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Abstract: Preliminary evidence suggests that neighborhood environments, such as socioeconomic
disadvantage, pedestrian and physical activity infrastructure, and availability of neighborhood desti-
nations (e.g., parks), may be associated with late-life cognitive functioning and risk of Alzheimer’s
disease and related disorders (ADRD). The supposition is that these neighborhood characteristics
are associated with factors such as mental health, environmental exposures, health behaviors, and
social determinants of health that in turn promote or diminish cognitive reserve and resilience in
later life. However, observed associations may be biased by self-selection or reverse causation, such
as when individuals with better cognition move to denser neighborhoods because they prefer many
destinations within walking distance of home, or when individuals with deteriorating health choose
residences offering health services in neighborhoods in rural or suburban areas (e.g., assisted living).
Research on neighborhood environments and ADRD has typically focused on late-life brain health
outcomes, which makes it difficult to disentangle true associations from associations that result
from reverse causality. In this paper, we review study designs and methods to help reduce bias
due to reverse causality and self-selection, while drawing attention to the unique aspects of these
approaches when conducting research on neighborhoods and brain aging.

Keywords: epidemiological methods; causality; reverse causation; self-selection; bias; neighborhood;
built environment; brain health; Alzheimer disease; cognition

1. Introduction

Studies on the influence of neighborhood environments (NE) (i.e., social and built
environments (BE)) on brain health are still in their infancy but are growing rapidly
and provide tentative evidence that our community environments may affect the brain
throughout the lifespan [1–3]. Greater neighborhood socioeconomic disadvantage has been
associated with worse baseline cognition [4,5], greater decline in cognition over time [6],
and total and regional brain volumes from magnetic resonance imaging (MRI) [7] among
older adults. Neighborhood racial/ethnic segregation has been linked to poorer cognitive
health outcomes in middle and older aged individuals [8–10]. In addition, measures of
the BE such as greater land use mix (e.g., mix of retail and residential) [11], access to
retail destinations [12], public transportation availability [13], greater walkability [14] (i.e.,
environment conducive to walking by providing multiple destinations and density of
street connections), and greater greenness/park space access [15–18] have been associated
with various measures of brain health in older adults including diagnoses of Alzheimer’s
disease and related disorders (ADRD). This body of research is typically rooted in the
socioecological framework that posits that beyond individual level determinants of brain
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health, including age and genetics, there are likely higher-level social determinants of
health (SDOH) operating, including neighborhood and community environments. SDOH
affect environmental exposures and access to support, resources, and opportunities that
ultimately affect a population’s morbidity and mortality.

Yet, even the most rigorous studies of the NE and brain health to date, such as those
that employ population-based cohorts with longitudinal follow-up or natural experiments,
can still be biased due to attrition (e.g., individuals with the outcome of interest drop-
ping out at a higher rate), non-representativeness of the sample compared to the general
population, and competing causes/residual confounding. Table 1 presents some of the
methodological challenges unique to studying NEs and brain health, such as defining the
neighborhood geographic boundary, capturing the neighborhood exposure, defining the
neighborhood construct, typical reliance on studies of older adults, and the lag between
development of pathology for ADRD and the diagnosis of dementia. We first present these
broader issues to set the context for our more detailed focus on self-selection and reverse
causation. Reverse causation occurs when the outcome precedes and results in the expo-
sure (Figure 1a). Cross-sectional studies are prone to this potential issue because temporal
ordering of exposure and outcome cannot be established. This may also be an issue for
studies on outcomes with long preclinical or subclinical periods. Reverse causation in
which changes in brain health predict the neighborhood one resides in is an example of
self-selection. However, self-selection can also bias NE-brain health studies not through
reverse causation, but through confounding, in which the lifestyle or neighborhood prefer-
ences influence residential choices (Figure 1b). Any association between the NE and brain
health may instead be attributable to lifestyle behaviors and preferences that preceded
neighborhood choice and that are also associated with the brain health outcome.
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Figure 1. Illustration of relationship between neighborhood/built environment (BE) and brain health
in the case of bias by (a) reverse causation; (b) self-selection by individual preferences.

Studies of brain health including ADRD risk are particularly susceptible to reverse
causality bias because older adults are likely to move to new neighborhoods following
the development of cognitive or physical impairment including dementia [19]. Thus, any
resulting association between a particular NE and cognition or dementia risk may be due to
these late life residential moves. In addition, ADRD neuropathology and subtler cognitive
changes can occur a decade or more prior to a diagnosis of ADRD, further complicating
matters. In these cases, researchers may presume that associations between NEs and ADRD
risk were free of bias from neighborhood self-selection because residential environments
were measured prior to disease development. However, ADRD may more subtly affect
brain health and functioning up to two decades prior to a dementia diagnosis [20,21].
Sometimes, more than a year can occur between full-blown dementia symptoms and the
receipt of a diagnosis [22]. Thus, residential moves in mid to late life may be in part due to
these subtler and longer-running changes in brain health.
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Table 1. Select methodological challenges of research on neighborhood environments and brain health.

Challenge Example Issues to Consider

Defining neighborhood boundaries: self-reported/perceived,
administrative boundaries (e.g., US Census tract), or geographic

information system (GIS) buffers around the residence (e.g.,
1
2 -mile Euclidian buffer)

Self-reported measures: Difficult to compare self-reported
measures across participants. Administrative boundaries:

Varying land area, lack of international comparability, may not
represent neighborhood area most pertinent to individual. GIS

buffers or administrative boundaries: May not represent
neighborhood area most pertinent to individual.

Capturing neighborhood exposure: time period, place, degree

What time period of exposure is most important for brain health
(childhood, middle age, late life)? Where is exposure most
pertinent and does this depend on life stage? How do we
quantify degree of exposure? Should we/how to consider

accumulated exposure?

