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INTRODUCTION 
 

Tuberculosis (TB), a communicable respiratory disease, 

is major threat to human health in the world, especially 

in low and middle income countries in Asia [1–3]. 

There are approximately 10.4 million new cases and 1.7 

million deaths worldwide in 2016 [4]. Although the 

advanced developments in diagnosis and treatment, 

accurate diagnosis of TB is still difficult and the 

healthcare and economic burdens of TB remain high. 

Complicated interactions among host, pathogen, and 

environmental factors contributed to the development of 

TB, of which the symptoms contain severe persistent 

coughing, fever, hemoptysis, chest pain and weight loss 

[5]. Family and twin studies [6–8] have reported that 

host genetic components play important roles in 

contributing risk to TB. Thereby, substantial interests in 

identifying the genetic components implicated in the 

aetiology of TB are growing. 

 

In previous decades, TB has been a focus of many 

candidate gene-based and genome-wide association 
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ABSTRACT 
 

More than 10 GWASs have reported numerous genetic loci associated with tuberculosis (TB). However, the 
functional effects of genetic variants on TB remains largely unknown. In the present study, by combining a 
reported GWAS summary dataset (N = 452,264) with 3 independent eQTL datasets (N = 2,242) and other omics 
datasets downloaded from public databases, we conducted an integrative genomics analysis to highlight SNPs 
and genes implicated in TB risk. Based on independent biological and technical validations, we prioritized 26 
candidate genes with eSNPs significantly associated with gene expression and TB susceptibility simultaneously; 
such as, CDC16 (rs7987202, rs9590408, and rs948182) and RCN3 (rs2946863, rs2878342, and rs3810194). Based 
on the network-based enrichment analysis, we found these 26 highlighted genes were jointly connected to 
exert effects on TB susceptibility. The co-expression patterns among these 26 genes were remarkably changed 
according to Mycobacterium tuberculosis (MTB) infection status. Based on 4 independent gene expression 
datasets, 21 of 26 genes (80.77%) showed significantly differential expressions between TB group and control 
group in mesenchymal stem cells, mice blood and lung tissues, as well as human alveolar macrophages. 
Together, we provide robust evidence to support 26 highlighted genes as important candidates for TB. 
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studies (GWAS). For candidate gene-based association 

studies on TB, which are dependent on a prior 

hypothesis that we know the knowledge of the functions 

of candidate genes, numerous genes with pressing single 

nucleotide polymorphisms (SNPs) have been identified 

to be associated with TB [9–15]. For example, genetic 

variations in TLR genes have reported to show 

associations with TB and clinical outcomes in previous 

studies [9–11]. With the advances of next-generation 

sequencing or microarray technology, the approach of 

GWAS based on powerful hypothesis-free methodology 

has been extensively applied to investigate the genetic 

architectures of complex diseases including TB and 

identify thousands of common risk SNPs. Since the first 

GWAS on TB was reported in the year of 2010 [16], 

subsequently many GWASs [17–25] have demonstrated 

associations between numerous common SNPs and TB 

among European and other ancestry populations. For 

example, there were 4 common SNPs identified to be 

significantly associated with TB via GWASs in Russian 

or African populations [16–18]. Nevertheless, despite 

intensifying GWAS studies have been conducted, much 

of the heritability of TB remains missing. 

 

The vast majority of GWAS-identified significant or 

suggestive SNPs associated with complex diseases were 

located in non-coding genomic regions [8, 26]. 

Consistently, most of previously identified susceptibility 

variants associated with TB were mapped into non-

coding regions [27]. Thus, it is plausible to infer that 

these GWAS-identified variants may have regulatory 

effects on influencing the expression level of specific 

gene instead of altering the function of its protein. A 

recent multi-cohort study [28] demonstrated that 

aberrant expression signature of a three-gene set (GBP5, 

DUSP3, and KLF2) is highly diagnostic for active TB. 

Furthermore, an accruing number of studies have 

concentrated on exploration of susceptibility genes 

whose aberrant expression are associated with diseases 

and traits of medical importance in humans due to 

pleiotropy [28–32]. For example, by using an integrative 

analysis of GWAS summary-level, mQTL and eQTL 

data, our team [33] previously found 34 important genes 

including PRKCZ, ARHGEF3, and CDKN1A with 

various critical SNPs contribute risk to the comorbidity 

of schizophrenia and smoking behaviors. Many novel 

risk genes identified by numerous integrative genomics 

studies were hard to be detected by a GWAS alone. 

 

To the best of our knowledge, there was no systematical 

integrative genomics analysis on TB conducted to reveal 

the genome-wide regulatory effects of SNPs on gene 

expression. In the present study, we applied a two-stage 

designed analysis to identified risk SNPs, genes and 

pathways for TB. We first used the Sherlock integrative 

analysis to identify cis- and trans-regulatory effects of 

SNPs on expression abundance of interested genes via 

incorporating a large-scale GWAS summary dataset (N 

= 452,264) with a blood-based eQTL dataset (N = 

1,490). Then, using the Sherlock analysis with same 

parameters, we adopted two independent eQTL datasets 

based on blood (N = 369) and lung tissue (N = 383) to 

replicate the results in the discovery stage. Furthermore, 

we employed a series of bioinformatics analyses 

including MAGMA analysis, in silico permutation 

analysis, pathways/diseases-based enrichment analysis, 

network-based enrichment analysis, DGIdb enrichment 

analysis, and co-expression analysis based on multi-

omics data to highlight TB-associated risk genes with 

strong evidence. 

 

RESULTS 
 

Identification of TB-associated genes in the 

discovery stage 

 

In the discovery stage, we conducted a Sherlock 

Bayesian integrative analysis by incorporating GWAS 

summary statistics (Dataset #1; N = 452,264) with 

eQTL data (Dataset #3; N = 1,490) to identify aberrant 

expressed genes with eSNPs implicated in TB risk 

(Figure 1). There were a number of 694 genes identified 

to be significantly associated with TB risk (Gene set #1, 

Simulated P ≤ 0.05; Figure 2A and Supplementary 

Table 1). For example, the top-ranked significant genes 

were SIPA1L1 (Simulated P = 1.26 × 10-5), GSTA2 

(Simulated P = 1.61 × 10-4), TIGD6 (Simulated P = 3.02 

× 10-4), TSPYL4 (Simulated P = 4.22 × 10-4), and 

POLG2 (Simulated P = 4.68 × 10-4). Interestingly, 

among these identified significant genes, 4 genes of 

C2CD2, HLA-DRB6, HLA-DQB1, and LPCAT2 have 

been reported to be associated with TB in earlier studies 

(Supplementary Figure 1 and Supplementary Table 1). 

In addition, there existed 7 genes documented to be 

associated with respiratory relevant diseases, such as 

asthma and chronic obstructive pulmonary disease 

(Supplementary Figure 1 and Supplementary Table 1); 

and 38 genes identified to be associated with lung 

function and related diseases, such as lung cancer  

and adenocarcinoma (Supplementary Figure 1 and 

Supplementary Table 1). 

 

To annotate the molecular functions and biological 

pathways of these 694 identified genes, we performed a 

functional enrichment analysis by using the KOBAS 

tool. As for pathway enrichment analysis, 305 pathways 

were significantly enriched by these TB-associated 

genes (FDR ≤ 0.05; Figure 2B and Supplementary 

Table 2). For example, the pathways of metabolism 

(FDR = 1.78 × 10-28), immune system (FDR = 2.12 × 

10-21), metabolic pathways (FDR = 7.75 × 10-19), and 

tuberculosis (FDR = 4.44 × 10-5). Furthermore, 231 
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GO-terms (FDR ≤ 0.05; Figure 2C and Supplementary 

Table 3) and 50 diseases-terms (FDR ≤ 0.05; Figure 2D 

and Supplementary Table 4) were significantly 

overrepresented by these TB-relevant genes. 

 

Validation of TB-associated genes in the replication 

stage 
 

Furthermore, we utilized two independent eQTL datasets 

(Datasets #4 and #5) to carry out the Sherlock Bayesian 

analysis with same parameters for validation. Based on 

these two independent datasets, we identified 311 

significant genes for Dataset #4 based on whole blood 

samples (Gene set #2, Simulated P ≤ 0.05; 

Supplementary Table 5) and 405 significant genes for 

Dataset #5 based on lung tissues (Gene set #3, Simulated 

P ≤ 0.05; Supplementary Table 6). Among these genes, 3 

genes of ESPPRB, GLRX5, and LRPAP1 have been 

reported to be linked with TB in earlier studies 

(Supplementary Figure 2). 30 and 18 genes have been 

documented to be associated with lung-related diseases 

(Supplementary Table 5) and respiratory-related diseases 

(Supplementary Table 6), separately. Interestingly, there 

existed 7 genes showing associations with both lung-

related diseases and respiratory disease (Supplementary 

Figure 2). Compared with genes identified in the 

discovery stage (Gene set #1), we found 26 genes were 

significantly replicated by the Sherlock analysis of both 

datasets in the replication stage (Gene sets #2 and #3) 

(Figure 2A and Table 1). Most of these 26 highlighted 

genes were highly expressed in human lung tissue 

(Supplementary Figures 3–15). 

 

 
 

Figure 1. Workflow of current comprehensive genomics analysis. 
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For the functional enrichment analyses of these two 

gene sets, 40 pathways, 50 GO-terms, and 7 diseases-

terms (FDR ≤ 0.05; Supplementary Tables 7–9) were 

significantly overrepresented by Gene set #2, as well as 

29 pathways, 51 GO-terms, and 13 diseases-terms (FDR 

≤ 0.05; and Supplementary Tables 10–12) were 

significantly enriched by Gene set #3. Furthermore, we 

found 10 common pathways, 18 common GO-terms, 

and 2 common enriched diseases (FDR ≤ 0.05; Figure 

2B–2D, Tables 2, 3, and Supplementary Table 13) were 

significantly enriched by all the 3 independent gene 

sets. 

