Equilibrium Structures of the Phosphorus Trihalides PF_{3} and PCl_{3}, and the Phosphoranes $\mathrm{PH}_{3} \mathrm{~F}_{2}, \mathrm{PF}_{5}, \mathrm{PCl}_{3} \mathrm{~F}_{2}$, and PCl_{5}

Jürgen Breidung and Walter Thiel* ${ }^{*}$

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
(S) Supporting Information

Abstract

Among the title species, a reliable and accurate equilibrium geometry (r_{e} structure) is available only for PF_{3}, which has been determined experimentally more than 20 years ago. Here, we report accurate r_{e} structures for all title molecules, which were obtained using a composite computational approach based on explicitly correlated coupled-cluster theory (CCSD (T)-F12b) in conjunction with a large correlation-consistent basis set (cc-pCVQZ-F12) to take core-valence electron correlation into account. Additional terms were included to correct for the effects of iterative triple excitations (CCSDT), noniterative quadruple excitations (CCSDT(Q)), and scalar relativistic contributions (DKH2-CCSD (T)). The performance of this computational procedure was established through test calculations on selected small molecules $X=H, F, C l \quad Y=F, C l$ ($\mathrm{PH}, \mathrm{PF}, \mathrm{PCl}, \mathrm{PH}_{2}, \mathrm{PF}_{2}$, and PH_{3}). For $\mathrm{PF}_{3}, \mathrm{PCl}_{3}, \mathrm{PH}_{3} \mathrm{~F}_{2}$, and PF_{5} sufficiently accurate experimental ground-state rotational constants from the literature were used to determine semiexperimental r_{e} structures, which were found to be in excellent agreement with the corresponding best estimates from the current composite approach. The recommended equilibrium structural parameters are for $\mathrm{PCl}_{3}, r_{\mathrm{e}}(\mathrm{PCl})=203.94 \mathrm{pm}$ and $\theta_{\mathrm{e}}(\mathrm{ClPCl})=100.18^{\circ}$; for $\mathrm{PH}_{3} \mathrm{~F}_{2}$, $r_{\mathrm{e}}\left(\mathrm{PH}_{\mathrm{eq}}\right)=138.38 \mathrm{pm}$ and $r_{\mathrm{e}}\left(\mathrm{PF}_{\mathrm{ax}}\right)=164.15 \mathrm{pm}$; for $\mathrm{PF}_{5}, r_{\mathrm{e}}\left(\mathrm{PF}_{\mathrm{eq}}\right)=153.10 \mathrm{pm}$ and $r_{\mathrm{e}}\left(\mathrm{PF}_{\mathrm{ax}}\right)=157.14 \mathrm{pm} ;$ for $\mathrm{PCl}_{3} \mathrm{~F}_{2}, r_{\mathrm{e}}\left(\mathrm{PCl}_{\mathrm{eq}}\right)$ $=200.21 \mathrm{pm}$ and $r_{\mathrm{e}}\left(\mathrm{PF}_{\mathrm{ax}}\right)=159.37 \mathrm{pm}$; and for $\mathrm{PCl}_{5}, r_{\mathrm{e}}\left(\mathrm{PCl}_{\mathrm{eq}}\right)=201.29 \mathrm{pm}$ and $r_{\mathrm{e}}\left(\mathrm{PCl}_{\mathrm{ax}}\right)=211.83 \mathrm{pm}$. The associated uncertainties are estimated to be $\pm 0.10 \mathrm{pm}$ and $\pm 0.10^{\circ}$, respectively.