Defining the neighborhood construct Can we develop neighborhood measures that have high validity
and reliability?

Self-selection into neighborhoods
Individuals may choose to move to neighborhoods because they
offer opportunities for health behaviors (e.g., walking, healthy

foods) that affect brain health.

Reverse causation: Association is due to outcome leading to
exposure, not vice versa

Alzheimer’s disease and related disorders lead to neighborhood
selection (e.g., brain health outcome is related to residential

move in late life to accommodate health needs).

Strong correlation of neighborhood characteristics
When highly correlated, how do we know the association found
for one variable is not actually demonstrating effect of highly

correlated variable?

Neighborhood segregation

Structural racism/exclusionary and discriminatory policies and
practices led to residential segregation of racial/ethnic groups
and socioeconomic status that is highly correlated and difficult

to disentangle from other neighborhood characteristics (e.g.,
access to parks and healthy foods) [23–25].

Spatial considerations

Residential areas that are closer together tend to have similar
values (e.g., similar exposures and/or outcomes), which if not
accounted for in the analyses can lead to erroneous conclusions.
Modifiable area unit problem: the area unit employed to define
the neighborhood (e.g., Census tract versus Census block group)

can affect the significance of findings.

Studying older adults (e.g., >60 years old)

Older adults are more likely to develop physical and cognitive
impairments that can affect study enrollment, attrition, and
participation in study procedures (e.g., magnetic resonance
imaging). Requiring survival to old age may result in highly

select samples who are healthier.

Lag between Alzheimer’s disease and related disorders
pathology development and dementia diagnosis

Longitudinal studies of older adults may not sufficiently
account for undiagnosed, prodromal disease affecting

neighborhood exposure.

Invasive/time consuming procedures to measure brain health
(e.g., lumbar puncture, brain imaging) may limit the types of

neighborhoods or ranges of neighborhood characteristics
captured

Restricting to individuals who consent to/complete invasive
brain health procedures are more likely to include individuals
of White race and higher socioeconomic status, who typically

live in White neighborhoods with higher socioeconomic status.
This can limit generalizability and result in selection bias.

This paper aims to review methods for addressing reverse causation and self-selection
in the context of the broader challenges of research on NEs and brain health. We provide
a cursory overview of available methods to address reverse causation and self-selection,
example studies that have employed these methods, and two case studies. The goal of the
paper is not to provide specific instructions on how to conduct the outlined methods, but
to provide a summary of the methods with useful references and considerations to guide
future research on NEs and brain health.
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2. Methods to Address Reverse Causality and Self-Selection

The goal of research is typically to identify causal effects (e.g., what NE factors
improve brain health and what factors hasten cognitive decline). These can then inform
interventions or policy changes to improve wellbeing. However, often we deal with
statistical associations and findings from observational studies that may be impacted by
a number of biases including self-selection and reverse causation. Based on the idea of
counterfactual models, i.e., that there are unobserved potential outcomes for each observed
outcome, the goal of causal inference would be to a compare observed to counterfactual
outcomes among the same individuals. Since this is not possible, we must substitute
other individuals to approximate the counterfactual outcome. If the individuals in the two
groups are not similar along other parameters, then this will introduce bias. The goal of
many research strategies is to make exposed/unexposed groups similar along potentially
biasing factors.

In this section, we describe various approaches that can be used to enhance causal
inference in studies of NEs and brain health, such as propensity score weighting and natural
experiments (Table 2). Since few studies of the NE and brain health have incorporated these
methods, we provide examples from the published literature on other health outcomes
(e.g., physical activity).

Table 2. Methods to address self-selection and reverse causality in neighborhood environment and
brain health studies.

Potential to Address:

Method Neighborhood
Self-Selection Reverse Causality

Randomized control trial ++++ ++++

Multivariable regression: covariate
adjustment for self-selection +

Multivariable regression: propensity score
matching, inverse probability weighting ++

Longitudinal study design ++ ++

Restriction/stratification of sample + +

Quasi-experiment: natural experiment,
instrumental variable analysis +++ +++

Abbreviations: Qualitative scoring: no + = no potential; + low potential; ++ moderate potential; +++ moderate to
high potential; ++++ High potential.

2.1. Randomized Control Trial/Experiment

Randomized control trials (RCT) are considered the gold standard study design for
estimating causal effects [26]. RCTs employ randomization to help balance potential con-
founders across intervention groups and also establish clear temporal order of cause and
effect. An example of a neighborhood-based RCT was the Moving to Opportunity trial
in which individuals from high poverty neighborhoods in public housing were chosen
randomly to move into either neighborhoods of high or low poverty. In one published
study of the participants, families and children in that study were interviewed three years
after their moves [27]. Those who moved to neighborhoods of low poverty experienced
less distress (parents) and anxiety/depressive symptoms (boys). However, RCTs may not
be feasible for understanding neighborhood effects due to their costs, the ethical impli-
cations, and the difficulty of recruiting participants (or neighborhoods) for interventions.
If conducted well, RCTs have low chance of bias by self-selection and reverse causation,
but use of RCTs has been extremely rare in NE and health research due to the hurdles to
implementation. Thus, we would not propose the use of a RCT given the difficulties for NE
and health studies, but instead present it as the gold standard method with which other
methods are generally compared.
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2.2. Multivariable Regression—Covariate Adjustment

The most common approach to address self-selection is through covariate adjustment
in multivariable regression models [28,29]. Participant or neighborhood characteristics that
are known or theorized to influence neighborhood choice are included as additional predic-
tors in regression models. Such variables could include demographics (e.g., age, education,
marital status, race/ethnicity) or measures that describe or relate to choice of neighborhood
(e.g., preference for urban vs. rural or ranking of importance of neighborhood character-
istics) [29]. For example, a study of individuals from eight neighborhoods in Northern
California examined cross-sectional associations between neighborhood BE characteristics
and frequency of walking to the store, while controlling for self-reported neighborhood
preferences when determining where to live (i.e., accessibility, safety, physical activity
options, socializing, outdoor spaciousness, and attractiveness) [30]. The authors found
that BE characteristics including distance to destinations were significantly associated with
walking to the store even after controlling for neighborhood self-selection characteristics.