 

MAGMA-based gene analysis for technical 

replication 

 

By performing MAGMA gene-level analysis of  

TB-based GWAS, we identified 1,017 genes were 

significantly or suggestively associated with TB (Gene 

set #4, MAGMA-based P ≤ 0.05; Supplementary Table 

14). Among them, 128 genes have been documented to 

be associated with TB or at least one of other respiratory 

related traits or diseases in the database of GWAS 

Catalog (Supplementary Figure 16 and Supplementary 

Table 14). Compared with 3 independent Sherlock-

identified gene sets, 18 of 26 common genes were 

significantly replicated by using MAGMA analysis 

(Figure 3A and Table 1). As a negative control, genes 

identified from MAGMA analysis on fake TB (Gene set 

#5) have obviously lower overlap with Sherlock-

identified common genes than those with genes from 

MAGMA analysis on TB (Figure 3B and Table 1). In 

addition, we used the MAGMA tool to perform a 

pathway enrichment analysis based on the KEGG 

pathway resource. We found that 19 pathways showed 

significant or suggestive enrichment  (P < 0.05). Of them,  

 

 
 

Figure 2. Identified tuberculosis-related risk genes, pathways, and GO-terms. (A) Common significant genes identified from the 
Sherlock analysis based on Gene sets #1, #2, and #3. (B) Common significant pathways enriched by genes identified from the Sherlock 
analysis cross 3 gene sets (i.e., Gene sets #1, #2, and #3). (C) Common significant GO-terms enriched by genes identified from the Sherlock 
analysis cross 3 gene sets (i.e., Gene sets #1, #2, and #3). (D) Common significant KEGG or NHGRI GWAS Catalog diseases enriched by genes 
identified from the Sherlock analysis cross 3 gene sets (i.e., Gene sets #1, #2, and #3). 
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Table 1. Sherlock-based Bayesian genomics analysis identifies 26 candidate genes associated with tuberculosis risk. 

Gene 

Simulated  

P values in 

Gene set #1 

Simulated  

P values in 

Gene set #2 

Simulated  

P values in 

Gene set #3 

MAGMA-

based  

P values in 

Gene set #4 

MAGMA-

based  

P values in 

Gene set #5*  

T-test  

P values in 

GSE133803  

Anova  

P values in 

GSE1440943 

Anova  

P values in 

GSE1440944 

Anova  

P values in 

GSE139825 

CDC16 6.21E-3 1.20E-2 1.38E-2 5.45E-3 NA 5.63E-4 8.16E-4 8.17E-2 8.34E-02 

HIATL1 1.51E-2 2.05E-2 1.16E-2 0.12  0.59  1.83E-7 7.33E-4 2.17E-2 0.11  

RCN3 2.01E-2 1.40E-2 7.14E-3 4.41E-3 0.81  8.73E-3 0.13  1.56E-2 0.78  

FCHO1 2.93E-2 1.31E-2 1.64E-2 3.53E-2 0.80  0.27  4.01E-2 9.03E-7 7.12E-03 

CDK10 3.08E-2 3.35E-2 3.70E-2 2.62E-2 NA 0.49  8.70E-3 8.92E-5 7.93E-02 

SCAPER 3.60E-2 1.95E-2 1.62E-2 1.38E-2 0.20  8.84E-4 0.14  3.34E-2 0.65  

LIG3 3.98E-2 1.66E-2 3.73E-2 2.91E-2 0.28  1.86E-3 8.88E-2 2.23E-2 8.15E-02 

RRM1 4.82E-2 2.67E-2 2.04E-2 0.49  0.29  3.24E-3 1.29E-2 5.23E-4 0.11  

PDK1 3.79E-3 2.54E-2 1.87E-3 5.61E-3 3.51E-3 0.83  1.14E-2 7.84E-4 3.77E-02 

TMEM99 5.18E-3 1.86E-2 3.02E-3 1.36E-3 0.47  2.00E-3 NA NA 0.11  

SPATA20 7.80E-3 4.13E-3 3.51E-3 4.55E-4 0.39  1.98E-3 0.23  0.38  2.23E-02 

TDRKH 8.18E-3 1.01E-2 8.50E-3 1.17E-2 0.15  0.83  0.14  1.45E-3 7.42E-02 

NPHP4 1.15E-2 3.69E-2 2.98E-2 2.01E-2 0.35  0.32  0.42  8.73E-2 0.15  

CLN8 2.10E-2 1.13E-2 1.19E-2 1.46E-2 0.40  8.18E-6 0.10  0.17  1.04E-02 

DHX57 3.05E-2 1.48E-2 8.48E-3 1.19E-2 0.20  0.48  2.80E-2 0.10  0.18  

RPS5 3.71E-2 4.65E-2 4.41E-2 0.19  0.93  2.11E-4 3.73E-4 8.54E-2 2.71E-04 

MAP1S 4.03E-2 8.39E-3 6.70E-3 1.30E-2 6.0E-2  1.01E-2 NA NA 0.78  

HDAC10 2.34E-3 2.36E-2 2.53E-2 0.21  NA 0.42  0.15  4.23E-2 0.89  

TBRG4 1.67E-2 4.53E-2 3.66E-2 0.25  0.80  0.11  0.11  2.99E-3 0.28  

CARD9 1.73E-2 3.86E-2 1.74E-2 0.13  NA 5.48E-2 NA NA 0.21  

ZNF354A 1.74E-2 3.75E-2 4.14E-2 2.74E-2 0.98  0.29  NA NA 3.80E-02 

ZNF266 3.66E-2 3.94E-2 3.09E-2 1.09E-2 0.41  0.11  NA NA 0.18  

ZNF502 4.23E-2 2.18E-2 1.99E-2 1.23E-2 0.53  0.14  NA NA 0.14  

ZNF197 4.32E-2 1.81E-2 2.57E-2 9.53E-4 0.71  5.40E-2 NA NA 6.69E-03 

NUDT13 3.27E-2 3.78E-2 3.57E-2 6.0E-2 0.78  0.28  0.41  0.56  0.22  

RPS23 7.88E-7 2.22E-2 1.66E-2 0.54  2.26E-2 5.45E-5 0.24 0.82  0.49  

Note: NA means not available, which were largely due to that the expression levels of these genes very lower or the qualities 
were not feasible. 
*Gene set #5 is generated from MAGMA analysis on fake tuberculosis as a negative control.  
 

15 pathways were enriched by genes identified from 

Sherlock analysis in the discovery stage (P < 0.05, 

Supplementary Table 15). 

 

Consistently, by using permutation analyses, genes 

identified from the discovery stage (Gene set #1) were 

significantly higher overlapped with identified genes 

from Gene sets #2, #3, and #4 in the replication stage 

than that of 100,000 times of random selections 

(Permuted P = 0, 0, 0 separately; Figure 3C–3E). 

Furthermore, there was no difference in overlap 

between genes from Gene set #1 with genes from Gene 

set #5 and genes from random selections (Permuted P 

= 0.32; Figure 3F). Additionally, to further determine 

whether these identified TB-associated genes were due 

to genetic determinants rather than false discoveries, 

we compared the results from MAGMA analysis on 

TB (Gene set #4) and fake TB (Gene set #5) with 

significant genes identified from 3 times of 

independent Sherlock analyses (Gene sets #1, #2, and 

#3) at 3 distinct P value thresholds (i.e., P = 0.05, 0.01, 

or 0.001), respectively. Consistently, we found that the 

overlapped gene rates between Sherlock-identified 

genes and MAGMA-identified genes were remarkably 

higher than that with MAGMA analysis on fake TB 

across 3 different thresholds (Figure 4A–4C). 

Together, these results further confirm that our 

identified genes are potentially convincing candidate 

genes for TB. 

 

GGI network constructed by 26 highlighted TB-risk 

genes 

 

Based on independent biological and technical 

replications, we highlighted 26 genes as important 

candidates conferring susceptibility to TB. Based on 

these 26 genes, we performed a GGI network 

enrichment analysis. Figure 5 demonstrates that most of 
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Table 2. 10 common pathways enriched by tuberculosis-associated genes across 3 identified gene sets. 

Pathway ID Common pathways 

Gene set #1 Gene set #2 Gene set #3 

Proportion of 

risk genes 
FDR 

Proportion of 

risk genes 
FDR 

Proportion of 

risk genes 
FDR 

R-HSA-1430728 Metabolism 4.96% 1.78E-28 1.35% 1.19E-4 1.69% 3.16E-5 

R-HSA-74160 Gene expression (Transcription) 4.97% 1.06E-19 1.17% 1.90E-2 1.80% 1.24E-4 

R-HSA-392499 Metabolism of proteins 3.93% 3.94E-16 1.29% 3.72E-4 1.64% 5.19E-5 

R-HSA-73857 RNA Polymerase II Transcription 4.71% 8.33E-16 1.22% 1.90E-2 1.67% 1.37E-3 

R-HSA-212436 Generic Transcription Pathway 4.78% 7.63E-15 1.17% 3.79E-2 1.84% 4.24E-4 

R-HSA-597592 Post-translational protein modification 4.32% 4.60E-14 1.42% 1.09E-3 1.63% 1.34E-3 

R-HSA-5653656 Vesicle-mediated transport 5.38% 1.36E-10 1.64% 1.68E-2 1.79% 3.09E-2 

R-HSA-1643685 Disease 4.29% 3.11E-10 1.81% 1.33E-4 1.43% 4.22E-2 

R-HSA-199991 Membrane Trafficking 5.23% 2.17E-9 1.74% 1.10E-2 1.74% 4.22E-2 

R-HSA-382551 Transport of small molecules 3.33% 7.01E-4 1.53% 2.19E-2 1.67% 3.98E-2 

Note: Proportion of risk genes: these identified risk genes accounted for the proportion of all genes in each pathway enriched 
by these genes. FDR values were calculated by using the method of Benjamini-Hochberg false discovery rate (FDR) correction. 
 

Table 3. 18 common GO-terms enriched by tuberculosis-associated genes across 3 identified gene sets. 

