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Simple Summary: Emerging evidence indicates that the immune system plays an important role in
controlling tumors during radiotherapy, and radiation-induced immune toxicity such as lymphopenia
is associated with poor survival. However, the immune system is not considered as a critical organ
at risk in radiotherapy partially because the radiation dose to the immune system is difficult to
compute. In this study, we developed a model to compute the radiation dose to the circulating blood,
which contains the majority of active immune cells. We then validated this model by examining the
correlations of the blood dose with treatment outcome for patients enrolled in the NRG/RTOG0617
phase III clinical trial. We demonstrated that the blood dose was significantly and independently
associated with overall survival and local progression-free survival. This result suggests that radiation
dose to circulating immune cells is critical for tumor control, and decreasing the dose to the immune
system has the potential to improve survival.
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Abstract: Background: We hypothesized that the Effective radiation Dose to the Immune Cells
(EDIC) in circulating blood is a significant factor for the treatment outcome in patients with locally
advanced non-small-cell lung cancer (NSCLC). Methods: This is a secondary study of a phase III
trial, NRG/RTOG 0617, in patients with stage III NSCLC treated with radiation-based treatment.
The EDIC was computed as equivalent uniform dose to the entire blood based on radiation doses to
all blood-containing organs, with consideration of blood flow and fractionation effect. The primary
endpoint was overall survival (OS), and the secondary endpoints were progression-free survival
(PFS) and local progression-free survival (LPFS). The EDIC–survival relationship was analyzed with
consideration of clinical significant factors. Results: A total of 456 patients were eligible. The median
EDIC values were 5.6 Gy (range, 2.1–12.2 Gy) and 6.3 Gy (2.1–11.6 Gy) for the low- and high-dose
groups, respectively. The EDIC was significantly associated with OS (hazard ratio [HR] = 1.12,
p = 0.005) and LPFS (HR = 1.09, p = 0.02) but PFS (HR = 1.05, p = 0.17) after adjustment for tumor
dose, gross tumor volume and other factors. OS decreased with an increasing EDIC in a non-linear
pattern: the two-year OS decreased first with a slope of 8%/Gy when the EDIC < 6 Gy, remained
relatively unchanged when the EDIC was 6–8 Gy, and followed by a further reduction with a slope
of 12%/Gy when the EDIC > 8 Gy. Conclusions: The EDIC is a significant independent risk factor
for poor OS and LPFS in RTOG 0617 patients with stage III NSCLC, suggesting that radiation dose to
circulating immune cells is critical for tumor control. Organ at risk for the immune system should be
considered during RT plan.

Keywords: non-small-cell lung cancer; radiotherapy; survival; radiation-induced immune toxicity

1. Introduction

Lung cancer is the leading cause of cancer-related death. Over 85% of lung cancer cases
are non-small-cell lung cancer (NSCLC) [1], 40% of which are stage III [1,2]. The standard
of care for unresectable stage III NSCLC is radiotherapy (RT) and concurrent chemother-
apy [3], with recent data supporting the routine integration of adjuvant immunotherapy [4].
Despite advances in RT technology, treatment outcomes remain suboptimal, and local
disease progression is a major cause of death [4]. Intensifying local therapy with RT dose
escalation was therefore proposed to improve local tumor control and survival [5]. How-
ever, RTOG 0617, the largest study to date on dose–response effects in stage III NSCLC,
demonstrated significantly worse overall survival (OS) in patients treated on the high-dose
arm (74 Gy) vs. the low-dose arm (60 Gy) [6].

Radiation is known for immune modulation effect. Radiation-induced tumor cell
killing can activate the immune system through various mechanisms including releasing
tumor-specific antigens [7]. Preclinical studies have demonstrated that the immune system
plays a key role in tumor control after RT [8,9]. Treatments with RT alone or RT combined
with immunotherapy can control tumors in immunocompetent mice, but not in immune-
deficient ones [8]. An abscopal effect (i.e., shrinkage of un-irradiated tumors outside the
RT field) has been observed in animal studies [8,9] and in clinical settings [10]. While these
observations suggest that RT may augment anti-tumor immunity in special situations,
RT is also well known for its immunosuppressive effects. One of the most common
and clinically significant features of radiation-induced immunosuppression is radiation-
induced lymphopenia [11,12], which has been repeatedly reported as a risk factor for
poorer survival in several cancers, and a recent pooled analysis reported significance in
patients with multiple treatment-refractory solid tumors including NSCLC [11–15].