Covariate adjustment in regression models may help capture key confounders, but
rests on the assumption that confounders are accurately measured and included in the mod-
els. Capturing participant preferences and factors that accurately determine self-selection
into neighborhoods may be challenging. As noted previously, measuring neighborhood
preferences may not capture all facets of self-selection into neighborhoods because individ-
uals may have difficulty articulating and prioritizing their reasons and preferences [31].
Furthermore, adjustment in regression models does not easily account for potential reverse
causality of brain health influencing neighborhood choice.

2.3. Multivariable Regression—Propensity Scores/Inverse Probability Weighting

Propensity scores employ a two-step process to control for confounding. First, prob-
ability (propensity) for exposure is modelled in a first stage and scores derived from
predicted probabilities are created to include in the second stage, or primary analytic
model. Various techniques for propensity scores have been developed, some of which
include matching based on propensity score, and others the exclusion of outlier propensity
scores. Several studies on the NE have used propensity scores [32,33], as one advantage
of this technique is that many covariates can be included when developing the propen-
sity scores, and yet power will not be sacrificed in the full models. This may allow for
better control of confounding by self-selection but still relies on similar assumptions as a
traditional multivariable regression model.

Another analytic strategy to improve causal inference is to use weighting techniques
based on propensity scores to account for potential biases. In some cases, adjustment may
lead to overadjustment (e.g., if potential confounders are also potential mediators). In other
cases, regression adjustment may lead to bias, such as adjusting for variables that are com-
mon effects of both NE and brain health (or their confounders) (aka collider-stratification
or selection bias), or in cases of effect modification of confounders [34,35]. Therefore,
weighting techniques can be used to remove potential sources of bias not amenable to
covariate adjustment techniques. Inverse probability weighting (IPW), inverse probability
of treatment weights (IPTW), and marginal structural models use a two-stage process to
first estimate the effect of important confounders on probability of treatment/exposure and
then incorporate the inverse predicted probabilities into analytic models [36,37]. Weights
can be defined to account for time-varying confounding [37], selection bias (e.g., modelling
probability of selection instead of treatment) [38], and missing data [39]. Weights are used
to calculate whether observations are either over-represented or under-represented when
compared to a target population with no differences along potential confounders or com-
pared to the original sample in the case of addressing selection/missing data. Observations
that are under-represented are given increased weights (up-weighted) while observations
that are over-represented are given decreased weights (e.g., down-weighted). This results
in a pseudo-population balanced along potential confounder or selection variables [36].
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While useful in the case when confounding and selection processes are measured, this
approach cannot account for unmeasured factors.

2.4. Longitudinal Study Design

Longitudinal study design is an often recommended method to reduce the chances
of self-selection and reverse causation bias [29]. Presumably, multi-year follow-up of
individuals allows for the estimation of the effect of an exposure/treatment early on in
the follow-up and longitudinal change in outcome or later development of disease (i.e.,
establishes temporality of exposure and outcome). Methods such as within-person analy-
ses can account for time-invariant confounders that are measured and unmeasured [29].
However, longitudinal designs alone do not fully address potential biases by self-selection
and reverse causation because the previously mentioned complications of studies of NEs
and brain health, namely the impact of neighborhood preferences that can change over
time (i.e., time-varying) and the potential for preclinical and prodromal (undiagnosed
brain disease) conditions to affect neighborhood choice/moves and thus the neighborhood
characteristics under study.

2.5. Restricted/Stratified Sample

Restriction or stratification is another traditional method to account for potential
confounding by self-selection or reverse causality. Studies can restrict analytic samples
along some measurement (e.g., stated preference for location) or by limiting to a small
area or certain neighborhoods. For instance, a study of 20–65 year olds in Belgium used a
pre-existing questionnaire [40] to assess neighborhood selection factors (i.e., house price,
preference for city center, quietness, social/emotional reasons, walkability) [41]. The
authors then performed a sub-analysis to compare associations between an objective
measure of neighborhood walkability and several outcome measures including walking for
transportation in the full sample versus the restricted sample that reported high importance
of neighborhood walkability characteristics. The associations the authors observed using
the full sample remained significant and similar in the restricted sample.

Restriction/stratification may also be used to attempt to account for reverse causation.
Individuals with cognitive impairment, low cognitive tests scores, or other biologic mea-
sures could be excluded to attempt to eliminate participants already experiencing brain
changes that could affect neighborhood choice/characteristics. In longitudinal settings, this
can also be applied such that cases of dementia within a certain period of baseline neigh-
borhood measurements are excluded. The difficulty remains in that prodromal disease
(e.g., undiagnosed of Alzheimer’s disease) can last many years and could thus still impact
residential moves/neighborhood characteristics in the years leading up to diagnosis.