GO-terms ID GO-terms 

Gene set #1 Gene set #2 Gene set #3 

Proportion of 

risk genes 
FDR 

Proportion of 

risk genes 
FDR 

Proportion of 

risk genes 
FDR 

GO:0005622 Intracellular 4.44% 4.09E-24 1.26% 2.89E-4 1.53% 1.07E-4 

GO:0110165 Cellular Anatomical Entity 3.77% 2.12E-21 0.91% 2.42E-2 1.47% 3.36E-5 

GO:0044237 Cellular Metabolic Process 3.80% 4.45E-15 1.04% 1.97E-2 1.18% 3.51E-2 

GO:0043227 Membrane-Bounded Organelle 3.79% 4.45E-15 1.33% 1.74E-4 1.63% 5.19E-5 

GO:0043229 Intracellular Organelle 3.76% 1.97E-13 1.77% 8.74E-8 1.61% 1.36E-4 

GO:0005488 Binding 3.47% 2.19E-13 1.38% 4.34E-5 1.56% 5.19E-5 

GO:0005737 Cytoplasm 3.90% 5.71E-13 1.46% 1.63E-4 1.40% 8.80E-3 

GO:0005515 Protein Binding 3.85% 5.71E-13 1.24% 3.39E-3 1.90% 1.41E-5 

GO:1901363 Heterocyclic Compound Binding 5.17% 6.56E-12 1.60% 6.97E-3 2.09% 9.91E-4 

GO:0019222 Regulation Of Metabolic Process 3.83% 5.78E-8 1.68% 4.24E-4 2.15% 5.19E-5 

GO:0016787 Hydrolase Activity 4.72% 4.28E-7 1.52% 4.74E-2 1.85% 3.47E-2 

GO:0031982 Vesicle 4.20% 3.60E-6 1.95% 1.57E-3 1.95% 1.14E-2 

GO:0008152 Metabolic Process 2.45% 2.16E-5 1.03% 6.97E-3 1.19% 1.14E-2 

GO:0005654 Nucleoplasm 4.43% 5.31E-5 2.11% 6.08E-3 2.11% 2.70E-2 

GO:0000166 Nucleotide Binding 4.51% 3.62E-4 1.86% 4.95E-2 3.45% 1.24E-4 

GO:0003723 Rna Binding 5.16% 1.42E-2 3.87% 6.80E-3 4.52% 3.95E-3 

GO:1901265 Nucleoside Phosphate Binding 3.35% 2.00E-2 2.32% 6.61E-3 2.32% 2.70E-2 

GO:1990904 Ribonucleoprotein Complex 6.33% 3.85E-2 5.06% 2.19E-2 6.33% 9.07E-3 

Note: Proportion of risk genes: these identified risk genes accounted for the proportion of all genes in each pathway enriched 
by these genes. FDR values were calculated by using the method of Benjamini-Hochberg false discovery rate (FDR) correction.  
 

these highlighted genes were highly connected with 

each other. The majority of interactions in the 

constructed network were depended on co-expression, 

which accounted for 71.52% of interactions 

(Supplementary Table 16 and Supplementary Figure 17). 

For example, the hub gene of RPS5 had co-expression 

evidence with NPHP4 and PDK1. Furthermore, the hub 

gene of RPS23 showed a genetic interaction with 

SCAPER, as well as the SCAPER gene interacted with 

TDRKH based on evidence of genetic interactions. It 



 

www.aging-us.com 19179 AGING 

should be noted that 5 TB-associated genes of CLN8, 

TMEM99, CARD9, SPATA20, and DHX57 had no 

interactions with other genes in this constructed 

network (Figure 5). 

 

Differential gene expression analysis of these 26 

highlighted genes 
 

By utilizing the expression data of GSE133803, we 

performed a DGE analysis of these 26 highlighted genes 

and found 12 genes were significantly expressed 

between MTB-infected cells and controls (Figure 6A, 

Table 1, and Supplementary Table 17); for example, 

CDC16 (P = 5.63 × 10-4), RPS5 (P = 2.11 × 10-4), 

HIATL1 (P = 1.83 × 10-7), and RPS23 (P = 5.45 × 10-5). 

2 genes of CARD9 (P = 0.055) and ZNF197 (P = 0.054) 

were identified to be suggestively significant 

(Supplementary Table 17). In light of most of 

interactions among genes were derived from co-

expression (71.52%) in our GGI network analysis, we 

further conducted a Pearson correlation analysis to 

uncover whether the co-expression patterns of these 

highlighted genes altered or not between MTB-infected 

cells and uninfected cells. We detected that there was 

remarkable differences in co-expression patterns among 

26 highlighted genes between MTB-infected cells and 

uninfected cells (Figure 6B, 6C and Supplementary 

Tables 18, 19). For example, the positive correlation 

coefficient of RPS23 with NUDT13 was decreased from 

0.99 in uninfected cells to 0.34 in MTB-infected cells. 

Furthermore, the correlation coefficient between RCN3 

and CLN8 was changed from 0.41 in uninfected cells to 

-0.92 in MTB-infected cells. 

 

By analyzing the GSE1440943 dataset based on blood 

samples, 8 significant genes and 1 suggestive genes 

showed differential expressions between MTB-infected 

mice with 5 different time points and uninfected mice  

(Table 1, Figure 7 and Supplementary Figure 18). 

Furthermore, we analyzed the GSE1440944 dataset 

 

 
 

Figure 3. Consistent evidence support Sherlock-identified genes implicated in tuberculosis (TB). (A) Venn diagram shows that 
common genes between Sherlock-identified genes of Gene sets #1, #2, and #3 and MAGMA-identified genes on TB (Gene set #4). (B) Venn 
diagram shows that common genes between Sherlock-identified genes of Gene sets #1, #2, and #3 and MAGMA-identified genes on fake TB 
(Gene set #5). (C–F) Computer-based permutation analysis; (C) for the overlap between Gene set #1 and Gene set #2; (D) for the overlap 
between Gene set #1 and Gene set #3; (E) for the overlap between Gene set #1 and Gene set #4; (F) for the overlap between Gene set #1 and 
Gene set #5. 
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based on lung tissues and identified 11 significant genes 

and 3 suggestive genes have differential expressions 

between MTB-infected with 5 different time points and 

uninfected mice (Table 1, Figure 7 and Supplementary 

Figure 19). There existed a consistent finding of 

significant genes between both datasets (Table 1 and 

Figure 7). For example, 2 genes of FCHO1 and RPS5 

showed significantly higher expression in MTB-infected 

mice at 5 time points than in uninfected mice in both 

blood (Figure 7A: Anova P = 0.04; and Figure 7C: 

Anova P = 3.73 × 10-4) and lung samples (Figure 7B: 

Anova P = 9.03 × 10-7 and Figure 7D: Anova P = 0.085). 

Consistently, by using the dataset of GSE139825 based 

on human alveolar macrophages, 7 significant genes 

(Anova P < 0.05; Supplementary Figure 20) and 4 

suggestive genes (Anova P < 0.1; Supplementary Figure 

21) showed differential expressions between TB group 

and control group. For example, RPS5 (Anova P = 2.74 

× 10-4) and FCHO1 (Anova P = 7.12 × 10-3). 

 

Identification of risk eSNPs among these 26 

highlighted TB-risk genes 

 

For each highlighted gene, there were multiple eSNPs 

showing significant association with the expression of 

this gene and TB risk simultaneously (Supplementary 

Table 20). To name a few, with respect to the gene of 

CDC16, 2 cis-regulatory eSNPs of rs7987202 (PeQTL = 

4.70 × 10-13 and PGWAS = 2.53 × 10-3) and rs9590408 

(PeQTL = 3.79 × 10-49 and PGWAS = 2.02 × 10-3) and 1 

trans-regulatory eSNPs of rs948182 (PeQTL = 4.13 × 10-6 

and PGWAS = 2.01 × 10-2) were identified. 1 eSNP of 

rs3118766 (PeQTL = 5.45 × 10-7 and PGWAS = 7.32 × 10-4) 

has cis-regulatory effect on HIATL1 gene. 3 eSNPs of 

rs2946863 (PeQTL = 3.26 × 10-7 and PGWAS = 6.42 × 10-

3), rs2878342 (PeQTL = 2.70 × 10-12 and PGWAS = 3.82 × 

10-3), rs3810194 (PeQTL = 6.65 × 10-6 and PGWAS = 1.43 

× 10-2) have cis-regulatory functions on RCN3 gene. 

Furthermore, with regard to FCHO1 gene, 3 cis-eSNPs 

(rs4280376: PeQTL = 1.95 × 10-10 and PGWAS = 5.86 × 10-

2, rs4808683: PeQTL = 9.98 × 10-15 and PGWAS = 3.39 × 

10-3, rs8107550: PeQTL = 2.85 × 10-6 and PGWAS = 4.40 × 

10-3) and 1 trans-eSNP (rs1058348: PeQTL = 3.24 × 10-7 

and PGWAS = 2.78 × 10-2) were identified. 

 

DISCUSSION 
 

TB is an infectious disease and remains a leading public 

health problem in developing world and an increasing 

threat in developed countries [1–3]. There were 

 

 
 

Figure 4. Comparative analysis of genes identified from the Sherlock analysis with that from the MAGMA analysis of 
tuberculosis (TB) and fake TB. (A) Gene set #1 versus MAGMA; (B) Gene set #2 versus MAGMA; (C) Gene set #3 versus MAGMA. 
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approximately one third of the world populations 

estimated to be infected with the TB pathogen, 

Mycobacterium tuberculosis, but only about 10% of 

infected individuals eventually become active TB 

patients [3], suggesting genetic heterogeneity potentially 

contribute differential susceptibility to infection. 

Consistently, host genetic factors having important roles 

in determining susceptibility to Mycobacterium 
tuberculosis are well-indicated by twin, family linkage, 

candidate gene analyses, and mouse models [6–8, 34, 

35]. Hitherto, more than 10 GWASs on TB have been 

reported [17–25], and many TB-associated genetic loci 

have been identified and documented in the NHGRI 

GWAS Catalog [36]. Nevertheless, some identified 

genetic variants were hard to be replicated [37, 38], 

which could be attributed to the genetic heterogeneity of 

samples used, underpowered GWASs, or small effect 

sizes of variants. Lack of replications lead to these 

GWAS-identified SNPs have not translated into clinical 

practice so far. Thus, there exists a strong interest in 

improving our understanding of the pathophysiological 

mechanisms of genetic components on TB with the use 

of advanced genetics- and genomics-based methods. 