However, the immune system has not yet been considered as a critical organ at risk for
RT planning in practice, though RT dose escalation to tumor is also expected to increase the
radiation dose to immune-related structures. We hypothesized that high radiation dose to
the immune system may impair various immune functions including anti-tumor immunity,
consequently decreasing tumor control. Specifically, we hypothesized that circulating
immune cells in blood are an important target for radiation-induced immunosuppression
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because: (1) radiation-induced lymphopenia occurs following breast and brain radiation,
where the treated field contains little marrow or lymphatic tissue [16–18]; (2) circulating
lymphocytes in blood are one of the most radiosensitive cell types. To test these hypotheses,
we first developed a model to compute Effective Dose to Immune Cells in circulating
blood (EDIC) as an estimation of equivalent uniform dose to the entire blood during the
RT course, and then evaluated the relationship between the EDIC and the risks of local
tumor progression and death. The RTOG 0617 trial provided an ideal setting for testing
this hypothesis, as detailed dosimetric and survival data were available for nearly all
patients enrolled in this large phase III cooperative group trial treated with high and low
radiation doses.

2. Materials and Methods
2.1. Clinical and Dosimetric Patient Data

RTOG 0617 was a phase III trial for unresectable stage III NSCLC. The study details
and primary analysis results have been published previously [6]. Briefly, all patients
received conformal radiotherapy with concurrent and consolidation chemotherapy (car-
boplatin and paclitaxel). A two-by-two factorial randomized design was used to assign
patients to two different RT dose groups (60 Gy vs. 74 Gy) and systemic therapy arms
(carboplatin/paclitaxel with or without cetuximab). Patients included in this secondary
analysis must have retrievable RT plans and must have received a confirmed dose of at
least 50 Gy, which was an arbitrary cut-off chosen to identify patients who had received
a clinically meaningful RT dose. Clinical factors tested for confounding effects included
baseline Zubrod performance status, use of positron emission tomography (PET) during
staging, tumor histology, age at randomization, gender, race, tumor location(s), weight loss,
smoking history, gross tumor volume (GTV), and whether the full course of chemotherapy
was received. Conventional radiation dosimetric data such as mean lung dose (MLD),
mean heart dose (MHD) and integral total dose volume (ITDV) were included for modeling.
ITDV is the integration of dose in the total irradiated volume in the scanned CT image.

2.2. EDIC Computation

The immune system is a complex interplay of multiple features and functions of
immune cells. Lymphocytes are the most important functional immune cells. Lymphocytes
originate in the bone marrow and/or thymus and circulate through the body into various
organs via blood vessels, and may return to the blood circulation through lymph nodes
and lymphatic ducts. They also circulate through other lymphatic organs such as the
spleen. In addition, lymphocytes (specifically T cells) may reside within the tissue of
various organs [19]. They even reside within tumor tissue as infiltrated T cells and play
a key role in RT-mediated anti-tumor immunity [19]. In this study, we considered the
lymphocytes in circulating blood as a key target for radiation-induced suppression in the
anti-tumor immunity because the tumor-resident T cells are very radio-resistant [19], and
the lymphocytes in circulating blood provide continuous supply for the loss of tumor-
resident T cells during their anti-tumor activities. However, it is very challenging to
determine the radiation dose to the lymphocytes in circulating blood because they are
moving targets. Using a blood-flow continuity principle, we first calculated the blood
dose and volume contributed by a single fraction of radiation to each particular blood-
containing organ, including lung, heart, great vessels and body mass. The fractionation
effect of irradiation on flowing blood through each organ was modelled using a similar
approach reported by Yovino et al. [18]. The blood dose volume was then converted into
an equivalent uniform dose (EUD). The total effective blood dose was the sum of the
EDUs from the contributions of all irradiated organs. We defined this sum of EUDs as the
EDIC, the Effective Dose to the Immune Cells in circulating blood. This EDIC model was
presented in the 2017 ASTRO annual meeting [20]. A detailed description of the approach
to EDIC derivation is described in the Appendix A. The EDIC is finally expressed as the
following equation for patients receiving ≥25 fractions of thoracic radiation:
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EDIC = B1% ∗ MLD + B2% ∗ MHD +

[
B3% + B4% ∗ k1 ∗

( n
45

) 1
2

]
∗ ITDV/

(
61.8 ∗ 103

)
(1)

where B1% = 0.12, B2% = 0.08, B3% = 0.45 and B4% = 0.35 represent the percentages of
blood volume within the four major blood-containing organs (lung, heart, great vessels,
and small vessels/capillaries in all other organs, respectively) out of the total blood volume
in the body; MLD, MHD and ITDV are the mean lung dose, mean heart dose and integral
total dose volume; k1 = 0.85 is a dose effectiveness factor due to the small percentage of
cardiac output for the small vessels/capillaries; and 61.8 × 103 (cm3) is the average total
body volume, assuming average weight of 63 kg (140 lbs) and density of 1.02 g/cm3.