2.6. Quasi-Experiments and Natural Experiments

Quasi-experimental and other causal inference approaches have become increasingly
popular as methods that use observational data to approximate randomized designs [42].
When RCTs are not feasible, there may be “natural experiments” that occur which can
be leveraged to estimate causal effects. A natural experiment is when an intervention
has occurred but the circumstances the lead to the intervention were not controlled by
the researchers [43]. Some examples are specific policy changes or laws that affect the
NE, development projects in neighborhoods, natural events, or other quasi-experimental
factors. Natural experiments are posited to not be influenced by participant characteristics,
which can help eliminate bias from unmeasured or mismeasured confounders. Natural ex-
periments also establish temporal order of events. Estimates from natural experiments are
thus not as susceptible to self-selection or reverse causality and may provide an unbiased
estimate of the causal effects of NE on brain health. Various analytic approaches can be used
in natural experiments, such as interrupted time series, pre-post designs, instrumental vari-
able analyses [44], regression discontinuity analyses [42,45], and difference-in-difference
approaches [46].
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Example natural experiments in the NE and health literature include studies focused
on new BE amenities, such as rail lines, parks, or supermarkets [47–50]. While some of
these studies suggest that BE additions have had positive impacts on health, the evidence
has been mixed on whether changes to the BE have had positive effects on health outcomes
such as physical activity, diet, and obesity [50]. The limitations of these types of natural
BE experiments are as follows. (1) The individuals studied before and after the BE change
may be different (e.g., measuring change in health outcomes at census tract level does
not account for movers). (2) A change to the BE is not the same as a change in exposure
to that BE characteristic (e.g., a new supermarket or rail line is not necessarily used by
the individuals) [51]. (3) Competing factors associated with the change in health are not
necessarily captured (e.g., new neighborhood gyms). (4) The change in health outcome
needs to be measured on the appropriate time scale (e.g., detection of changes in brain
health requires a longer follow-up than changes in physical activity). (5) Population-based
samples remain difficult to obtain. (6) It is difficult to find neighborhoods that are good
controls/comparison groups (i.e., differ from intervention comparison in no important way
related to the health outcome other than the intervention itself). Further, (7) environment
changes are often known after the fact, and it is challenging to collect pre-change health
data for a pre-post study [29].

Given these limitations, some researchers have suggested a reorientation of these
natural experiments to focus on a comparison of individuals who move versus those who
do not move, to examine how the change in BE due to moves affects health outcomes [51].
For example, one study examined changes in body mass index and physical activity levels
following residential relocation among participants in the Multi-Ethnic Study of Atheroscle-
rosis [52]. The authors found that individuals who moved to more walkable neighborhoods
(i.e., 10-point higher Walk Score) compared to their prior residence increased transport
walking by 16.04 min per week (95% confidence interval (CI) = 5.13, 29.96).

Despite positive findings such as the above example, a systematic review found that
the majority of natural experiment studies of the impact of the BE on physical activity had
moderate to high risk of bias (e.g., did not control for important confounders, inadequate
control sites) [53]. In addition, the previously observed impacts of a residential move to
health outcomes such as physical activity may not be readily observed in studies of brain
health outcomes. One can imagine a comparison of movers and non-movers could be
confounded by unmeasured characteristics that affect mobility and residential choice and
thus confound the associations. Regardless of the type of natural experiment (change of BE
due to additions/renovations or moves), the expected impact of a BE change on cognition
or ADRD incidence may not be large and immediate enough to rule out competing causes.

2.6.1. Pre-Post Designs, Difference-In-Difference

One common quasi-experimental approach is to leverage longitudinal data and exam-
ine before and after health effects resulting from neighborhood changes, reducing concerns
for reverse causality. These studies typically rely on individual data to compare before and
after effects. Studies have employed pre-post analyses to examine changes in health due
to natural experiments such as the construction of light rail [47]. However, these types of
studies may still be susceptible to self-selection bias and not all studies have identified a
control/comparison group [29], which limits causal inference.

Difference-in-difference (DID) is another approach that can capitalize on the use
of longitudinal data. DID is a quasi-experimental method to estimate the effect of a
specific intervention or NE/BE change by comparing the difference in outcomes over time
between a population that received the intervention/exposure and a population that did
not (control) [43]. For instance, DID has been used to estimate the association between
neighborhood condition and weight changes while accounting for potential self-selection
due to movers and non-movers [54]. The method has also been used to estimate the
effect of neighborhood investment on physical activity and body mass index adjusting for
general changes over time [55]. In addition, a DID approach has been used to examine self-
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selection [56], by estimating how baseline health may relate to changes in NE characteristics
after the baseline time period. DID is useful when longitudinal data are available but rests
on the assumption that the time-varying trends in the treated/exposed group are parallel
to the control group in the absence of the intervention [43]. Ultimately, there still may be
potential bias, such as that due to unmeasured time-varying confounding factors.

2.6.2. Instrumental Variables

Instrumental variable analyses [44,57] have emerged as a popular approach to estimate
causal effects of exposures/treatments. Assumptions that an instrumental variable must
meet are: 1. The instrument must be associated with the outcome. 2. The instrument
must affect the outcome only through the exposure. 3. The instrument is not associated
with confounders of exposure and outcome. 4. Estimated effects of instruments are the
same across differing levels of the instrument (monotonicity). Instrumental variables are
expected to be randomly determined and thus in theory allow for an unbiased estimate of
the exposure and outcome association.

The use of instrumental variables has been infrequent thus far in neighborhood
environment and health studies [58–62]. Example instruments in these previous studies
of NEs and diet and obesity included: (a) distance to arterial roads and non-residential
zones, (b) distance to nearest highway, and (c) buildable land available for fast-food
restaurants within a half-mile of the participant’s residence. These instruments were
chosen to try to allow for causal inference between neighborhood characteristics and health
outcomes independent of self-selection factors. To our knowledge, instruments have not
been employed in studies of NEs and brain health. Thus, we explore this method to
investigate reverse causality in the second case study presented in Section 3.

Overall, natural experiment designs rest on additional assumptions that may be
untestable, such as the assumption that the neighborhood intervention/instrumental
variable is independent of factors that also influence brain health (e.g., no confounding).
These study designs are still susceptible to other sources of bias such as selection bias (e.g.,
due to selective survival) and competing risk of death. Despite the outlined difficulties of
conducting natural experiments, if designed well, they may provide the best hope at causal
inference among the discussed methods. Incorporating multiple approaches that are not
as susceptible to the same biases can help lead to triangulation of evidence. Comparing
natural/quasi-experimental approaches to regression estimates may help understand the
potential biasing effects of unmeasured attributes of self-selection and reverse causation.