 

For the method of GWAS, it has been widely used to 

identify genetic loci conveying risk to complex diseases 

[39]. With the use of GWAS, a growing and large 

number of SNPs have been documented to be of 

significant associations with hundreds of phenotypes 

[36, 40, 41]. However, due to the stringent correction for 

multiple testing of GWAS, many SNPs with small-to-

moderate effects which not reach a genome-wide 

significance but have important functional roles were 

largely neglected. In light of many SNP-SNP pairs have 

highly LD accompanied with similar level of 

significance when calculate the P-values, thus to 

pinpoint the exact causative variants of these GWAS-

identified associations is still a big challenge. Generally, 

 

 
 

Figure 5. Constructed GGI network by using identified 26 TB-associated genes. These 21 identified genes with interactions are 
marked with red color, 5 identified genes without interactions are marked with orange color, and 20 predicted genes are colored with gray 
color. 
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a large proportion of identified risk SNPs were annotated 

into noncoding regions of genome in GWASs on 

complex diseases including TB [8, 26, 28], indicating 

these SNPs may influence the gene expression levels by 

cis- and/or trans-regulatory mechanisms to involve in 

TB risk. Considerable work on exploring the links 

between genetic variants and RNA expression is 

interested and warranted. For our current study, we 

conducted an integrative genomics analysis by 

combining multi-layers of omics data, including 

genomics, eQTL, RNA expression, eSNPs, and gene-

gene interactions, to identify more susceptible SNPs, 

genes, and pathways implicated in the etiology of TB 

risk. 

We first performed a Sherlock-based Bayesian analysis 

through incorporating a large-scale GWAS summary 

dataset on TB with a discovery eQTL dataset to identify 

susceptible genes and eSNPs. At this discovery stage, a 

number of 694 significant genes were identified to be 

associated with TB. Of note, we noticed that 49 genes of 

694 significant genes have been documented to be 

associated with TB, lung-related or respiratory-related 

diseases in earlier studies. For example, 4 genes of 

C2CD2 [20], HLA-DRB6 [42], LPCAT2 [43], and HLA-
DQB1 [42, 44] were associated with TB risk, and RUNX 

[45] showed association with asthma or allergic disease 

risk. In addition, RUFY1, DEPDC7, and IRF4 were 

reported to be involved in lung cancer [46]. To validate 

 

 
 

Figure 6. The expression patterns of these 26 risk genes between infected cells and uninfected cells based on the GSE133803 
dataset. (A) Heatmap showing the expression levels of 26 risk genes between infected cells and uninfected cells; * represents the t-test P 
value < 0.05, ** represents the t-test P value < 0.01; (B) The co-expression patterns of 26 risk genes based on the Pearson correlation analysis 
in uninfected cells; (C) The co-expression patterns of 26 risk genes based on the Pearson correlation analysis in infected cells. 
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the findings in the discovery stage, we conducted 

Sherlock analysis based on 2 independent eQTL datasets 

and found that there were 26 genes significantly 

replicated. Of note, 1 common gene of CARD9 was 

previously identified to be associated with lung function 

(FVC) [47, 48]. Additionally, based on these 

significantly identified genes in both discovery and 

replication stage, we found 10 important biological 

pathways implicated in TB risk, providing a mechanistic 

clue for performing molecular studies for TB. Based on 

multiple layers of protein and genomics evidence 

deposited in public databases, we found these 26 genes 

were highly connective with each other in the 

constructed network, indicating these genes jointly 

impact on TB susceptibility. Noteworthy, all these 26 

genes encompassed at least one eSNPs which are 

significantly associated with both expression of gene and 

TB risk. Meanwhile, we also utilized MAGMA analysis 

of GWAS on TB as an independent technical validation. 

Interestingly, 18 of 26 (69.23%) common genes were 

significantly replicated in MAGMA analysis. 

 

Since there existed a high proportion of co-expression 

links among these 26 genes in our constructed network, 

we inferred that the co-expression patterns might be 

changed according to the different disease status of TB. 

In line with our speculation, the co-expression patterns 

among 26 genes were prominently altered between 

MTB-infected and uninfected cells. By performing the 

DGE analysis based on 4 independent expression 

datasets, we found that 21 of 26 genes had significantly 

differential expressions between TB group and control 

 

 
 

Figure 7. Boxplots show the differential expression levels of tuberculosis-risk genes between uninfected mice and infected 
mice with 5 distinct time points based on two GSE1440943 (blood) and GSE1440944 (lung) datasets. (A) FCHO1 for blood; (B) 
FCHO1 for lung; (C) RPS5 for blood; (D) RPS5 for lung; (E) HIATL1 for blood; (F) HIATL1 for lung; (G) RRM1 for blood; (H) RRM1 for lung; (I) 
CDK10 for blood; (J) CDK10 for lung; (K) PDK1 for blood; (L) PDK1 for lung; (M) CDC16 for blood; (N) CDC16 for lung; (O) DHX57 for blood; (P) 
DHX57 for lung. P values were generated by Anova test. 
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group in mesenchymal stem cells, mice blood and lung 

tissues, as well as human alveolar macrophages; such 

as, CDC16, HIATL1, RCN3, FCHO1, and RPS5. These 

results are consistent with the primary assumption of the 

Sherlock-based Bayesian inference algorithm that 

aberrant expression of genes are more likely to convey 

risk to complex diseases [29]. For the original GWAS 

reported by Canela-Xandri and coworkers [49], there 

was no SNP reaching genome-wide significance to be 

associated with TB. Due to the strict genome-wide 

significance threshold applied by the GWAS, numerous 

susceptible genes and SNPs with small-to-moderate 

effects on TB being neglected. As the method of 

reported studies [50–53], based on the two-stage 

designed integrative genomics analysis, we highlighted 

26 genes with multiple eSNPs as important candidates 

for revealing the pathogenesis of TB risk. 

 

The protein of CDC16, encoded by the highlighted gene 

of CDC16, is a protein ubiquitin ligase and is one of 

components of the multiprotein APC complex. CDC16 

has been reported as a binding partner of 

chitooligosaccharide deacetylase homolog (YDJC) in 

breast cancer cells [54]. Overexpression of CDC16 

enhanced the ubiquitination of YDJC in an orthotopic 

mouse model [55]. Kim and coworkers reported that 

suppression of YDJC or boosting of CDC16 interaction 

with YDJC might be implicated in the progression of 

lung cancer [56]. Previous studies have reported that TB 

is considered as a potential risk factor for the 

development of lung cancer [57, 58]. In our current 

analysis, there were 3 eSNPs (rs7987202, rs9590408, 

and rs948182) with cis- or trans-regulatory effects in 

CDC16 gene identified to be associated with TB risk. As 

for the highlighted gene of RCN3, it encodes 

reticulocalbin 3 (Rcn3), which is an endoplasmic 

reticulum lumen protein mapped in the secretory 

pathway. Jin and colleagues [59] showed that Rcn3 

protein has an indispensable physiological role in the 

maturation of perinatal lung and neonatal respiratory 

adaption by using an Rcn3 knockout mouse model. 

Furthermore, they demonstrated that upregulated 

expression of Rcn3 in maturating alveolar epithelial type 

II cells (AECIIs) seems to have a contribution to the 

survival and wound healing of AECIIs, indicating Rcn3 

has a critical part in mediating pulmonary injury 

remodeling [60]. Hou and coworkers [61] suggested that 

there is a potential association between the depletion of 

Rcn3 protein and development of non-small cell lung 

cancer. We noticed 3 eSNPs of rs2946863, rs2878342, 

and rs3810194 in RCN3 were associated with TB risk in 

our integrative genomics analysis. 

 

Some limitations of our current analysis need to 

comment. Although we employed multiple omics 

datasets, there were other datasets missed. For example, 

in our current study, gene expression datasets were 

mainly based on blood samples. Only two datasets of 

eQTL Dataset #5 and GSE1449044 were derived from 

mice lung tissue. More molecular studies for exploring 

the functions of genes identified from our current 

analysis are warrant to assess tissues that could be more 

related to the etiology of TB, for example, human lung 

tissue. Furthermore, due to the heterogeneity of 

different datasets, we applied different correction 

methods for multiple testing at each individual dataset; 

such as, simulated P value < 0.05 for Sherlock Bayesian 

analysis, false discovery rate (FDR) < 0.05 for pathway 

enrichment analysis, and empirical P value < 0.05 for 

100,000 times of in silico permutation analysis. 

Additionally, association signals of eSNPs from current 

integrative genomics analysis were obtained in the 

European population. We did not determine whether the 

associations exist in other ancestries. Future studies are 

warrant to evaluate the regulatory effects of eSNPs 

using genotype and expression data from other ethnic 

populations. In addition, although a total of 452,264 

samples were included for our genomics analysis, it 

should be noted that our chosen controls might contain 

persons have latent infection or they are the susceptible 

host that have never been exposed to TB, which might 

result in the power loss for genome-wide association 

analysis of this dataset. 

 

In conclusion, in the present study, we conducted a 

systematically integrative genomics analysis to identify 

TB-associated risk SNPs, susceptible genes, and 

biological pathways. By incorporating GWAS summary 

statistics with eQTL data, we offered a reasonable 

explanation of the regulatory functions of intronic SNPs 

for TB. With the use of detailed topology data on gene-

gene and gene-drug information, we highlighted 26 

candidate genes for TB susceptibility, which were 

difficult to be identified by any single GWAS. More 

molecular experiments are warranted to be performed 

for identification of the biological mechanisms of these 

prioritized genes implicated in the aetiology of 

developing TB. 

 

MATERIALS AND METHODS 
 

Sherlock-based integrative genomics analysis 
 

To exploit whether abnormal expression of gene with 

susceptible SNPs implicated in the etiology of TB risk, 

we performed a Sherlock-based integrative genomics 

analysis to integrate GWAS summary-based SNP 

information with eQTL [29]. The Sherlock integrative 

analysis based on a Bayesian algorithm is intended to 

cluster multiple lower-confidence SNPs from GWAS 

with expression QTL data to reveal authentic 

susceptible genes involved in complex diseases. In our 
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Sherlock analysis, SNP rs IDs and P values extracted 

from GWAS summary-level statistics were utilized as 

an input list. The definition of expression-associated 

SNPs (i.e., eSNPs) are that SNPs show significant 

associations with TB risk and meanwhile have cis- or 

trans-regulatory effects on expression levels of 

interested genes. There exists 3 potential scenarios: 1) A 

positive score would be recorded based on a specific 

eSNP shows a significant association with TB; 2) A 

negative score would be recorded based on a specific 

eSNP shows a non-significant association with TB; 3) 

No score would be recorded based on an SNP was not 

eSNP but shows a significant association with TB. The 

summed score of a specific gene was based on the 

number of eSNPs with integrative evidence from both 

GWAS and eQTL data. The logarithm of the Bayes 

Factor (LBF) is generated as a crucial indicator to 

predict TB-associated functionally-important genes. 