2.3. Outcomes and Statistical Considerations

The primary endpoint was overall survival (OS). The progression-free survival (PFS)
and local progression-free survival (LPFS) were tested as secondary endpoints. These
endpoints were analyzed as time-to-event data and calculated from the date of random-
ization to the date of respective event or last follow-up. The OS event was death due to
any cause; the PFS event was the first occurrence of any progression or death; and the
LPFS event was the first occurrence of local failure or death. These rates were estimated
using the Kaplan–Meier method, and the distributions between different groups were
compared using the log-rank test. Cox proportional hazards models were used to evaluate
the relationships between the EDIC and other factors with OS, PFS and LPFS. Because
the EDIC was derived from the combination of MLD, MHD and ITDV, these variables
were evaluated individually under multivariable analyses to avoid potential collinearity.
The tumor dose effect was adjusted by stratification in both univariate and multivariate
analyses. The functional forms of the EDIC in the Cox models were explored both linearly
and using restricted cubic splines [21]. To illustrate the non-linear functional form of the
EDIC in the Cox model, the EDIC was also categorized based on quartiles and absolute
EDIC values. The proportionality assumption was graphically assessed using plots of
log(-log[survival]) versus log of survival time, and tested using a formal test based on the
Schoenfeld residuals [22]. Interaction terms (e.g., potentially differential effects of the EDIC
on outcomes by different levels of patient characteristics) were also examined using the
Wald test.

All statistical tests were two-sided and performed using SAS 9.4 software (SAS Insti-
tute, Cary, NC, USA) and R version 3.4.0 (available at https://www.r-project.org/ (accessed
on 11 July 2017). p < 0.05 was considered statistically significant.

3. Results
3.1. Patient Characteristics and the EDIC

Of 495 patients enrolled in RTOG 0617, 29 were excluded due to failure of RT plan
retrieval. Ten additional patients were excluded due to errors in plan archiving or other
reasons: RT plans missed the target (n = 1), wrong RT plans were archived (exact same
plans for 2 different patients; n = 4), or the total dose received was ≤50 Gy (n = 5). Of the
456 eligible patients, 256 and 200 were originally assigned to the standard (60 Gy) and high-
dose arms (74 Gy), respectively; 261 patients received 60 Gy (including some originally
assigned to the high-dose arm), 165 received 74 Gy, 4 received 52–58 Gy, 12 received
62–66 Gy, and 6 received 67–72 Gy. Patients were categorized according to the actual dose
received, with a high dose defined as ≥67 Gy. Based on this definition, 285 and 171 patients
were placed into the low- and high-dose groups, respectively.

The median follow-up time for patients alive at the last evaluation was 30.3 months
(range, 2.5–61.5 months). Demographic, clinical, and dosimetric data for the included
patients are summarized in Table S1.

The EDIC was calculated for all 456 patients. The median EDIC values were 5.6 Gy
(range, 2.1–12.2 Gy) for the low-dose group, 6.3 Gy (2.1–11.6 Gy) for the high-dose group,
and 5.9 Gy (2.1–12.2 Gy) for all patients.

https://www.r-project.org/
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3.2. Univariate Analysis of the EDIC and Clinical Factors for OS, PFS and LPFS

EDIC was significantly associated with OS, PFS and LPFS (Table 1) after adjusting for
the tumor dose effect using stratification. Similar to previously reported results, gender,
Zubrod performance status, tumor histology, smoking history, use of PET staging, and
American Joint Committee on Cancer (AJCC) stage were not significantly associated with
OS, PFS and LPFS, whereas the occurrence of grade ≥ 3 esophagitis/dysphagia and
completion of the full course of chemotherapy were significantly associated with OS, PFS
and LPFS (Table 1). According to the dose that the patients actually received, the low-dose
patients had marginally better OS (p = 0.10) and PFS (p = 0.08), and significantly better LPFS
(p = 0.02) than the high-dose patients. Tumor location (central/lower left lobe vs. others)
was significantly associated with OS only. Interestingly, all dosimetric factors, including
GTV, MLD, and MHD, were significantly associated with OS, PFS and LPFS; ITDV was
significant for OS but PFS and LPFS (Table 1).

Table 1. Univariate analysis with stratification of patients by actual received RT dose *.

Variables OS PFS LPFS

HR (95% CI) p HR (95% CI) p HR (95% CI) p

Prescription dose: cont. 1.31 (1.04, 1.67) 0.01 1.22 (0.98, 1.51) 0.07 1.34 (1.07–1.67) 0.01

Actual received dose: cont. 1.22 (0.95, 1.56) 0.10 1.21 (0.98, 1.50) 0.08 1.32 (1.05, 1.65) 0.017

Age: cont. 1.01 (0.99, 1.02) 0.24 0.997 (0.99, 1.009) 0.59 1.01 (0.99, 1.02) 0.26

Gender: Male (RL) vs. Female 0.83 (0.65, 1.06) 0.13 0.96 (0.77, 1.19) 0.71 0.88 (0.70, 1.10) 0.27

Zubrod status: 0 (RL) vs. 1 1.02 (0.80, 1.30) 0.86 0.95 (0.76, 1.18) 0.64 1.01 (0.81, 1.27) 0.91