3. Case Studies

In this section, we provide two case studies that illustrate the use of four methods
described above: (1) adjustment for self-selection as a covariate; (2) restriction/stratification
by the self-selection variable; (3) instrumental variable analysis to account for self-selection;
and (4) inverse probability weighting to study reverse causation.

3.1. Case Study 1: Accounting for Self-Selection via Adjustment and Propensity Scores
3.1.1. Sample

For our first case study, we evaluate the influence of neighborhood self-selection. In
2020 and 2021, 151 residents in South Florida (FL), US, consented to and completed a
one-time Community Quality of Life Survey administered by Florida Atlantic University
investigators. The survey of five South FL neighborhoods (Abacoa and the Heights of
Jupiter in Jupiter, FL, Mirasol in Palm Beach Gardens, FL, and Historic Neighborhoods of
West Palm Beach, FL, USA) included questions on the respondents’ demographics (age,
sex, have kids in home, race/ethnicity, income, education, marital status), neighborhoods
and communities (e.g., perceptions, access to amenities), travel, employment, quality of
life, satisfaction, sense of community, lifestyle, and health. The study was approved by the
Florida Atlantic University Institutional Review Board. The goal of these analyses was to
determine whether methods to account for self-selection result in different associations
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between living in the Abacoa neighborhood and self-reported minutes of walking and
bicycling per week.

3.1.2. Exposure

The exposure was residing in the neighborhood of Abacoa in Jupiter, FL (n = 42)
compared to the other South Florida neighborhoods surveyed (n = 109). Abacoa is a
2055-acre master planned, mixed-use community based on the concepts and principles of
traditional neighborhood development (TND) [63].

3.1.3. Outcomes

The outcome measures were (1) self-reported minutes of walking in the neighborhood
per week (sample mean: 131.2; SD: 303.5), and (2) self-reported minutes of bicycling per
week (sample mean: 37.3; SD: 79.4).

3.1.4. Self-Selection Measure

The neighborhood preference/self-selection measure was based on a question on
whether nearby neighborhood amenities (e.g., parks, nearby restaurants and entertainment)
was the primary reason respondents chose their homes (yes: n = 57; no: n = 94). The other
choices for primary reason were affordability, easy commute, family and friends nearby, in
a historic district, home and yard design, and quality schools.

3.1.5. Methods

We conducted linear regression analyses to examine the association between living
in the Abacoa neighborhood (versus the other surveyed neighborhoods) and minutes
of walking and bicycling per week. All models controlled for age, sex, marital status,
income, education, race/ethnicity, having children at home, employment status, reported
always driving to destinations, and participant appraisals of neighborhood availability
of parks/open space and ability to walk to shops/dining (agree or strongly agree versus
somewhat agree, disagree, strongly disagree).

Three analyses were conducted to try to account for neighborhood self-selection:

1. Method 1: Stratified the regression analyses by (1) those who reported the primary
reason for choosing the current home was the nearby neighborhood amenities and (b)
those who did not report the primary reason for choosing the current home for was
the nearby neighborhood amenities.

2. Method 2: Controlled for primary reported reason for choosing current home was
nearby neighborhood amenities (yes versus no).

3. Method 3: Calculated propensity scores in multivariable logistic regression that repre-
sented the respondent’s probability of living in the Abacoa neighborhood based on
the variables collected in the survey that were hypothesized to be related to living
in Abacoa and to minutes of walking/bicycling per week. The variables included
in the models were age, sex, race/ethnicity, education, income, kids at home, mar-
ital/partner status, employment status, always drive to destinations, number of
household vehicles, exercise for 30 min at least 5 times a week, self-reported physical
health status (good/excellent versus neutral/fair/poor), and primary reason chose
home was nearby neighborhood amenities. The propensity scores were then con-
verted to stabilized inverse probability weights that were applied to the multivariable
linear regression models.

All analyses were conducted in SAS v9.4 using PROC LOGISTIC and PROC REG, and
weights were applied using the ‘weight’ statement.

3.1.6. Results

The participant characteristics are presented in Table 3. The majority of respondents
were between the ages of 40 and 69 (73%), were women (60%), were white (85%), and had
family incomes of ≥$100,000 (63%). After stratifying the associations by the neighborhood
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amenities self-selection variable (Method 1), we observed higher estimates for the associa-
tions between living in Abacoa and minutes of walking and bicycling per week amongst
those who chose their homes for the nearby neighborhood amenities (walking estimate:
227.2, 95% CI: −65.4, 419.8; bicycling estimate: 61.5, 95% CI: −2.5, 125.5) compared to
those who did not move based on neighborhood amenities (walking estimate: 55.2, 95% CI:
−1.71, 112.2; bicycling estimate: 19.5, 95% CI: −11.6, 50.6) (Table 4). However, none of the
stratified estimates were statistically significant at p < 0.05, likely due to the reduced sample
sizes in the stratified groups. After controlling for neighborhood amenity self-selection as a
covariate (Method 2), we found that living in Abacoa was associated with a higher reported
number of minutes of neighborhood walking and cycling per week (walking estimate:
128.8, 95% CI: 15.5, 242.1; bicycling estimate: 31.6; 95% CI: 2.6, 60.7) when compared to
survey respondents from the other neighborhoods (Table 4).

Table 3. Case Study 1 Participant Characteristics.