The significance of Sherlock Bayesian algorithm is 

assessed by using a simulation analysis, and P < 0.05 is 

considered to be significant. 

 

Dataset #1 for GWAS summary statistics on TB 
 

The Dataset #1, the large-scale GWAS summary dataset 

on TB [49], was downloaded from the UK-Biobank 

database (Fields: 20002; Field codes: 1440). There were 

452,264 subjects with 2,219 patients included in the 

GWAS. The Affymetrix UK BiLEVE Axiom array and 

the Affymetrix UK Biobank Axiom array were utilized 

for obtaining the genotypes of all subjects. There were 

62,394 genotyped variants passed quality control. 

Moreover, based on the UK10K [62], 1,000 Genome 

[63], and Haplotype Reference Consortium [64] 

projects as genomics references, all genotyped variants 

were used for imputation to extend more variants. In the 

current investigation, we defined two filtering criteria 

for choosing high quality variants: 1) if variants are 

genotyped, these variants with minor allele frequency 

(MAF) > 10-4 are included; 2) if variants are imputed, 

these variants with MAF > 10-4 and imputation score > 

0.9 are included. After strictly filtering, a number of 

13,805,935 SNPs are qualified for subsequent genomics 

integrative analysis. 

 

Dataset #2 for GWAS dataset on fake TB 
 

To ensure identified TB-risk genes were due to genetic 

determinants instead of random events, we constructed 

a fake TB-based GWAS through using a reported 

GWAS dataset (N = 3,960) [65]. We used the function 

of RANDBETWEEN in the Microsoft Excel to 

randomly generate and assign the phenotype of TB or 

control to these 3,960 individuals. In view of there is no 

true genetic effect of fake TB, the sample size of 

constructed GWAS is not a big issue. Thus, we used 

this constructed GWAS dataset as a negative control to 

re-perform genomics analysis by using the software of 

PLINK v1.07 based on the addictive genetic model. 

 

Dataset #3 for eQTL dataset reported by Zeller and 

coworkers 

 

Here we downloaded the monocyte eQTL data reported 

by Zeller and colleagues [66], which is used as a 

discovery dataset for the Sherlock Bayesian genomics 

analysis. For this eQTL dataset, 1,490 subjects with 

DNA and RNA samples were enrolled from the 

Gutenberg Heart Study (GHS). The Affymetrix 

Genome-wide Human SNP Array 6.0 was utilized to 

obtain the genotypes of subjects, and the Illumina HT-

12 v3 BeadChip was utilized to obtain RNA expression 

abundances. After stringently excluding, a number of 

675,350 SNPs and 12,808 genes were qualified for 

eQTL analysis and subsequent Sherlock analysis. For 

more detailed characteristics on this dataset, please 

refers to the original study [66]. 

 

Datasets #4 and #5 for eQTL datasets from the 

GTEx database 
 

Furthermore, we used two eQTL datasets on whole 

blood (Dataset #4; N = 369) and lung tissue (Dataset #5; 

N = 383) from the resource of Genotype-Tissue 

Expression project (GTEx v7) as an independent 

replication to conduct Sherlock analysis with same 

parameters. As for the resource of GTEx [67–69], 

nearly 1,000 subjects with 54 non-diseased tissues were 

utilized to collect samples for whole genome 

sequencing, whole exome sequencing, and RNA 

sequencing, which can be used for integrative genomics 

analysis to explore the relationship between genetic 

variants and expression levels of interested genes across 

multiple tissues. Multi-layers of omics data including 

gene expression and QTL data can be obtained through 

the GTEx Portal (https://www.gtexportal.org/home/). 

 

Gene-based analysis by using MAGMA tool 
 

To further replicate the findings identified from the 

Sherlock analysis, we conducted a gene-based analysis 

of GWAS on TB by applying the Multi-marker 

Analysis of GenoMic Annotation (MAGMA) [70]. 

Here, we used GWAS-relevant SNP rs IDs and SNP P 

values as an input list for MAGMA analysis. To 

improve the mapping of SNPs across different files and 

reference data, we used the SNP synonym file 

encompassing lists of synonymous SNP rs IDs that refer 

to the same SNP on the basis of the resource of dbSNP 

database release 151. By using multiple regression 

method, we attempted to discover multi-variant 

aggregated genetic effects by incorporating SNP-SNP 

https://www.gtexportal.org/home/
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linkage disequilibrium (LD) information, which is 

reference to the 1,000 Genomes European Panel Phase 

3. The definition of the SNP set of each gene is that the 

SNP located in the gene body or within extended +/-20 

kb downstream or upstream of the gene, and the 

locations of SNPs are based on the Human Genome 

Build 37. In addition, based on the KEGG pathway 

resource, we used the MGMA tool to conduct a 

pathway-based enrichment analysis. 

 

In silico permutation analysis 
 

By using the Sherlock Bayesian and MAGMA analysis, 

5 gene sets were identified to be associated with TB 

risk; namely Gene set #1 from discovery stage (Dataset 

#3), Gene set #2 from replication stage (Dataset #4), 

Gene set #3 from replication stage (Dataset #5), Gene 

set #4 from MAGMA analysis on TB (Dataset #1), and 

Gene set #5 from MAGMA analysis on fake TB 

(Dataset #2). Based on these 5 gene sets, we carried out 

serial in silico permutation analyses with 100,000 times 

of random trial [71]. In first step of this permutation 

analysis, the number of overlapped genes between Gene 

set #1 with other gene sets (N observation) were counted 

separately. Second, the background genes of each gene 

set was treated as a gene pool, which could be used for 

random selections. The number of background genes (N 

total) were 5,786, 7,452, 18,318, and 17,565 for Gene 

sets #2, #3, #4, and #5, respectively. By randomly 

picking the same number as the significant genes in 

Gene sets #2, #3, #4, and #5 from background genes (N 

total) respectively, via 100,000 times of repeat, we 

calibrated the count of genes overlapped with these 

significant genes of Gene set #1(N random). Finally, we 

calculated the number of times N random ≤ N observation and 

divided by 100,000 to obtain an empirical permuted P 

value. P value less than 0.05 is considered to be of 

significance. The density plot of each analysis was 

generated by using the R platform. 

 

Functional enrichment analysis by using KOBAS 

tool 
 

We carried out functional enrichment analyses with the 

use of the web-access tool of KOBAS version 3.0 [72]. 

The tool of KOBAS (http://kobas.cbi.pku.edu.cn/kobas3), 

which is depended on the machine learning-based called 

Combined Gene set analysis incorporating Prioritization 

and Sensitivity (CGPS) [73], is designed to analyze 

protein or gene functional annotation and functional 

gene set enrichment. With respect to gene set 

enrichment analysis, the method of KOBAS can accept 

either gene list or gene expression data as a submitted 

file. In our current analysis, we used identified TB-

associated genes from 3 times of Sherlock analyses (i.e., 

Gene sets #1, #2, and #3) as 3 lists of submitted genes 

for the KOBAS tool to calculate significantly enriched 

gene sets, including gene set related name, enrichment 

score, raw P values and corrected P values. There were 

3 types of databases used in our analyses: 1) Biological 

pathways: Reactome pathway, KEGG pathway, 

PANTHER pathway, and BioCyc pathway; 2) Gene 

Ontology (GO) terms; 3) Diseases: OMIM, NHGRI 

GWAS Catalog, and KEGG disease. The statistical 

significance is corrected by using the method of 

Benjamini-Hochberg false discovery rate (FDR) 

correction. 

 

GeneMANIA-based GGI network analysis of risk 

genes 
 

We used the bioinformatics tool of GeneMANIA [74] to 

conduct a gene-gene interaction (GGI) network-based 

analysis for identifying collective interaction patterns of 

the identified TB-associated genes and predicted genes 

with similar functions or co-expressions. We used these 

highlighted risk genes to query the large database of 

documented genomics and proteomics data. By using a 

guilt-by-association approach, the GeneMANIA tool 

based on multi-layers of supportive evidence including 

co-expression links, shared protein domains, genetic 

interactions, pathway links, co-localization, physical 

interactions, and predicted links, is designed to quickly 

and effectively predict the molecular functions and 

biological interactions of submitted genes. The GGI 

network is visualized by using the Cytoscape network 

visualization and analysis platform [75]. 

 

Differential expression patterns of identified genes 
 

To determine whether abnormal alterations in RNA 

expression levels of highlighted TB-risk genes, we 

downloaded 4 independent gene expression datasets 

from the database of the NCBI’s Gene Expression 

Omnibus (GEO). The accession numbers of 4 

expression datasets were GSE133803, GSE140943, 

GSE140944, and GSE139825. For GSE133803, the 

dataset was designed to analyze the mesenchymal stem 

cell gene expression level upon Mycobacterium 
tuberculosis (MTB) infection. RNA samples were 

obtained from MTB-infected mesenchymal stem cells 

(N = 3) and compared with that of uninfected 

mesenchymal stem cells (N = 3). The Illumina Human 

HT-12 V4.0 expression BeadChip was used to obtain 

the genome-wide gene expression profiles for all 

samples. 

 

As for two datasets of GSE1440943 and GSE1440944, 

they were designed to characterize global transcriptional 

responses to MTB infection in different mouse models. 

The samples of GSE1440943 were based on blood 

samples obtained from BALB mice infected with low 

http://kobas.cbi.pku.edu.cn/kobas3
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dose of MTB H37Rv, collected at 4 distinct time points 

Day 14 (N = 5), Day 21 (N = 5), Day 56 (N = 5), and 

Day 138 (N = 3) after MTB infection and uninfected 

control mice (N = 3). Similarly, the samples of 

GSE1449044 were based on lung tissues obtained from 

BALB mice infected with low dose of MTB H37Rv, 

collected at 4 distinct time points Day 14 (N = 3), Day 

21 (N = 3), Day 56 (N = 3), and Day 129 (N = 5) after 

MTB infection and uninfected controls (N = 5). The 

genome-wide gene expression signatures of both 

GSE1440943 and GSE1440944 were assessed by using 

the Illumina MouseWG-6 v2.0 expression BeadChip. 