Histology: Non-Sq (RL) vs. Sq 1.13 (0.88, 1.43) 0.34 1.02 (0.82, 1.26) 0.87 1.19 (0.95, 1.49) 0.12

Smoking history: Yes (RL) vs. No 0.72 (0.43, 1.21) 0.22 0.79 (0.50, 1.26) 0.32 0.80 (0.50, 1.30) 0.37

RT technique: 3D (RL) vs. IMRT 0.89 (0.70, 1.13) 0.33 1.04 (0.84, 1.28) 0.74 1.06 (0.84, 1.32) 0.64

PET staging: No (RL) vs. Yes 0.76 (0.52, 1.11) 0.16 0.87 (0.61, 1.24) 0.45 0.83 (0.58, 1.21) 0.34

AJCC stage: IIIA (RL) vs. IIIB 1.03 (0.80, 1.32) 0.82 1.08 (0.86, 1.35) 0.52 1.08 (0.86, 1.37) 0.49

Tumor location: Not LLL/central
(RL) vs. LLL/central 1.49 (1.06, 2.09) 0.02 1.21 (0.88, 1.66) 0.25 1.33 (0.95, 1.84) 0.09

Esophagitis grade: <3 (RL) vs. ≥3 1.77 (1.30, 2.41) 0.0003 1.72 (1.29, 2.28) 0.0002 1.53 (1/14. 2.06) 0.005

Received full chemo: No (RL) vs. Yes 0.64 (0.46, 0.90) 0.009 0.72 (0.53, 0.97) 0.03 0.70 (0.51, 0.97) 0.03

GTV: cont. 1.21 (1.07, 1.38) 0.0026 1.13 (1.01, 1.26) 0.03 1.13 (1.01, 1.27) 0.04

Mean lung dose: cont. 1.05 (1.02, 1.09) 0.0004 1.04 (1.01, 1.07) 0.003 1.03 (1.004, 1.06) 0.02

Mean heart dose: cont. 1.02 (1.01, 1.03) <0.0001 1.01 (1.003, 1.02) 0.004 1.02 (1.007, 1.03) 0.0007

Integral total dose: cont. 1.003 (1.001, 1.005) 0.0004 1.001 (1.00, 1.003) 0.11 1.002 (1.00, 1.003) 0.03

EDIC: cont. 1.18 (1.10, 1.26) <0.0001 1.10 (1.03, 1.16) 0.002 1.11 (1.05, 1.18) 0.0009

* The effect of actual received dose has been stratified for all other factors in this univariate analysis except for the prescription dose and
actual received dose. Abbreviations: cont., continuous variable; RL, reference level; Sq, squamous; LLL, left lower lobe; RT, radiotherapy;
OS, overall survival; PFS, progression-free survival; LPFS, local progression-free survival; HR, hazard ratio; CI, confidence interval; GTV,
gross tumor volume; EDIC, Effective Dose to Immune Cells.

3.3. The EDIC in Multivariable Analysis of Factors Associated with OS, PFS and LPFS

The EDIC effects were assessed under two different multivariable models: one
without the EDIC but with MLD/MHD/ITDV and one with the EDIC but without
MLD/MHD/ITDV, as there were apparent correlations between MLD/MHD/ITDV and
the EDIC. Other clinical and dosimetric factors, including tumor location, gross tumor
volume, esophagitis grade, and received full chemo, were considered for these multivari-
able analyses. The tumor dose effect was adjusted by stratification according to the actual
received radiation dose. The occurrence of grade ≥ 3 esophagitis/dysphagia and comple-
tion of chemotherapy were significant for OS, PFS and LPFS in both models (Table 2a–c).
Interestingly, in the multivariable Cox model of OS without the EDIC, only GTV was
significant but not MHD, MHD and ITDV. On the other hand, in the multivariable Cox
model of OS with the EDIC, the EDIC was significant, while GTV was not (Table 2a).
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Table 2. Stratified multivariable analyses with stratification of patients according to the actual received RT dose.

(a)

Variables
OS without EDIC OS with EDIC

HR (95% CI) p HR (95% CI) p

Tumor location 1.42 (0.98, 2.05) 0.07 1.41 (0.98, 2.02) 0.07

Gross tumor volume 1.16 (1.00, 1.34) 0.05 1.12 (0.98, 1.28) 0.09

Esophagitis grade 1.53 (1.11, 2.11) 0.01 1.52 (1.10, 2.10) 0.012

Received full chemo 0.58 (0.41, 0.81) 0.0015 0.59 (0.42, 0.83) 0.003

Mean lung dose 1.03 (0.998, 1.070) 0.07

Mean heart dose 1.008 (0.995, 1.022) 0.21

Integral total dose 1.000 (0.998, 1.002) 0.93

EDIC 1.12 (1.03, 1.21) 0.005

(b)