1. INTRODUCTION

The most meaningful representation of the geometry of a molecule is provided by its equilibrium structure (r_{e} structure), mainly because it is independent of vibrational effects. The advantage of such a vibrationless structure becomes obvious when comparing geometries of related molecules: even subtle effects that may have some influence on the structural parameters can be discussed in terms of differences in the chemical bonding in these species. Such a discussion is less straightforward when nuclear-motion effects must be taken into account. Of course, such comparisons are most meaningful when the r_{e} structures in question are as reliable and accurate as possible. At least they should have been determined in a consistent way, for instance by high-level quantumchemical calculations. Sometimes it is feasible experimentally to correct the measured ground-state rotational constants of a given polyatomic molecule (and its isotopologues if necessary) for the contributions due to zero-point vibrations. The resulting equilibrium rotational constants may then be used to derive the equilibrium geometry. Among the title species, such a purely experimental procedure was applied to PF_{3} (phosphorus trifluoride): the measured ${ }^{1}$ constants B_{0} and C_{0} were converted ${ }^{2}$ to the corresponding equilibrium values B_{e} and C_{e} to determine a reliable and accurate r_{e} structure of PF_{3}. ${ }^{2}$ However, such a purely experimental procedure has not yet been applied to the other title molecules. For PCl_{3} (phosphorus trichloride), ${ }^{3-6} \mathrm{PH}_{3} \mathrm{~F}_{2}$ (difluorophosphorane), ${ }^{7,8}$ and PF_{5} (phosphorus pentafluoride) ${ }^{9-12}$ ground-state rotational constants were measured, but there is not enough
experimental information (vibration-rotation interaction constants) to transform them into equilibrium constants. For $\mathrm{PCl}_{3} \mathrm{~F}_{2}$ (trichlorodifluorophosphorane) and PCl_{5} (phosphorus pentachloride), spectroscopically derived rotational constants are not available at all.

Continuous advances in electronic structure methods and computational resources have made it possible to calculate the vibrational corrections to ground-state rotational constants of polyatomic molecules and their isotopologues with sufficient accuracy. Adopting these corrections, the resulting equilibrium rotational constants allow for the determination of the respective r_{e} structure, e.g., by a least-squares fitting procedure. Such a structure is called a semiexperimental equilibrium structure, ${ }^{13}$ due to the combination of experimental and theoretical data. This strategy has been pioneered by the work of Pulay, Meyer, and Boggs about 40 years ago. ${ }^{14}$ Its accuracy has been carefully established, ${ }^{15}$ and it can nowadays be applied almost routinely (e.g., see ref 16).

Alternatively, equilibrium geometries of small and mediumsized molecules may also be obtained with an accuracy of about 0.1 pm for bond lengths and 0.1° for bond angles using state-of-the-art quantum-chemical methods. Typically, these methods are based on coupled-cluster (CC) theory including higher-order (at least quadruple) excitations and employing large basis sets, perhaps in combination with extrapolation

[^0]techniques to estimate the complete basis set limit. Such rather expensive calculations have become feasible by the introduction of composite approaches. ${ }^{17-20}$ Recently, we have reported ${ }^{21}$ a composite procedure related to the so-called geometry scheme ${ }^{20}$ whose dominant term is based on explicitly correlated CC theory $(\operatorname{CCSD}(\mathrm{T})-\mathrm{F} 12 \mathrm{~b})^{22}$ and which takes core-valence electron correlation properly into account by employing an orbital basis set (cc-pCVQZ-F12) optimized for that purpose. ${ }^{23}$ We have used this approach to calculate the equilibrium structural parameters of pyrazine (10 atoms), striazine (9 atoms), and s-tetrazine (8 atoms) with estimated uncertainties of $\pm 0.10 \mathrm{pm}$ and $\pm 0.10^{\circ}$ for bond distances and angles, respectively. ${ }^{21}$ The largest species treated in that study ${ }^{21}$ was benzene serving as a test molecule. We note that gradient schemes ${ }^{18-20}$ have the advantage to provide stationary points corresponding to minima of the potential energy surface computed with a given approach. However, geometry schemes ${ }^{20,21}$ are computationally less demanding ${ }^{20}$ while they are capable of providing results that are very similar to those from gradient approaches. ${ }^{20,21}$

In the present paper we apply the composite computational approach of ref 21 to compute the equilibrium geometries of the title molecules. As already mentioned, a reliable and accurate r_{e} structure is available in the literature only for $\mathrm{PF}_{3}{ }^{2}{ }^{2}$ For PCl_{3} and $\mathrm{PF}_{5}, r_{\mathrm{e}}$ structures were estimated from corresponding zero-point average $\left(r_{z}\right)$ structures. ${ }^{25,26}$ Gas electron diffraction data measured ${ }^{27}$ for PF_{5} were reanalyzed ${ }^{28}$ to deduce equilibrium values for the bond distances, which are identical to those from ref 26 within the quoted error bars. For $\mathrm{PH}_{3} \mathrm{~F}_{2}$, the effective ground-state $\left(r_{0}\right)$ structure was inferred from the associated ground-state rotational constants. ${ }^{7,8}$ For $\mathrm{PCl}_{3} \mathrm{~F}_{2}$, mean internuclear distances (r_{g} structure) were determined by gas-phase electron diffraction. ${ }^{29}$ Finally, for PCl_{5} average structural parameters denoted r_{α}, r_{g} and r_{a} are available. ${ }^{30,31}$