With regard to the dataset of GSE139825, it was 

designed to explore the response to infection with MTB 

by human extrapulmonary macrophages. Total RNA 

samples (N = 26) were obtained from alveolar 

macrophages from TB patients infected with clinical 

isolates of MTB to compared to alveolar macrophages 

from control samples. The Illumina HumanHT-12 V4.0 

expression beadchip was used to evaluate the genome-

wide transcriptional abundance. 

 

Statistical analysis of RNA expression data from 

GEO database 
 

With regard to GSE133803 dataset, we conducted a 

differential gene expression (DGE) analysis. The 

Student’s t-test is used to assess the significant 

differences between MTB-infected cells and uninfected 

cells. Based on the Pearson correlation analysis, we 

used the Corrplot package in R platform to analyze and 

visualize the co-expression patterns among these 

highlighted TB-associated genes in the dataset of 

GSE133803. For both GSE1440943 and GSE1440944, 

the ANOVA test was used to compare the statistically 

significant differences between MTB-infected mice and 

uninfected mice at 4 distinct time points. Furthermore, 

for GSE139825, the ANOVA test was applied to assess 

the significant difference among different groups. The 

Rscript for this analysis was uploaded into the public 

github website (https://github.com/mayunlong89/TB/ 

blob/master/Anova_test.R). 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Previous studies provide supportive evidence of these Sherlock-identified genes in the discovery 
stage. 
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Supplementary Figure 2. Previous studies provide supportive evidence of these Sherlock-identified genes in the replication 
stage (based on both Dataset #4 and #5). 
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Supplementary Figure 3. Expression abundance of CDC16 and HIATL1 based on RNA sequencing from 20 human tissues. The 
expression data were obtained from BioProject (Accession No. PRJNA280600). Expression values are shown in Reads Per Kilobase per Million 
mapped reads (RPKM). 
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Supplementary Figure 4. Expression abundance of FCHO1 and RPS5 based on RNA sequencing from 20 human tissues. The 
expression data were obtained from BioProject (Accession No. PRJNA280600). Expression values are shown in Reads Per Kilobase per Million 
mapped reads (RPKM). 
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Supplementary Figure 5. Expression abundance of RCN3 and CDK10 based on RNA sequencing from 20 human tissues. The 
expression data were obtained from BioProject (Accession No. PRJNA280600). Expression values are shown in Reads Per Kilobase per Million 
mapped reads (RPKM). 
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Supplementary Figure 6. Expression abundance of SCAPER and LIG3 based on RNA sequencing from 20 human tissues. The 
expression data were obtained from BioProject (Accession No. PRJNA280600). Expression values are shown in Reads Per Kilobase per Million 
mapped reads (RPKM). 
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Supplementary Figure 7. Expression abundance of RRM1 and PDK1 based on RNA sequencing from 20 human tissues. The 
expression data were obtained from BioProject (Accession No. PRJNA280600). Expression values are shown in Reads Per Kilobase per Million 
mapped reads (RPKM). 
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Supplementary Figure 8. Expression abundance of TMEM99 and SPATA20 based on RNA sequencing from 20 human tissues. 
The expression data were obtained from BioProject (Accession No. PRJNA280600). Expression values are shown in Reads Per Kilobase per 
Million mapped reads (RPKM). 
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Supplementary Figure 9. Expression abundance of TDRKH and NPHP4 based on RNA sequencing from 20 human tissues. The 
expression data were obtained from BioProject (Accession No. PRJNA280600). Expression values are shown in Reads Per Kilobase per Million 
mapped reads (RPKM). 
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Supplementary Figure 10. Expression abundance of CLN8 and DHX57 based on RNA sequencing from 20 human tissues. The 
expression data were obtained from BioProject (Accession No. PRJNA280600). Expression values are shown in Reads Per Kilobase per Million 
mapped reads (RPKM). 
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Supplementary Figure 11. Expression abundance of MAP1S and HDAC10 based on RNA sequencing from 20 human tissues. 
The expression data were obtained from BioProject (Accession No. PRJNA280600). Expression values are shown in Reads Per Kilobase per 
Million mapped reads (RPKM). 
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Supplementary Figure 12. Expression abundance of TBRG4 and CARD9 based on RNA sequencing from 20 human tissues. The 
expression data were obtained from BioProject (Accession No. PRJNA280600). Expression values are shown in Reads Per Kilobase per Million 
mapped reads (RPKM). 
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Supplementary Figure 13. Expression abundance of ZNF354A and ZNF266 based on RNA sequencing from 20 human tissues. 
The expression data were obtained from BioProject (Accession No. PRJNA280600). Expression values are shown in Reads Per Kilobase per 
Million mapped reads (RPKM). 
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Supplementary Figure 14. Expression abundance of ZNF502 and ZNF197 based on RNA sequencing from 20 human tissues. 
The expression data were obtained from BioProject (Accession No. PRJNA280600). Expression values are shown in Reads Per Kilobase per 
Million mapped reads (RPKM). 
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Supplementary Figure 15. Expression abundance of NUDT13 and RPS23 based on RNA sequencing from 20 human tissues. 
The expression data were obtained from BioProject (Accession No. PRJNA280600). Expression values are shown in Reads Per Kilobase per 
Million mapped reads (RPKM). 
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Supplementary Figure 16. Previous studies provides supportive evidence of these MAGMA-identified genes in the 
replication stage (based on Dataset #1). 
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Supplementary Figure 17. The proportion of multiple layers of evidence in constructed GGI network using the GeneMANIA 
tool. 
 

 
 

Supplementary Figure 18. Boxplots show the differential expression levels of tuberculosis-genes between uninfected mice 
and infected mice with 5 distinct time points based on two GSE1440943 (blood) and GSE1440944 (lung) datasets. (A) LIG3 for 
blood; (B) LIG3 for lung. P values were generated by Anova test. 
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Supplementary Figure 19. Boxplots show the differential expression levels of tuberculosis-genes between uninfected mice 
and infected mice with 5 distinct time points based on the GSE1440944 (lung) dataset. (A) TBRG4 for lung; (B) TDRKH for lung; (C) 
RCN3 for lung; (D) SCAPER for lung; (E) HDAC10 for lung; (F) NPHP4 for lung. P values were generated by Anova test. 



 

www.aging-us.com 19211 AGING 

 
 

Supplementary Figure 20. Boxplots show the significantly differential expression levels of tuberculosis-genes in alveolar 
macrophages with four groups of TB infection, TB control, healthy infection, and healthy control based on the GSE139825 
dataset. (A) RPS5; (B) ZNF197; (C) SPATA20; (D) PDK1; (E) ZNF354A; (F) FCHO1; (G) CLN8. P values were generated by Anova test. 
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Supplementary Figure 21. Boxplots show the suggestively differential expression levels of tuberculosis-genes in alveolar 
macrophages with four groups of TB infection, TB control, healthy infection, and healthy control based on the GSE139825 
dataset. (A) TDRKH; (B) LIG3; (C) CDK10; (D) CDC16. P values were generated by Anova test. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1 to 6, 14, 18, 19, 20. 

 

Supplementary Table 7. Significant pathways enriched by tuberculosis-associated genes (Gene set #2) identified 
from Sherlock Bayesian analysis of dataset #4 in the replication stage. 

Pathway ID Database Input number Background number P-Value FDR 

R-HSA-1430728 Reactome 28 2075 4.09E-07 1.19E-04 

R-HSA-168256 Reactome 28 2096 4.98E-07 1.33E-04 

R-HSA-1643685 Reactome 19 1049 5.30E-07 1.33E-04 

R-HSA-392499 Reactome 26 2012 2.37E-06 3.72E-04 

hsa01100 KEGG PATHWAY 21 1433 3.61E-06 5.05E-04 

R-HSA-162582 Reactome 30 2689 6.93E-06 8.72E-04 

R-HSA-597592 Reactome 20 1412 1.01E-05 1.09E-03 

R-HSA-2470946 Reactome 3 10 2.53E-05 2.39E-03 

R-HSA-68884 Reactome 3 14 5.94E-05 4.87E-03 

R-HSA-71387 Reactome 8 288 6.82E-05 5.47E-03 

R-HSA-168249 Reactome 15 1043 1.12E-04 6.97E-03 

R-HSA-211945 Reactome 5 105 1.51E-04 8.92E-03 

R-HSA-199991 Reactome 11 631 1.89E-04 1.10E-02 

R-HSA-8953854 Reactome 11 667 3.00E-04 1.66E-02 

R-HSA-5653656 Reactome 11 669 3.07E-04 1.68E-02 

R-HSA-77075 Reactome 3 27 3.39E-04 1.80E-02 

R-HSA-167160 Reactome 3 27 3.39E-04 1.80E-02 

R-HSA-72086 Reactome 3 29 4.12E-04 1.90E-02 

R-HSA-74160 Reactome 17 1448 4.17E-04 1.90E-02 

R-HSA-73857 Reactome 16 1316 4.24E-04 1.90E-02 

R-HSA-167172 Reactome 4 73 4.27E-04 1.90E-02 

R-HSA-6807505 Reactome 4 74 4.49E-04 1.96E-02 

hsa00030 KEGG PATHWAY 3 30 4.51E-04 1.96E-02 

R-HSA-397014 Reactome 6 209 4.70E-04 1.97E-02 

R-HSA-382551 Reactome 11 720 5.61E-04 2.19E-02 

R-HSA-446203 Reactome 7 304 5.81E-04 2.22E-02 

R-HSA-5649702 Reactome 2 7 7.19E-04 2.42E-02 

R-HSA-167287 Reactome 3 36 7.41E-04 2.45E-02 

R-HSA-167290 Reactome 3 36 7.41E-04 2.45E-02 

R-HSA-8983711 Reactome 2 9 1.09E-03 3.27E-02 

R-HSA-15869 Reactome 4 95 1.10E-03 3.27E-02 

R-HSA-5362517 Reactome 3 43 1.20E-03 3.55E-02 

R-HSA-5685939 Reactome 2 10 1.31E-03 3.73E-02 

R-HSA-212436 Reactome 14 1193 1.33E-03 3.79E-02 

R-HSA-5668914 Reactome 4 103 1.47E-03 4.06E-02 

R-HSA-2468052 Reactome 2 11 1.54E-03 4.24E-02 

R-HSA-167152 Reactome 3 48 1.62E-03 4.37E-02 

R-HSA-6785807 Reactome 4 108 1.73E-03 4.64E-02 

R-HSA-6798695 Reactome 8 478 1.80E-03 4.72E-02 

R-HSA-5696398 Reactome 4 111 1.91E-03 4.90E-02 

Note: Proportion of risk genes: these identified risk genes (Input number) accounted for the proportion of all genes in each 
pathway (Background number) enriched by these genes. FDR values were calculated by using the method of Benjamini-
Hochberg false discovery rate (FDR) correction. 
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Supplementary Table 8. Significant GO-terms enriched by tuberculosis-associated genes (Gene set #2) identified 
from Sherlock Bayesian analysis of dataset #4 in the replication stage. 