Variables
PFS without EDIC PFS with EDIC

HR (95% CI) p HR (95% CI) p

Tumor location 1.19 (0.84, 1.68) 0.33 1.20 (0.85, 1.68) 0.30

Gross tumor volume 1.15 (1.01, 1.32) 0.04 1.08 (0.96, 1.21) 0.20

Esophagitis grade 1.64 (1.22, 2.21) 0.001 1.60 (1.19, 2.15) 0.002

Received full chemo 0.63 (0.46, 0.86) 0.003 0.66 (0.49, 0.90) 0.009

Mean lung dose 1.04 (1.006, 1.071) 0.02

Mean heart dose 1.005 (0.992, 1.017) 0.47

Integral total dose 0.998 (0.996, 1.000) 0.10

EDIC 1.05 (0.98, 1.12) 0.17

(c)

Variables
LPFS without EDIC LPFS with EDIC

HR (95% CI) p HR (95% CI) p

Gross tumor volume 1.10 (0.96, 1.26) 0.16 1.07 (0.95, 1.20) 0.29

Esophagitis grade 1.36 (1.00, 1.85) 0.05 1.37 (1.00, 1.86) 0.05

Received full chemo 0.66 (0.48, 0.91) 0.012 0.67 (0.48, 0.92) 0.013

Mean lung dose 1.01 (0.98, 1.04) 0.48

Mean heart dose 1.012 (1.000, 1.024) 0.044

Integral total dose 1.00 (0.998, 1.002) 0.81

EDIC 1.09 (1.01, 1.16) 0.02

Abbreviations: OS, overall survival; HR, hazard ratio; CI, confidence interval; EDIC, effective dose to immune cells; PFS, progression-free
survival; LPFS, local progression-free survival.

However, the multivariable PFS model was quite different from the OS model (Table 2b).
Both MLD and GTV were significantly associated with PFS in the model without the
EDIC, while both GTV and the EDIC were not significant in the model with the EDIC.
The multivariable LPFS model was similar to the OS model (Table 2c). The EDIC was a
significant factor for LPFS while GTV was not in the model with the EDIC. However, MHD
was a significant factor while MLD and GTV were not in the LPFS model without the EDIC.

3.4. Non-Linear Relationship between the EDIC and OS

To further analyze the relationship between the EDIC and OS, 456 patients were
divided into four groups with equal number of patients per the quartiles of the EDIC
(Figure 1a), as well as into six groups with an equal dose increment of 1.5 Gy between
two groups (Figure 1b). The Kaplan–Meier curves shown in Figure 1 depict a strong
inverse relationship between OS and the EDIC (i.e., the greater the EDIC, the worse the
OS). However, the relationship between the EDIC and OS was not strictly linear, because
the survival estimates of some intermediate EDIC groups overlap in both Figure 1a,b. To
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further illustrate this non-linear relationship, we estimated the hazard of the EDIC by
nonparametric smoothing using restricted cubic splines in a univariate Cox regression
model of OS, stratified tumor dose (Figure 2a). This analysis showed that hazard rates
increased with increasing EDIC when the EDIC was less than 6.0 Gy or larger than 8.0 Gy
but not between 6 and 8 Gy. This Cox regression analysis showed that the risk of death
increased by 23%/Gy (HR = 1.23, 95% CI:1.07–1.41; p = 0.003) with increasing EDIC
when the EDIC < 6.0 and by 37%/Gy (HR = 1.37, 95% CI: 1.14–1.64; p = 0.0007) when
the EDIC > 8 Gy. However, this curve was relatively flat for EDIC values in the range of
6.0–8.0 Gy.
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quartiles according to the EDIC); and (b) for patients divided into 6 EDIC groups with a 1.5 Gy dose increment. Survival 
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Figure 1. Overall survival curves separated by the effective dose to immune cells (EDIC). (a) for patients divided into
4 quartiles according to the EDIC); and (b) for patients divided into 6 EDIC groups with a 1.5 Gy dose increment. Survival
improved significantly with a reduction in the EDIC. However, overall survival (OS) were not significantly different among
patients with an EDIC between 6.0 and 8.0 Gy.
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Figure 2. Quantitative effect of the effective dose to immune cells (EDIC) on the risk of death. (a) Relationship between
relative hazard of death and the EDIC. The hazard of death increased with increasing EDIC when EDIC values was <5.5 Gy
and remained relatively unchanged when EDIC values ranged 5.5 to 7.5 Gy, and again increased with EDIC values > 7.5 Gy.
(b) Relationship between 2 year overall survival (OS) rate and the EDIC by a normal tissue complication probability (NTCP)
survival model. The clinical data were well fitted by the NTCP model composed of two components, with D50 being
4.5 and 9.9 Gy, respectively. The clinical data could also be described by a combined linear model with 3 parts: (1) for an
EDIC < 6.0 Gy, 2 year OS decreased with increasing EDIC at a slope of 8%/Gy; (2) for an EDIC between 6.0 and 8.0 Gy,
2 year OS remained unchanged; and (3) for an EDIC > 8.0 Gy, 2 year OS decreased with increasing EDIC at a slope of
12%/Gy.
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This non-linear relationship was also illustrated by the survival dose–response curve
for 2 year OS versus the EDIC (Figure 2b). The six data points were determined from the
data of the six subgroups in Figure 1b, with the horizontal axis of each point being the
average EDIC for the corresponding subgroup. The data were well fitted by an OS model
composed of two normal tissue complication probability (NTCP) components:

OS = 0.74 ∗

1 − 0.39

1 +
(

4.5
EDIC

)6

 ∗
[

1 − 1

1 +
( 9.9

EDIC
)12

]
(2)

with D50 being 4.5 and 9.9 Gy, respectively, for the two NTCP components. Alternatively,
the survival dose–response can also be described by a combined linear model in three parts:
(1) for an EDIC < 6.0 Gy, 2 year OS decreases with increasing EDIC at a slope of 8%/Gy;
(2) for an EDIC of 6.0–8.0 Gy, OS does not vary; and (3) for an EDIC > 8.0 Gy, 2 year OS
decreases with increasing EDIC at a slope of 12%/Gy.

4. Discussion

In this study of a secondary analysis of a multicenter phase III study, we presented a
novel approach for approximating the effective radiation dose to immune cells in circulat-
ing blood (abbreviated EDIC). Our results demonstrated an overall inverse relationship
between the EDIC and survival outcome in OS and LPFS in a large cohort of patients
enrolled in RTOG 617, which is the largest study to date of RT dose response in stage III
NSCLC. Multivariable analysis demonstrated that this correlation remained significant
after adjustment for other known prognostic factors including tumor dose and GTV, while
heart and lung doses were no longer significantly associated with OS after adjusting for
these factors. These results support our hypothesis that a high radiation dose to the host
immune system, particularly to immune cells in the circulating blood, may impair anti-
tumor immunity, worsening tumor control and survival. This study appears to provide
a reasonable explanation for the unexpected worse OS and LPFS from higher dose in pa-
tients enrolled the RTOG 0617 trial, suggesting that radiation-induced immunosuppression,
rather than radiation-induced grade-5 cardiac/pulmonary toxicity, may account for the
poorer OS in the high-dose arm. It should also be noted that only a few grade-5 toxicity
cases were reported in the RTOG 0617 trial [6].

High lung and heart RT doses were reported to have significant correlations with
decreased OS [23,24], which seemed to support the assumption that lung and heart toxicity
had contributed to the worse survival seen in the high-dose arm of RTOG 0617. However,
our results on actually received doses showed that high MLD and MHD were significantly
correlated with OS only under univariate analyses, not in the multivariable Cox model.
MLD was significantly correlated with only PFS, while MHD was significant for LPFS under
the same multivariable models, suggesting that MLD or MHD is associated with survival
due to disease control/progression rather than toxicity. Furthermore, in RTOG 0617, the
high-dose arm had less pulmonary toxicity than the low-dose arm, the total reported grade
3+ pulmonary toxicity was less than 5%, and there were only a few pulmonary deaths and
no reported cardiac deaths [6]. Therefore, the potential correlation of lung and heart doses
to survival is likely not directly due to conventional heart and lung toxicity. Rather, they
may be surrogates of radiation dose to immune structures, such as circulating immune cells
in blood and other components of the immune system, which are critical for tumor control.
For example, MLD could also be a surrogate of doses to resident lymphocytes in lung tissue
and to pulmonary lymph nodes. The significance of this study is the development of the
EDIC model, and the validation of its independent correlation with OS in 456 patients with
NSCLC. This EDIC model (first presented in ASTRO 2017) was also adopted and validated
externally in 117 patients with non-small-cell lung cancer [25], 92 patients with esophageal
cancer treated with neoadjuvant chemoradiation [26] and 488 patients with esophageal
cancer treated with concurrent chemoradiation [27].
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One may also ask if the EDIC effect could be a result of tumor volume, which is
a potential confounder, since larger tumors are considered to be associated with worse
survival. However, our multivariable analysis accounts for this potential confounder by
showing that the EDIC was still significantly associated with OS and LPFS after adjusting
for GTV size effects. Furthermore, GTV was no longer a significant adverse prognostic
factor when it was analyzed together with the EDIC. This result suggests that tumor volume
is not likely to explain our observations. It is understandable that the EDIC is a combined
effect of tumor volume and “goodness” of the RT plan, i.e., patients with relative small
tumors may have a greater EDIC if the plan was not optimized or the tumor was in a special
location. The greater significance of the EDIC over GTV suggests the importance of RT
planning. Additionally, our data also showed a significant effect of grade ≥ 3 esophagitis
on OS, PFS and LPFS after adjusting for GTV size effects. Esophagitis would certainly not
cause tumor progression. However, severe esophagitis may indicate that the patient is
more radiosensitive, and a more radiosensitive patient may have a greater risk of severe
radiation-induced immunosuppression and thus an increased risk of tumor progression
and poorer survival. Completion of the entire chemotherapy course was also a significant
factor for OS, PFS and LPFS. Of the total 456 patients, 58 patients did not complete the
chemotherapy course. These patients might be not able to tolerate the treatment. It is
understandable that they had a worse treatment outcome.