Characteristic

Age, n (%)
18–49 years 49 (32.5%)
50–64 years 58 (38.4%)
65 and older 44 (29.2%)

Women, n (%) 91 (60.2%)
Married/with partner, n (%) 105 (69.5%)
Race, n (%)

White 128 (84.8%)
Other 23 (15.2%)

Annual family income, n (%)
<$50,000 15 (9.9%)
$50,000–99,999 41 (27.2%)
$100,000–$149,999 42 (27.8%)
≥$150,000 53 (35.1%)

Employed, n (%) 104 (68.9%)
Children living in household, n (%) 50 (33.1%)
Always drive places (yes, self-report), n (%) 72 (47.7%)
Accessible neighborhood parks/open space (yes, self-report), n (%) 108 (71.5%)
Ability to walk to shops and dining (yes, self-report), n (%) 65 (43.1%)
Minutes walking/week, mean (SD) 131.2 (303.5)
Minutes bicycling/week, mean (SD) 37.3 (79.4)

Abbrevations: SD, standard deviation.

Table 4. Association between living in Abacoa neighborhood and minutes walking and bicycling per week, controlling for
neighborhood self-selection as covariate versus restricting by the neighborhood self-selection variable.

Outcome

Adjusting for
Self-Selection of

Neighborhood Amenities as
Covariate (Model 1)

N = 151

Restricted to Those Reporting Neighborhood
Amenities Were:

Primary Reason for
Choosing Home

(Model 2)
n = 57

Not primary Reason for
Choosing Home

(Model 3)
n = 94

Estimate (95% CI) Estimate (95% CI) Estimate (95% CI)

Minutes of neighborhood walking/week 128.8 (15.5, 242.1) 227.2 (−65.4, 419.8) 55.2 (−1.71, 112.2)
Minutes of bicycling/week 31.6 (2.6, 60.7) 61.5 (−2.5, 125.5) 19.5 (−11.6, 50.6)

All linear regression models (n = 151) controlled for age, sex, education, income, race/ethnicity, children living in household, married/with
partner, employed, always drive places, appraisal of neighborhood availability of parks/open space and ability to walk to shops/dining;
Model 1 additionally controlled for self-selection of home due to nearby neighborhood amenities. Bold = statistically significant at p < 0.05.

The multivariable model that did not control for self-selection and did not employ
inverse probability weights demonstrated associations between living in Abacoa and more
walking and bicycling per week (walking estimate: 132.1, 95% CI: 19.4, 244.8; bicycling
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estimate: 33.8, 95% CI: 4.6, 63.0) (Table 5). These estimates were similar to the estimates
from Method 2 except slightly higher. However, when accounting for self-selection using
inverse probability weights (Method 3), the estimate for the association between living in
Abacoa and minutes walking/week was reduced but still statistically significant, and the
estimate for the association with minutes bicycling per week was attenuated and no longer
statistically significant (walking estimate: 96.7, 95% CI: 2.1, 191.3; bicycling estimate: 24.2,
95% CI: −2.6, 51.0).

Table 5. Association between living in Abacoa neighborhood and minutes walking and bicycling per week, using and not
using inverse probability weights to account for neighborhood self-selection.

Outcome
Model 1—with no IPW Model 2—with IPW

Estimate (95% CI) Estimate (95% CI)

Minutes of neighborhood walking/week 132.1 (19.4, 244.8) 96.7 (2.1, 191.3)
Minutes of bicycling/week 33.8 (4.6, 63.0) 24.2 (−2.6, 51.0)

Abbreviation: IPW = inverse probability weighting; Linear regression models (n = 151) controlled for age, sex, education, income,
race/ethnicity, children living in household, married/with partner, employed, always drive places, appraisal of neighborhood availability
of parks/open space and ability to walk to shops/dining; Model 2 was weighted by inverse probability weights for probability of living in
Abacoa versus the other surveyed South Florida neighborhoods. Bold = statistically significant at p < 0.05.

3.1.7. Case Study 1 Conclusions

In these analyses, we demonstrate that inverse probability weighting may be prefer-
able to adjustment or stratification when attempting to account for neighborhood self-
selection. However, a potential disadvantage is that inverse probability weights usually
increase confidence intervals due to lower study power [64]. In particular, restricting by
the self-selection variable is likely to reduce the power to detect a significant association
and would only be potentially useful with reasonably large sample sizes. While inverse
probability weighting attenuated the findings when compared to adjustment or no ad-
justment for self-selection as a covariate, the association between living in Abacoa and
walking/week remained and suggests that either neighborhood self-selection is either only
a partial confounder or that the measure of self-selection used in our study did not fully
capture the pertinent construct of self-selection. Altogether, the findings differed enough
by method to provide caution to investigators studying NEs and health, particularly for
studies using cross-sectional data. Finally, an important caveat that must be noted is the
lack of a racially/ethnically diverse sample, which could bias the findings. Thus, this case
study was not meant to demonstrate causal associations, but instead to illustrate methods
that could be employed to address self-selection bias.

3.2. Case Study 2: Instrumental Variable Analysis to Study Reverse Causation
3.2.1. Sample

In our second case study, we evaluate the possibility of reverse causation. We use an
instrumental variable to study the association between episodic memory as the predictor
and neighborhood greenness as the outcome, modeled after a similar method employed in
prior studies [65–67]. Data came from 243 participants from the University of California,
Davis Alzheimer’s Disease Research Center (ADRC) in Northern California. Enrollment
and follow-up methods have been described in detail elsewhere [68,69]. Briefly, participants
were recruited into the ADRC through two routes: (1) memory clinic referrals and (2)
community outreach. Participants received multidisciplinary diagnostic evaluations that
followed the same protocol and included a detailed medical history and a physical and
neurological exam.

