra in Fig. 6a,
show their characteristicRaman spectrawith theCH
stretching band located at around 2930 cm−1 in the
PAA spectrum. We subsequently scanned a vertical
stack of 20 images across a depth of 10μm. Each im-
age in the stack covers 50× 50μm2 with a step size

of 0.5 μm and 1 ms integration time (Fig. 6a). The
imaging thus took 100× 100× 0.001× 20= 200 s
pure measurement time, which took ∼720 s when
the camera readout time and stage translation time
were taken into account. Afterwards, the 3D distri-
bution of rGO is plotted (Fig. 6b), showing how
rGO is blended into the composite. Slices extracted
from any arbitrary positions within the volumetric
viewcanbe visualized, as shownby the two cross sec-
tion images in the bottom insets of Fig. 6bwhose po-
sitions are labeledby thedashedgreenandblue lines.

Fast mapping of graphene and GO on
arbitrary substrates
Compared to other characterization methods such
as fluorescence quenching microscopy and bright-
field optical microscopy, CRM has the advantage of
universal applicability on arbitrary substrates. As an
example, we used ai-CRM to image a CVD-grown
graphene on a glass substrate at 20 ms integration
time with 1 mW laser power across 25 × 25 μm2

with a step size of 0.25μm (Supplementary Fig. 9).
GO can also be imaged on glass or calcium fluoride
substrate with low laser power (10 μW) and short
integration time (20 ms), as shown in Supplemen-
tary Fig. 9. The wrinkles and folds on the GO sheets
are clearly visible.

CONCLUSION
In this work, we demonstrate that ai-CRM signifi-
cantly improves the SNR of the Raman spectra of
various 2D nanomaterials such as graphene, GO,
WS2, MoS2, and BN.Thereby, it increases scanning
rates by more than 50 times with respect to conven-
tional state-of-the-art CRM (Figs 2h and 4d). Intro-
ducing this improvement, sensitive samples such as
GOcanbemapped faster at extremely low laser pow-
ers of just severalμW.This minimizes laser-induced
sample damage and enables reliable and quantitative
characterization of the physico-chemical properties
of graphenic nano-sheets, such as layer number and
defect density. Compared to other characterization
tools, CRM has the advantages of providing label-
free, substrate-independent, and 3D spatial informa-
tion. Since thedenoisingperformance increaseswith
the size of the dataset, an even higher scanning rate
is expected when the Raman mapping area further
increases. This is a highly demanded property, be-
cause large-scale industrial production of 2D mate-
rials and their devices requires scalable characteriza-
tion methods.

While other techniques such as surface-enhanced
Raman spectroscopy [49] and stimulated Raman
scattering [50] may give rise to even higher SNR



RESEARCH ARTICLE Nair et al. 627

improvement, these techniques are either techni-
cally much more involved or require specific sub-
strates and samples and/or donot allow for volumet-
ric imaging.

Since ai-CRM is based on a purely mathemat-
ical framework, it can also be applied to improve
the above techniques instead of replacing them,
and other hyperspectral microscopy methods, such
as hyperspectral infrared microscopy and photo-
luminescent microscopy. We therefore expect ai-
CRM to strengthen the use of hyperspectral imaging
as a fast, reliable, quantitative, and spatially resolved
characterization tool in the fabrication andbroad ap-
plication of 2Dmaterials.

METHODS
Materials
A GO suspension (2 mg/mL, 22 μm mean di-
ameter flakes, Sigma Aldrich) was diluted with
1 mL of deionized water (Millipore) and was
deposited on plasma-cleaned 300-nm-SiO2/Si
wafers by drop-casting. CVD-grown single-layer
graphene on glass and 300 nm SiO2/Si wafer was
purchased (Graphene Supermarket, USA) and used
directly for Raman imaging. Standard laboratory-
grade glass coverslips and Raman-grade calcium
fluoride (Crystran Ltd, UK)were used as alternative
substrates. MoS2, WS2, and BN were mechanically
exfoliated from their bulk crystals (HQ Graphene,
the Netherlands) with Scotch tape. MoS2 and WS2
were directly exfoliated on 300-nm-SiO2/Si wafers.
BNwas exfoliated on polydimethylsiloxane film and
then stamped on 300-nm-SiO2/Si wafer.

Raman measurements
Raman measurements were carried out using a
WiTec alpha 300RRamanmicroscope connected to
a 532 nm laser. A 600 g/mmgrating was used, which
provided a spectral resolution of around 2.3 cm−1.
An EMCCD camera (1600 × 200 pixels, 16 μm
pixel size, Andor Newton) was used for detection of
the scattered photons.TheEMCCDgainwas set at a
numerical value of 250.The pre-amplifier gain value
was set to 1. For high spatial as well as depth resolu-
tion, a 100×objective (Zeiss EC ‘Epiplan-Neofluar’
DIC, numerical aperture (NA) = 0.9) was chosen.
The laser power at the sample was measured using
an optical power meter (ThorLabs). Raman maps
are made by integrating the area under the band of
interest for every pixel: from 1550 to 1750 cm−1

(G band) for GO and graphene, 2600–2800 cm−1

for the G′ peak of graphene, 253–400 cm−1 for

WS2, 1330–1390 cm−1 for BN, 350–427 cm−1 for
MoS2 and 2800–3000 cm−1 for PAA.

Denoising
Denoising was performed on MATLAB (version
R2017b) with home-written codes without any pre-
treatment. A sample code and a sample dataset for
graphene are given in the supporting information.
Typically, denoising 10 thousand spectra only takes
around 10–20 s with a normal office computer. After
denoising, cosmic rays are also removed, because of
their random nature.

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.
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