Previously, we considered target and test molecules consisting only of first-row and hydrogen atoms. ${ }^{21}$ We start our current investigation by demonstrating that the chosen computational procedure is capable of accurately describing also the geometries of selected test molecules containing second-row atoms (P and Cl), namely, $\mathrm{PH}\left(\mathrm{X}^{3} \Sigma^{-}\right.$), PF (X $\left.{ }^{3} \Sigma^{-}\right), \mathrm{PCl}\left(\mathrm{X}^{3} \Sigma^{-}\right), \mathrm{PH}_{2}\left(\mathrm{X}^{2} \mathrm{~B}_{1}\right), \mathrm{PF}_{2}\left(\mathrm{X}^{2} \mathrm{~B}_{1}\right)$, and $\mathrm{PH}_{3}(\mathrm{X}$ ${ }^{1} \mathrm{~A}_{1}$). In addition, these small test species allow us to check convergence issues in our calculations. Unfortunately, the PCl_{2} radical could not be included as a test species due to the lack of experimental data for rotational constants and equilibrium structural parameters. Whenever experimental ground-state rotational constants are known for the present target molecules, we determined a semiexperimental r_{e} structure to check the respective theoretical best estimate provided by the current purely computational scheme.

2. COMPUTATIONAL METHODS

We adopt the composite computational approach outlined in ref 21 to determine theoretical best estimates for the equilibrium bond length r_{e} and bond angle θ_{e} of each molecule, with a slight modification in the scalar relativistic part (see below). For the sake of easy reference and clarity, the basic definitions of this procedure ${ }^{21}$ are repeated here (see eqs 1-4):

$$
\begin{align*}
p_{\mathrm{e}}(\text { best estimate })= & p_{\mathrm{e}}[(\mathrm{U}) \mathrm{CCSD}(\mathrm{~T})-\mathrm{F} 12 \mathrm{~b} / \mathrm{CVQZ}-\mathrm{F} 12] \\
& +\Delta p_{\mathrm{e}}[\mathrm{~T}]+\Delta p_{\mathrm{e}}[(\mathrm{Q})]+\Delta p_{\mathrm{e}}[\mathrm{SR}] \tag{1}
\end{align*}
$$

$$
\begin{align*}
\Delta p_{\mathrm{e}}[\mathrm{~T}]= & p_{\mathrm{e}}[(\mathrm{ROHF}-) \mathrm{CCSDT} / \mathrm{VTZ}] \\
& -p_{\mathrm{e}}[(\mathrm{ROHF}-) \mathrm{CCSD}(\mathrm{~T}) / \mathrm{VTZ}] \tag{2}
\end{align*}
$$

$$
\begin{align*}
\Delta p_{\mathrm{e}}[(\mathrm{Q})]= & p_{\mathrm{e}}[(\mathrm{UHF}-) \operatorname{CCSDT}(\mathrm{Q}) / \mathrm{VDZ}] \\
& -p_{\mathrm{e}}[(\mathrm{UHF}-) \operatorname{CCSDT} / \mathrm{VDZ}] \tag{3}
\end{align*}
$$

$$
\begin{align*}
\Delta p_{\mathrm{e}}[\mathrm{SR}]= & p_{\mathrm{e}}[\mathrm{DKH} 2-(\mathrm{U}) \operatorname{CCSD}(\mathrm{T}) / \text { AWCVTZ-DK }] \\
& -p_{\mathrm{e}}[(\mathrm{U}) \operatorname{CCSD}(\mathrm{T}) / \text { AWCVTZ }] \tag{4}
\end{align*}
$$