The key clinical implication of this study is that circulating immune cells may be con-
sidered as a critical organ at risk during external-beam RT, and that the EDIC is a potentially
useful parameter for plan optimization to limit incidental toxicity to circulating immune
cells during RT. Several approaches have the potential to reduce the EDIC, including the
following: (1) reduction in circulating blood exposure via hypofractionated treatment
regimens and/or decrease in the radiation delivery time, (e.g., with very high-dose-rate
techniques such as FLASH RT) [28]; (2) optimization of plans by adjustment of beam
energies and directions, number of beams, and collimator margins, as well as the use of
intensity-modulated radiotherapy (IMRT) and other advanced planning techniques; (3) the
use of advanced RT technology, such as image-guided adaptive therapy [29] and proton
therapy [30]; and (4) dose de-escalation and/or margin reduction, tailored to individual
radiosensitivity [31].

The present study has limitations. Firstly, it did not have blood count data to show
correlation of the EDIC with the lymphocyte count. However, the lymphocyte count may
not well reflect the radiation killing of immune cells in blood as well as the potential
anti-tumor immunity, because lymphocytes can be replenished from the spleen and bone
marrow, and there are many subpopulations, such as B cells, T cells, CD8, CD4, CD4 helper,
CD4 regulator, NK cells, memory cells, as well as proliferating and non-proliferating cells
for each subset in the lymphocytes. These cells have a large variation of radiosensitivity [32].
Russ et al. showed that a very low-dose (0.01~0.1 Gy) total body irradiation (TBI) in rats
reduced the lymphocyte count to 50% of the baseline level in hours, and the lymphocyte
count recovered to the baseline level several days later [33]. They also showed that multiple
low-dose TBIs with weeks interval increased lymphocyte count several times higher than
the baseline level, and these rats accepted syngeneic tumor implants (poor immunity),
while the rats with lymphocytes recovery to the baseline level rejected syngeneic tumor
implants (good immunity). These data support that the lymphocyte count after radiation
does not necessary correlate with the radiation dose, and a higher lymphocyte count
does not mean a better anti-tumor immunity. In addition, So et al. and Xu et al. have
used the EDIC model to study its association with lymphopenia and OS in esophageal
cancers [26,27]. Both studies found a significant association of the EDIC with lymphopenia.
More importantly, they found that the EDIC was much more predictive of OS and distant
metastasis-free survival than the lymphopenia [27].

Secondly, the EDIC model was based on relatively simple assumptions, including the
following: (1) integral dose was used to approximate the mean dose to the large vessels
and small vessels/capillaries; (2) an approximate model was used to calculate the EUD
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contribution to small vessels and capillaries in other organs; (3) the percentages of blood
volume assigned to lung, heart, great vessels, and small vessels/capillaries may not reflect
the actual blood distribution in the body; (4) average rather than patient-specific parameters
were used for approximating the dose contributions; (5) the ITDV did not exclude the
lung and heart volumes. These assumptions would affect the accuracy of the model. For
example, the great vessels contain a high concentration of lymphocytes. However, our
study was initially a proof of concept study. In addition, we expect that more precise values
for these parameters would not significantly improve the accuracy of the EDIC model,
because the EDIC model is relatively accurate and reliable for its main contributors: the
lung and heart. While the EDIC is the estimation of the physical dose to the circulating
immune cells in blood, it can also be considered as a parameter that optimally combines
three independent factors, the MLD, MHD and ITDV. Additionally, it is notable that this
study did not account for the contribution of the other immune substructures such as
lymph nodes, lymphatic ducts (particularly the thoracic duct), thymus, bone marrow, and
resident lymphocytes in lung and tumor tissue. Future work shall develop and validate a
more comprehensive model, including carefully determination of doses to large vessels,
lymphatic organs, and resident immune cells in lung and tumor.

5. Conclusions

This study demonstrated that the EDIC is significantly associated with local progression-
free survival and overall survival in a large prospective cooperative group study of con-
current chemoradiation for the treatment of unresectable stage III NSCLC. These findings
suggest that radiation dose to the immune cells is a critical determinant of treatment
outcomes. While an external validation study is needed, the knowledge gained from the
present study may be used to guide RT planning to improve tumor control and survival in
patients with locally advanced NSCLC.
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Appendix A

The following steps are used to estimate the dose to the immune cells in circulating
blood: (1) first consider the contribution from a single blood-containing organ; (2) use
the blood-flow continuity principle to calculate the dose volume to the blood for a single
fraction for a single organ; (3) determine the fractionation effect using a similar approach
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reported by Yovino et al. [18]; (4) convert the blood dose volume data into an equivalent
uniform dose (EUD); (5) sum the EUDs for all irradiated organs; (6) define the EUD sums
as the effective dose to immune cells in circulating blood.