We obtained data on the participants’ age, sex, race/ethnicity (White, Black, Latino,
Other), education (years), genetic risk for Alzheimer’s disease (i.e., presence of one or more
apolipoprotein E (APOE) ε4 alleles), recruitment source (clinic versus community), site
(Bay area versus Sacramento, California), episodic memory scores, and US Census tract
(residential location). The participants included in our sample were on average 76 years old
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(standard deviation = 7.1), 57% were female, 25% were Black, 23% were Latino, 46% were
White, 6% were other race/ethnicity, and their mean years of education was 13.6 (SD = 4.2).
Participants came from 202 US Census tracts. The study was approved by the Florida
Atlantic University (FAU) Institutional Review Board (IRB) (University of California Davis
IRB relied on FAU IRB).

3.2.2. Normalized Difference Vegetation Index

Neighborhood normalized difference vegetation index (NDVI) [70] was calculated
in ArcGIS using LANDSAT satellite imagery for each participant’s US Census tract res-
idential location in 2010. NDVI is measured on a scale of −1 to +1 (more positive =
greener/healthier vegetation) and is based on visible and near infrared light reflectance of
vegetation. Our measure of interest was mean NDVI value for the participants’ Census
tract.

3.2.3. Episodic Memory

Participants’ cognition was measured using the Spanish and English Neuropsycho-
logical Assessment Scales (SENAS). The SENAS has undergone extensive development
as a battery of cognitive tests relevant to diseases of aging [71–74]. Episodic memory is
a composite score derived from a multi-trial word-list-learning test (Word List Learning
1) [71]. Measure development and psychometric characteristics are described in more detail
elsewhere [71,73,75]. Episodic memory scores are presented in z- score like units where
a score of zero corresponds to the mean and differences from the mean are expressed in
standard deviation units.

3.2.4. Methods

We used a Mendelian randomization (MR) framework [76] to evaluate the potential
role of reverse causation for the association between neighborhood NDVI and episodic
memory. MR is a type of instrumental variable (IV) analysis that uses genetic variants as
instruments or proxies for the exposure of interest, based on the idea that genes are natural
experiments because they are randomly assorted and determined at birth [77,78]. APOE
genotype is a strong genetic determinant of AD [79], which can be used to estimate the effect
that cognition may have on neighborhood choice and characteristics (e.g., reverse causality).
The presence of at least one APOE ε4 allele is associated with cognitive impairment in
middle aged and older adults, particularly episodic memory [80], which is characteristically
affected in Alzheimer’s disease (AD).

Genetic IV and MR studies allow for estimates of the causal effect of an exposure on
outcome under a set of criteria outlined in Section 2.5 (i.e., instrument must be associated
with outcome; instrument must affect outcome only through exposure, instrument not
associated with confounders of exposure and outcome, estimated effects of instruments are
the same across differing levels of instrument). However, even in the case that not all these
criteria are met, MR can be used to identify shared etiologies (confounding) or reverse
causation of a disease on an exposure.

We ran a series of models to evaluate the use of APOE genotype as an instrumental
variable and compare observational and IV estimates for the effect of cognition on NDVI.
All models were based on linear regressions and included robust standard errors (clustered
by site) and controlled for age, sex, education, race/ethnicity, and recruitment source.

Our primary IV estimate used a two-stage least squares model (2SLS) [41], with
APOE ε4 allele acting as an instrument for the association between episodic memory and
NDVI. We examined the 1st stage regression results to confirm the presence of at least
one APOE ε4 allele (versus none) was associated with episodic memory (F-statistic > 10
is suggested) [44]. This is an important requirement for suitability of APOE genotype as
an instrumental variable (see Figure 2) [81]. We also ran a separate two-stage regression
approach. First, we calculated values from the 1st stage regression of APOE ε4 allele to
predict episodic memory. In the 2nd stage, we ran a linear regression using the predicted
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episodic memory values as the main exposure with NDVI as the outcome and calculated
bootstrapped standard errors.
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Figure 2. APOE genotype as instrumental variable to study potential reverse causality of asso-
ciation between neighborhood NDVI and episodic memory. If APOE is associated with NE/BE
characteristics, it is likely through cognition and provides support for reverse causality.

We also examined the linear regression estimate of episodic memory and NVDI (i.e.,
an observational estimate) adjusted for covariates to compare to our IV estimates.

3.2.5. Results

Study participant characteristics are presented in Table 6. We confirmed that having
at least one APOE ε4 allele was significantly associated with lower episodic memory score
(p < 0.001, F-statistic= 45) in this sample and supports the relevance of APOE genotype
as an instrument for episodic memory (Table 7). Linear regression (observational) and IV
estimates (from 2nd stage models) all suggested an inverse effect of lower episodic memory
on NDVI (Table 8). The IV estimates, using APOE ε4 allele as an instrument for episodic
memory, had slightly stronger magnitude of the effect (−0.103 and −0.102) compared to
the linear regression model (−0.013). The linear regression estimate can be interpreted as
1 SD higher episodic memory being associated with a 0.013 lower mean NDVI value for
the neighborhood (95% CI: −0.018, −0.007). The IV estimates could be interpreted as the
causal effect of 1 SD higher episodic memory score on NDVI (e.g., −0.103 [95% CI: −0.133,
−0.074] for the 2SLS IV analysis), as predicted by APOE ε4 allele and covariates.

Table 6. Case Study 2 Participant Characteristics.

Characteristic Statistic

Total sample, N 243
Age, mean (SD) 76.0 (7.1)

NDVI, mean (SD) −0.08 (0.09)
Episodic memory, mean (SD) −0.35 (0.86)

Female, n (%) 140 (57.6)
Race/ethnicity, n (%)
Black, non-Hispanic 62 (25.5)
White, non-Hispanic 111 (45.7)

Hispanic 55 (22.6)
Other 15 (6.2)

APOE ε4 allele carrier, n (%) 107 (44.0)
Community-based recruitment (vs clinic), n (%) 190 (78.2)

Bay Area site (vs Sacramento), n (%) 120 (49.4)
Abbreviation: NDVI, Normalized Difference Vegetation Index; SD, standard deviation.
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Table 7. 1st Stage regression results for strength of APOE genotype as an instrument for episodic memory.