As indicated by the first term on the right-hand side of eq 1 , the structural parameter $p_{\mathrm{e}}\left(r_{\mathrm{e}}\right.$ or $\left.\theta_{\mathrm{e}}\right)$ is initially optimized at the level of explicitly correlated CC theory employing the socalled F12b approximation ${ }^{22,32,33}$ including all single and double excitations (CCSD) ${ }^{34,35}$ and augmented by a perturbational estimate of the effects of connected triple excitations (CCSD $(\mathrm{T})))^{36}$ CVQZ-F12 denotes the correlation-consistent polarized core-valence quadruple- ζ basis cc-pCVQZ-F12 optimized ${ }^{23}$ for the explicitly correlated F12 methods. ${ }^{22}$ At hydrogen, this basis reduces to the cc-pVQZ-F12 basis set. ${ }^{24}$ The parameter p_{e} evaluated at the $\operatorname{CCSD}(\mathrm{T})-\mathrm{F} 12 \mathrm{~b} / \mathrm{CVQZ}$ F12 level of theory is expected to be reasonably close to the basis set limit ${ }^{22}$ and therefore serves as the starting point in the present scheme. For the purpose of comparison, we also tested the smaller basis CVTZ-F12, which is the correlationconsistent polarized core-valence triple- ζ basis cc-pCVTZ$\mathrm{F} 12^{23}$ being equal to cc-pVTZ-F12 ${ }^{24}$ at hydrogen. For the open-shell species serving as test molecules ($\mathrm{PH}, \mathrm{PF}, \mathrm{PCl}, \mathrm{PH}_{2}$, and PF_{2}) the unrestricted $\operatorname{UCCSD}(\mathrm{T})-\mathrm{F} 12 \mathrm{~b}$ variant ${ }^{33,37}$ was used, which is based on a high-spin restricted open-shell Hartree-Fock (ROHF) determinant ${ }^{38}$ and the perturbative triples corrections are computed as defined in ref 39. Whenever using core-valence basis sets in this work, all electrons in the molecule under consideration were correlated, except for those occupying the $1 s$-like core molecular orbitals (MOs) of the second-row atoms. All (U)CCSD (T)-F12b geometry optimizations were done using the MOLPRO 2012 program. ${ }^{40,41}$ The four-point formula implemented in this program was used for the numerical energy gradients, and the step sizes for distances and angles were set to $0.01 a_{0}$ and 0.5°, respectively. Throughout this work, the largest internal gradient components at the stationary points were always less than $2 \times 10^{-6} E_{\mathrm{h}} / a_{0}$. For further technical details concerning the (U$) \operatorname{CCSD}(\mathrm{T})-\mathrm{F} 12 \mathrm{~b}$ calculations, the reader is referred to ref 21 .

The term $\Delta p_{\mathrm{e}}[\mathrm{T}]$ (see eqs 1 and 2) corrects the (U)CCSD (T)-F12b/CVQZ-F12 result for the effects of an iterative treatment of connected triple excitations. Accordingly, this term is obtained as the difference of p_{e} optimized at the level of CC theory with a full treatment of single, double, and triple excitations (CCSDT) $)^{42,43}$ and at the $\operatorname{CCSD}(\mathrm{T})^{34,36,44}$ level (see eq 2). The acronym VTZ refers to the correlationconsistent polarized valence triple- ζ basis $\mathrm{cc}-\mathrm{pVTZ}{ }^{45}$ for the H and F atoms and the tight d -augmented $\mathrm{cc}-\mathrm{pV}(\mathrm{T}+\mathrm{d}) \mathrm{Z}^{46}$ basis for the P and Cl atoms. To check basis set convergence in the case of the test molecules ($\mathrm{PH}, \mathrm{PF}, \mathrm{PCl}, \mathrm{PH}_{2}, \mathrm{PF}_{2}$, and PH_{3}),
$\Delta p_{\mathrm{e}}[\mathrm{T}]$ was also calculated with the VQZ, V5Z, and up to V6Z basis sets, which are the n-tuple- $\zeta(n=4,5,6)$ analogues ${ }^{45-47}$ of VTZ $(n=3)$. Whenever such valence-only basis sets were used, the frozen core approximation was applied (i.e., the 1 s 2 s 2 p -like core MOs of P and Cl and the 1 s-like core MO of F were constrained to be doubly occupied). For the open-shell test molecules (see above) the ROHF-based variants of $\operatorname{CCSDT}^{48}$ and $\operatorname{CCSD}(\mathrm{T})^{39}$ were used. These geometry optimizations were performed using analytic or numerical energy gradients as implemented in the CFOUR program. ${ }^{49}$