We assume that a blood-containing organ has A% of cardiac output (total blood flow)
branching into the organ (out of the total blood from the heart) and B% blood volume
contained in the organ at a moment in comparison to the total body blood volume. The
time of one blood circulation is T, the irradiation time is t, the number of RT fractions is
n, and the organ has received a mean organ dose of MOD. For each fraction, using the
blood-flow continuity principle, the blood volume (V%) and dose (d) contributed by the
organ is:

V% = B% + (A% − B%) ∗ t/T (A1-1)

d =

(
MOD

n

)
∗
(

B
V

)
(A1-2)

Then, we consider the fractionation effect. After each fraction of irradiation, as
proposed by Yovino et al. [18], the irradiated blood is uniformly redistributed. Therefore,
after the second fraction, the total blood volume can be divided into 3 parts, with each
part receiving a dose of 2∗d, 1∗d, and 0∗d, respectively. Similarly, after ith fraction, the
total blood volume can be divided into (i + 1) parts, with each part receiving a dose of
i∗d, (i − 1)∗d, 1∗d and 0∗d, respectively. Assuming the blood volume receiving a dose of
j∗d after ith fraction is V(i,j), the differential dose volume histogram (DVH) after the ith
fraction can be derived by calculating V(i,j) using the following iteration algorithm.

After the 1st fraction, V(1, 1) = V% ∗ V(0, 0), and

V(1, 0) = (1 − V%) ∗ V(0, 0) (A2-1)

After the 2nd faction, V(2, 2) = V% ∗ V(1, 1), V(2, 1) = V% ∗ V(1, 0) + (1 − V%) ∗
V(1, 1) and

V(2, 0) = (1 − V%) ∗ V(1, 0) (A2-2)
After the nth fraction,

V(n, n) = V% ∗ V(n − 1, 1), V(n, n − 1) = V% ∗ V(n − 1, n − 2) + (1 − V%) ∗ V(n − 1, n − 1),
...V(n, 1) = V% ∗ V(n − 1, 0) + (1 − V%) ∗ V(n − 1, 1), and V(n, 0) = (1 − V%) ∗ V(n − 1, 0)

(A2-n)

We then convert the DVH into an EUD. Figure A1a shows how EUD varies with n for
various V% for an example organ with B% ∗ MOD = 3 Gy. It shows that when V% > 20%
and n > 25, EUD is almost a constant and can be accurately and simply computed as

EUD = B% ∗ MOD (A3-1)

Otherwise, EUD is approximated as

EUD = B% ∗ MOD ∗ k1 ∗
(

n
k2

) 1
2

(A3-2)

where k2 is approximately 45, and k1 is a dose losing factor due to a low V%. When
V% = 6%, k1 is approximately 85%.

We have estimated A% and B% for the major organs in the blood circulation system
(Figure A1b) [34]. The organs/components that are irradiated in thoracic RT mainly include
(1) lung, (2) heart, (3) large vessels, and (4) small vessels and capillaries in other organs,
such as esophagus, muscles, bones, and skin. A% is 50% for each lung, 100% for heart,
>30% for large vessels, and 5–10% for other blood vessels if we combine all the small
vessels into one organ. B% is approximately 12% for lung, 8% for heart, and 45% for large
vessels, and 35% for small vessels. Considering that we have T~1 min, t > 1 min, according
Equation (A1-1), we have V%~A%. Because n = 30–37, EUD can be reliably calculated
as B%∗MOD for lung, heart and large vessels. For the 4th component (small vessels and
capillaries in other organs), we estimated that V% = 6–8% Thus, k1~0.85, and EUD can be
estimated using Equation (A3-2). We further assume that the vessels and capillaries are
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uniformly distributed in the body, so that the average integral total dose (ITD) can be used
to replace the MOD for the large vessels and small vessels. Because the CT images did
not include the entire body, while B% for the large and small vessels were for the whole
body, we assume that each patient has a weight of 140 pounds, corresponding to 63 Kg or
a volume of 61.8 × 103 CC. Thus, a factor of Vscan/61.8 × 103 was used to adjust B% for
large vessels and small vessels. The EDIC for thoracic RT can be considered as the sum of
EUDs for the four organs/components. Thus, the final EDIC is expressed as:

EDIC = 12% ∗ MLD + 8% ∗ MHD +

[
45% + 35% ∗ 0.85 ∗

( n
45

) 1
2

]
∗ ITDV/(61.8 ∗ 103)

where ITDV is the integral total dose volume, which is ITD ∗ Vscan.
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