GO-terms ID Input number Background number P-Value FDR 

GO:0043229 33 1863 4.63E-11 8.74E-08 

GO:0005488 31 2247 5.75E-08 4.34E-05 

GO:0097159 18 845 1.07E-07 5.78E-05 

GO:0032555 11 292 1.69E-07 7.08E-05 

GO:0009987 34 2852 3.69E-07 1.16E-04 

GO:0005737 24 1641 7.34E-07 1.63E-04 

GO:0043227 27 2030 8.76E-07 1.74E-04 

GO:0005622 28 2228 1.61E-06 2.89E-04 

GO:0043168 12 454 1.76E-06 2.89E-04 

GO:0019222 18 1070 2.92E-06 4.24E-04 

GO:0097708 9 261 4.54E-06 5.91E-04 

GO:0005829 12 531 8.30E-06 9.79E-04 

GO:0003824 18 1162 8.82E-06 9.79E-04 

GO:0032553 9 292 1.08E-05 1.11E-03 

GO:0031982 13 667 1.62E-05 1.57E-03 

GO:0043226 24 2086 3.77E-05 3.39E-03 

GO:0005515 21 1688 3.96E-05 3.39E-03 

GO:0010468 15 1012 8.07E-05 6.08E-03 

GO:0005654 10 474 8.21E-05 6.08E-03 

GO:1901265 9 388 9.28E-05 6.61E-03 

GO:0003723 6 155 9.91E-05 6.80E-03 

GO:0008152 26 2527 1.09E-04 6.97E-03 

GO:0000794 3 18 1.15E-04 6.97E-03 

GO:1901363 13 813 1.16E-04 6.97E-03 

GO:0030054 6 177 1.99E-04 1.12E-02 

GO:0036094 9 467 3.55E-04 1.83E-02 

GO:0051173 9 469 3.66E-04 1.83E-02 

GO:1903708 3 28 3.74E-04 1.83E-02 

GO:0005634 15 1182 4.14E-04 1.90E-02 

GO:0006266 2 5 4.22E-04 1.90E-02 

GO:0044237 21 2027 4.64E-04 1.97E-02 

GO:0046914 6 215 5.43E-04 2.19E-02 

GO:1990904 4 79 5.68E-04 2.19E-02 

GO:0060089 6 217 5.69E-04 2.19E-02 

GO:0043902 4 80 5.94E-04 2.22E-02 

GO:0036211 12 857 6.76E-04 2.42E-02 

GO:0048037 4 84 7.08E-04 2.42E-02 

GO:0016818 6 227 7.16E-04 2.42E-02 

GO:0110165 26 2864 7.18E-04 2.42E-02 

GO:0042629 2 7 7.19E-04 2.42E-02 

GO:0001649 3 38 8.59E-04 2.79E-02 

GO:0070942 2 8 8.95E-04 2.84E-02 

GO:0031331 4 92 9.80E-04 3.06E-02 

GO:0016486 2 9 1.09E-03 3.27E-02 

GO:0009262 2 9 1.09E-03 3.27E-02 

GO:2000108 2 10 1.31E-03 3.73E-02 

GO:0010976 3 48 1.62E-03 4.37E-02 
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GO:0019320 2 12 1.79E-03 4.72E-02 

GO:0016787 9 593 1.83E-03 4.74E-02 

GO:0000166 7 377 1.95E-03 4.95E-02 

Note: Proportion of risk genes: these identified risk genes (Input number) accounted for the proportion of all genes in each 
pathway (Background number) enriched by these genes. FDR values were calculated by using the method of Benjamini-
Hochberg false discovery rate (FDR) correction. 
 

Supplementary Table 9. Significant KEGG and NHGRI GWAS catalog disease enriched by tuberculosis-associated 
genes (Gene set #2) identified from Sherlock Bayesian analysis of dataset #4 in the replication stage. 

Disease terms Database Input number Background number P-Value FDR 

QT interval NHGRI GWAS Catalog 6 37 4.28E-08 4.34E-05 

Obesity-related traits NHGRI GWAS Catalog 16 691 1.89E-07 7.11E-05 

Ulcerative colitis NHGRI GWAS Catalog 6 138 5.35E-05 4.48E-03 

Congenital disorders of metabolism KEGG DISEASE 12 695 1.06E-04 6.97E-03 

Hematological and biochemical traits NHGRI GWAS Catalog 3 31 4.93E-04 2.05E-02 

Skin and soft tissue diseases KEGG DISEASE 4 103 1.47E-03 4.06E-02 

Skin diseases KEGG DISEASE 4 103 1.47E-03 4.06E-02 

Note: Proportion of risk genes: these identified risk genes (Input number) accounted for the proportion of all genes in each 
pathway (Background number) enriched by these genes. FDR values were calculated by using the method of Benjamini-
Hochberg false discovery rate (FDR) correction. 
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Supplementary Table 10. Significant pathways enriched by tuberculosis-associated genes (Gene set #3) identified 
from Sherlock Bayesian analysis of dataset #5 in the replication stage. 

Pathway ID Database Input number Background number P-Value FDR 

R-HSA-1430728 Reactome 35 2075 2.43E-08 3.16E-05 

R-HSA-392499 Reactome 33 2012 1.18E-07 5.19E-05 

R-HSA-74160 Reactome 26 1448 5.42E-07 1.24E-04 

R-HSA-212436 Reactome 22 1193 2.73E-06 4.24E-04 

R-HSA-597592 Reactome 23 1412 1.17E-05 1.34E-03 

R-HSA-73857 Reactome 22 1316 1.23E-05 1.37E-03 

R-HSA-72649 Reactome 5 58 3.22E-05 3.21E-03 

R-HSA-72702 Reactome 5 58 3.22E-05 3.21E-03 

R-HSA-72662 Reactome 5 59 3.48E-05 3.32E-03 

hsa05168 KEGG PATHWAY 12 492 4.15E-05 3.76E-03 

R-HSA-72695 Reactome 4 51 2.88E-04 1.67E-02 

R-HSA-72766 Reactome 8 291 3.67E-04 2.07E-02 

R-HSA-9006934 Reactome 10 458 4.22E-04 2.28E-02 

R-HSA-156827 Reactome 5 111 5.74E-04 2.79E-02 

R-HSA-72706 Reactome 5 112 5.97E-04 2.87E-02 

R-HSA-5653656 Reactome 12 669 6.51E-04 3.09E-02 

R-HSA-499943 Reactome 3 28 7.46E-04 3.34E-02 

R-HSA-72737 Reactome 5 119 7.76E-04 3.39E-02 

R-HSA-72613 Reactome 5 119 7.76E-04 3.39E-02 

R-HSA-1614517 Reactome 2 6 8.98E-04 3.55E-02 

R-HSA-196807 Reactome 3 31 9.81E-04 3.76E-02 

R-HSA-168273 Reactome 5 131 1.17E-03 3.98E-02 

hsa05133 KEGG PATHWAY 4 76 1.19E-03 3.98E-02 

R-HSA-382551 Reactome 12 720 1.21E-03 3.98E-02 

R-HSA-199991 Reactome 11 631 1.35E-03 4.22E-02 

hsa00983 KEGG PATHWAY 4 79 1.37E-03 4.22E-02 

R-HSA-1643685 Reactome 15 1049 1.41E-03 4.22E-02 

R-HSA-168255 Reactome 5 141 1.61E-03 4.56E-02 

R-HSA-159763 Reactome 2 9 1.74E-03 4.78E-02 

Note: Proportion of risk genes: these identified risk genes (Input number) accounted for the proportion of all genes in each 
pathway (Background number) enriched by these genes. FDR values were calculated by using the method of Benjamini-
Hochberg false discovery rate (FDR) correction.  
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Supplementary Table 11. Significant GO-terms enriched by tuberculosis-associated genes (Gene set #3) identified 
from Sherlock Bayesian analysis of dataset #5 in the replication stage. 