Episodic Memory

Estimate (95% CI) p-Value F Statistic

APOE ε4 allele −0.22 (−0.29, −0.17) <0.001 45.4

Based on linear regression model with robust standard errors for site and controlling for age, sex, education, race/ethnicity, recruitment
source.

Table 8. Linear regression and instrumental variable (IV) estimates for the effect of episodic memory on neighborhood
Normalized Difference Vegetation Index.

Model
NDVI

Estimate (95% CI)

Linear regression (observational) −0.013 (−0.018, −0.007)
2 stage least square IV −0.103 (−0.133, −0.074)

Separate 2 stage IV, bootstrapped standard errors −0.102 (−0.205, −0.008)

Abbreviation: IV = instrumental variable; NDVI = Normalized Difference Vegetation Index; Models included clustering by site and
controlled for age, sex, education, income, race/ethnicity, recruitment.

3.2.6. Case Study 2 Conclusions

We used an IV/MR approach to examine the potential for reverse causation to explain
some of the association between cognition and NE. Although this case study was in a small
sample and was meant to be exploratory, we found inverse associations between episodic
memory score and neighborhood mean NDVI. APOE ε4 allele was a strong predictor of
episodic memory (1st stage regression), an important criterion for use as an instrumental
variable for episodic memory. Using APOE ε4 allele as an instrument, estimates from our
2nd stage IV regressions suggested an effect of cognition on NDVI. Estimates were similar
between two IV approaches and after adjustment for other potential factors that may lead
to differences of APOE ε4 allele such as a race/ethnicity. The estimates for the IV were in
the same direction of association as the observational estimates, but the magnitude of the
effect was even stronger for the IV (e.g., −0.013 vs. −0.103). This suggests that the inverse
association between cognition and NE in this setting may be driven by reverse causation,
although other mechanisms or confounding in the opposite direction may also impact the
observational estimates. We do not know the exact mechanisms through which individuals
with declining memory or the APOE ε4 allele might prefer greener spaces. However,
we might expect that individuals with declining memory may be more likely to move to
greener places because this is where nursing homes and assisted living facilities tend to be
located (suburbs). Together these preliminary findings suggest that reverse causation could
be an issue in studies of NE and cognition in older adults, although future larger studies
that have additional genetic information would be needed for verification. Longitudinal
study designs of individuals in mid-life may be needed to help avoid substantial effects
of reverse causation. Similar to the first case study, this second case study is exploratory
and aimed at demonstrating a method that could be used to examine reverse causation in
future NE and brain health studies. Thus, estimates may not reflect a true causal effect of
episodic memory on neighborhood NDVI and should be interpreted cautiously.

Employing this IV/MR approach may help estimate the contribution of reverse causa-
tion which could be used to adjust observational estimates for the effect of cognition on
NE. Additionally, other IV and natural experiments for NEs may help provide evidence on
the role of NE on cognitive functioning.

4. Conclusions

In this paper, we outlined the most common methods used and proposed to ad-
dress self-selection and reverse causation in studies of NEs and health. We discussed
the strengths and pitfalls of using these methods when they are extended to studies of
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brain health and ADRD, and we provide a qualitative summary of the possibility for each
method to successfully account for self-selection and reverse causation and thus improve
causal inference (Table 2). Cross-sectional analyses of NEs and brain health remain more
common than longitudinal or quasi-experimental studies and have a high chance of bias
without careful consideration of self-selection and reverse causality, as well as the other
unique methodological considerations that must be weighed when studying neighborhood
characteristics and brain health outcomes (Table 1).

Our case studies demonstrated four of the methods outlined in this paper, namely:
(1) adjustment for self-selection as a covariate; (2) restriction/stratification by the self-
selection variable; (3) inverse probability weighting (from propensity scores) based on
the probability of living in a neighborhood; and (4) instrumental variable analysis to
investigate the potential for reverse causation (e.g., brain health leads to the neighborhood
characteristic). The results from our case studies reiterate that methodological choices
can have an impact on study findings and that studies of NEs and brain health would
ideally conduct sensitivity analyses, whenever possible, to determine if results hold using
different methods. Consistent findings across the methods may provide support for a
true association, whereas inconsistent findings may help explain potential differences
in associations observed between similar studies previously published. Authors should
openly discuss their data and methodological limitations. If data or resources are not
available to employ more rigorous methods, the improved/aspirational methods should
also be acknowledged in the limitations sections of papers.

Few studies of NE and brain health have yet to incorporate the methods discussed
in this review. Thus, we have provided more established methods used in public health
and social science fields that can assist in addressing causality when confronted with
potential self-selection or reverse causation. Methods borrowed from related disciplines
(e.g., geography, statistics, or highly specialized medical fields) may further improve our
ability to establish causality and should be investigated in future methodological studies.
In addition, a mixed methods approach [82], where researchers use both quantitative and
qualitative approaches (e.g., focus groups, interviews), may be fruitful in capturing key
information to elucidate the causal timing of exposure and outcome (i.e., addressing reverse
causality) and neighborhood preference and residential moves due to factors related to
brain health (i.e., addressing self-selection).

The next wave of NE and brain health papers need to advance beyond the traditional
cross-sectional and longitudinal studies designs with multivariable regression analyses
to strengthen causal inference. Changes to NEs can be costly, time consuming, and it can
be difficult to garner political and public support. Proposed changes to NEs based on
methodologically unsound health studies could result in unintended harms to population
health that may be avoidable with more rigorously conducted studies. Neighborhood
interventions, policies, and programs to improve health behaviors, exposures, and reduce
the risk of ADRD will be best supported by minimally biased studies that have a critical
eye on causal inference.
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