GO-terms ID Input number Background number P-Value FDR 

GO:0005515 32 1688 7.25E-09 1.41E-05 

GO:0110165 42 2864 4.32E-08 3.36E-05 

GO:0019222 23 1070 1.23E-07 5.19E-05 

GO:0043227 33 2030 1.44E-07 5.19E-05 

GO:0005488 35 2247 1.60E-07 5.19E-05 

GO:0005622 34 2228 3.86E-07 1.07E-04 

GO:0000166 13 377 5.26E-07 1.24E-04 

GO:0043229 30 1863 6.65E-07 1.36E-04 

GO:0043231 27 1606 1.12E-06 2.07E-04 

GO:0043167 20 962 1.36E-06 2.31E-04 

GO:0043233 16 725 7.63E-06 9.91E-04 

GO:0030659 6 75 7.69E-06 9.91E-04 

GO:1901363 17 813 7.90E-06 9.91E-04 

GO:0046872 15 657 9.96E-06 1.17E-03 

GO:0005509 7 137 2.15E-05 2.26E-03 

GO:0005576 15 736 3.58E-05 3.32E-03 

GO:0003723 7 155 4.56E-05 3.95E-03 

GO:0005737 23 1641 1.11E-04 8.80E-03 

GO:0010468 17 1012 1.13E-04 8.80E-03 

GO:0032991 13 639 1.20E-04 8.80E-03 

GO:1990904 5 79 1.28E-04 9.07E-03 

GO:0005856 9 320 1.35E-04 9.23E-03 

GO:0005739 8 260 1.76E-04 1.14E-02 

GO:0031982 13 667 1.81E-04 1.14E-02 

GO:0031090 11 493 1.84E-04 1.14E-02 

GO:0008152 30 2527 1.91E-04 1.14E-02 

GO:0032553 8 292 3.75E-04 2.07E-02 

GO:0031967 6 165 4.89E-04 2.54E-02 

GO:1901265 9 388 5.34E-04 2.70E-02 

GO:0005654 10 474 5.47E-04 2.70E-02 

GO:0009295 2 5 6.76E-04 3.10E-02 

GO:0005635 4 65 6.85E-04 3.10E-02 

GO:0031975 6 183 8.26E-04 3.47E-02 

GO:0016787 11 593 8.30E-04 3.47E-02 

GO:0044237 24 2027 8.66E-04 3.51E-02 

GO:0016020 19 1443 9.02E-04 3.55E-02 

GO:0043228 11 606 9.85E-04 3.76E-02 

GO:0071704 28 2548 1.01E-03 3.78E-02 

GO:0032549 4 74 1.09E-03 3.95E-02 

GO:0016229 2 7 1.15E-03 3.96E-02 

GO:0070129 2 7 1.15E-03 3.96E-02 

GO:0005310 2 7 1.15E-03 3.96E-02 

GO:0097367 8 351 1.20E-03 3.98E-02 

GO:0033036 9 440 1.26E-03 4.10E-02 

GO:0005886 12 726 1.29E-03 4.12E-02 

GO:0065003 8 358 1.36E-03 4.22E-02 

GO:0034707 2 8 1.43E-03 4.22E-02 
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GO:0003777 2 8 1.43E-03 4.22E-02 

GO:0043025 4 82 1.56E-03 4.49E-02 

GO:0005215 6 210 1.63E-03 4.58E-02 

GO:0035091 3 38 1.70E-03 4.68E-02 

Note: Proportion of risk genes: these identified risk genes (Input number) accounted for the proportion of all genes in each 
pathway (Background number) enriched by these genes. FDR values were calculated by using the method of Benjamini-
Hochberg false discovery rate (FDR) correction.  
 

Supplementary Table 12. Significant KEGG and NHGRI GWAS catalog disease enriched by tuberculosis-associated 
genes (Gene set #3) identified from Sherlock Bayesian analysis of dataset #5 in the replication stage. 

Disease terms Database Input number Background number P-Value FDR 

Parkinson's disease NHGRI GWAS Catalog 6 56 1.60E-06 2.59E-04 

Hematological and biochemical traits NHGRI GWAS Catalog 4 31 4.83E-05 4.09E-03 

Hematologic diseases KEGG DISEASE 7 181 1.16E-04 8.80E-03 

Congenital disorders of metabolism KEGG DISEASE 13 695 2.66E-04 1.57E-02 

Mean platelet volume NHGRI GWAS Catalog 4 55 3.77E-04 2.07E-02 

Metabolite levels NHGRI GWAS Catalog 5 107 4.89E-04 2.54E-02 

Obesity-related traits NHGRI GWAS Catalog 12 691 8.56E-04 3.51E-02 

Cardiovascular diseases KEGG DISEASE 8 342 1.02E-03 3.79E-02 

Serum total protein level NHGRI GWAS Catalog 2 8 1.43E-03 4.22E-02 

Triglycerides NHGRI GWAS Catalog 4 81 1.49E-03 4.37E-02 

QT interval NHGRI GWAS Catalog 3 37 1.58E-03 4.52E-02 

Bone mineral density NHGRI GWAS Catalog 4 85 1.77E-03 4.81E-02 

Nervous system diseases KEGG DISEASE 13 859 1.78E-03 4.81E-02 

Note: Proportion of risk genes: these identified risk genes (Input number) accounted for the proportion of all genes in each 
pathway (Background number) enriched by these genes. FDR values were calculated by using the method of Benjamini-
Hochberg false discovery rate (FDR) correction. 
 

Supplementary Table 13. 2 common diseases enriched by tuberculosis-associated genes across 3 gene sets identified 
from Sherlock analysis. 

Disease terms Database 
Gene set #1 Gene set #2 Gene set #3 

Proportion of 
risk genes 

FDR 
Proportion of 

risk genes 
Corrected 
P-Value 

Proportion of 
risk genes 

Corrected 
P-Value 

Congenital disorders of 
metabolism 

KEGG 
DISEASE 

5.61% 4.96E
-12 

1.73% 6.97E-03 1.87% 1.57E-02 

Obesity-related traits NHGRI GWAS 
Catalog 

5.07% 1.23E
-09 

2.32% 7.11E-05 1.74% 3.51E-02 

Note: Proportion of risk genes: these identified risk genes (Input number) accounted for the proportion of all genes in each 
pathway (Background number) enriched by these genes. FDR values were calculated by using the method of Benjamini-
Hochberg false discovery rate (FDR) correction.  
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Supplementary Table 15. 21 pathways enriched by using MAGMA gene-set analysis based on the KEGG pathway 
resource. 

Pathway Name 
Gene 

Number 
Beta 

MAGMA-based P 

values 

KOBAS-based P values (genes 

from the discovery stage) 

Pyruvate metabolism 38 0.35  4.88E-03 5.70E-02 

Acute myeloid leukemia 53 0.28  5.67E-03 1.03E-02 

Toxoplasmosis 121 0.20  6.47E-03 6.68E-04 

Type II diabetes mellitus 44 0.30  9.75E-03 3.13E-03 

Neurotrophin signaling pathway 121 0.17  9.91E-03 8.91E-04 

RIG-I-like receptor signaling pathway 62 0.27  1.09E-02 5.87E-02 

B cell receptor signaling pathway 70 0.20  1.55E-02 4.15E-03 

Adipocytokine signaling pathway 64 0.22  1.69E-02 5.68E-02 

Natural killer cell mediated cytotoxicity 128 0.16  1.81E-02 5.60E-05 

VEGF signaling pathway 73 0.20  2.11E-02 1.32E-03 

Insulin signaling pathway 127 0.14  2.46E-02 1.93E-03 

Toll-like receptor signaling pathway 95 0.18  2.55E-02 2.26E-03 

Jak-STAT signaling pathway 142 0.14  2.69E-02 4.68E-03 

Drug metabolism - cytochrome P450 71 0.23  2.70E-02 4.98E-05 

mTOR signaling pathway 45 0.21  3.08E-02 8.13E-04 

Prostate cancer 85 0.16  3.42E-02 3.44E-02 

Pancreatic cancer 66 0.16  4.16E-02 6.88E-02 

Hepatitis C 128 0.12  4.62E-02 1.87E-04 

Metabolism of xenobiotics by cytochrome 

P450 
71 0.20  4.74E-02 4.90E-04 

 

Supplementary Table 16. The proportion of multiple layers of evidence in  
constructed GGI network using the GeneMANIA tool. 

ID Evidence of interactions Proportions 

1 Co-expression links 71.52% 

2 Predicted links 19.09% 

3 Physical interactions 8.44% 

4 Pathways 0.39% 

5 Genetic interactions 0.31% 

6 Shared protein domains 0.23% 

7 Co-localization 0.02% 
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Supplementary Table 17. Differential expression analysis of 26 candidate genes between infected cells and 
uninfected cells based on the GSE133803 data. 

Gene 
GSM3927531 

(infected cells) 

GSM3927532 

(infected cells) 

GSM3927533 

(infected cells) 

GSM3927534 

(uninfected cells) 

GSM3927535 

(uninfected cells) 

GSM3927536 

(uninfected cells) 
P values (t-test) 

RPS23 9.91  9.69  9.47  12.03  12.05  12.02  5.45E-05 

RPS5 11.52  11.14  11.08  13.08  13.16  13.02  2.11E-04 

CLN8 6.74  6.85  6.77  7.78  7.78  7.76  8.18E-06 

SPATA20 10.15  9.77  9.63  10.97  11.02  10.95  1.98E-03 

CDC16 11.36  11.11  11.05  12.33  12.45  12.22  5.63E-04 

TMEM99 9.40  9.42  9.09  10.31  10.37  10.11  2.00E-03 

LIG3 7.90  7.65  7.67  8.51  8.49  8.35  1.86E-03 

RRM1 10.49  10.24  10.00  11.13  11.16  11.12  3.24E-03 

SCAPER 8.10  8.04  7.96  8.44  8.41  8.45  8.84E-04 

ZNF266 6.78  6.76  6.74  6.77  7.17  7.24  0.110  

RCN3 11.07  10.79  10.91  11.37  11.51  11.31  8.73E-03 

CARD9 7.13  7.39  7.09  7.55  7.44  7.43  5.48E-02 

TBRG4 8.66  8.24  8.44  8.74  8.77  8.63  0.111  

ZNF502 7.62  7.67  7.30  7.84  7.75  7.68  0.143  

ZNF197 6.96  7.05  6.91  7.06  7.25  7.18  5.40E-02 

NUDT13 7.06  6.77  6.96  7.03  7.27  6.96  0.281  

HDAC10 7.14  6.78  6.88  7.05  7.06  6.98  0.424  

TDRKH 6.91  6.69  6.77  6.64  6.77  6.89  0.833  

PDK1 7.24  7.13  7.04  7.13  7.26  6.95  0.825  

CDK10 6.77  6.74  6.59  6.68  6.59  6.68  0.494  

DHX57 6.70  6.81  6.69  6.64  6.80  6.59  0.475  

NPHP4 8.00  7.78  7.86  7.87  7.82  7.62  0.318  

ZNF354A 7.29  7.26  7.49  7.24  7.34  7.09  0.293  

FCHO1 6.77  6.90  6.65  6.42  6.75  6.67  0.267  

MAP1S 10.71  10.32  10.30  9.81  9.88  9.71  1.01E-02 

HIATL1 10.41  10.42  10.37  8.24  8.31  8.24  1.83E-07 

Note: The P values were calculated by using the Student’s t test. 