The term $\Delta p_{e}[(\mathrm{Q})]$ (see eqs 1 and 3) is computed as the difference of p_{e} optimized at the level of CCSDT augmented by a perturbative treatment of connected quadruple excitations (CCSDT(Q)) ${ }^{50,51}$ and at the CCSDT level. This approximate correction for the effects of quadruple excitations partly covers higher-order excitations in the cluster operator. The label VDZ stands for the double- ζ analogue of the VTZ basis. ${ }^{45,46}$ To check basis set convergence in the case of the test molecules (see above), $\Delta p_{\mathrm{e}}[(\mathrm{Q})]$ was computed employing even larger basis sets (up to V6Z). The geometry optimizations at the $\operatorname{CCSDT}(\mathrm{Q})$ level were done with the use of the MRCC code ${ }^{52,53}$ interfaced to CFOUR. ${ }^{49}$ Numerical energy gradients as provided by CFOUR ${ }^{49}$ had to be used for CCSDT(Q), whereas analytic ${ }^{54}$ or numerical energy gradients were employed for CCSDT. For the test molecules, the CCSDT(Q) geometries were compared with those optimized at the level of CC theory with a full treatment of single, double, triple, and quadruple excitations (CCSDTQ), ${ }^{53,55-57}$ employing basis sets up to VQZ. The CCSDTQ geometry optimizations were carried out in complete analogy to those at the $\operatorname{CCSDT}(\mathrm{Q})$ level. Due to program limitations, the $\operatorname{CCSDT}(\mathrm{Q})$ calculations had to be based on an unrestricted Hartree-Fock (UHF) ${ }^{58}$ reference wave function for the open-shell test species. For the sake of compatibility, the corresponding CCSDTQ calculations were also carried out using a UHF reference function. Consequently, to be consistent within the $\Delta p_{\mathrm{e}}[(\mathrm{Q})]$ (and $\left.\Delta p_{\mathrm{e}}[\mathrm{Q}]\right)$ term the associated CCSDT calculations were also based on a UHF determinant (UHF-CCSDT) ${ }^{48}$ in these cases.

The final term $\Delta p_{\mathrm{e}}[\mathrm{SR}]$ (see eqs 1 and 4) serves as a correction for scalar relativistic effects on the given structural parameter p_{e} : This term was evaluated from the difference of p_{e} optimized at the $\operatorname{CCSD}(\mathrm{T})$ level using the Douglas-KrollHess Hamiltonian of second order (DKH2) $)^{59-61}$ and at the nonrelativistic (standard) $\operatorname{CCSD}(\mathrm{T})$ level. The acronym AWCVTZ refers to the augmented correlation-consistent polarized weighted core-valence triple- ζ basis (aug-ccpwCVTZ). ${ }^{62-64}$ To check basis set convergence, we employed the larger basis sets AWCVQZ and AWCV5Z, which are the quadruple- ζ and quintuple- ζ analogues ${ }^{62-64}$ of AWCVTZ. At hydrogen, these basis sets reduce to the corresponding aug-cc$\mathrm{pVXZ}(\mathrm{X}=\mathrm{T}, \mathrm{Q}, 5)$ sets. ${ }^{63}$ In conjunction with the DKH2 Hamiltonian, the correspondingly recontracted ${ }^{65}$ versions of these basis sets were used (denoted as AWCVXZ-DK; $\mathrm{X}=\mathrm{T}$, $\mathrm{Q}, 5$). We recall that the employment of a core-valence basis currently implies that all electrons in the molecule under study were correlated (see above for details). For the open-shell test species, these calculations were done using the unrestricted variant of CC theory based on ROHF orbitals (denoted $\operatorname{UCCSD}(\mathrm{T})) .{ }^{39,66}$ The geometry optimizations concerning $\Delta p_{\mathrm{e}}[\mathrm{SR}]$ were carried out using the MOLPRO 2012 program. ${ }^{40}$ Numerical energy gradients were utilized in analogy to the (U) $\operatorname{CCSD}(\mathrm{T})-\mathrm{F} 12 \mathrm{~b}$ calculations for the leading term in eq 1 (see above).

To summarize, the present composite approach was used to deduce theoretical best estimates of the geometry of the following molecules within the constraint of their point group symmetries:

1. Test molecules: diatomic radicals PH, PF, and PCl (X $\left.{ }^{3} \Sigma^{-} ; C_{\infty v}\right)$, triatomic radicals PH_{2} and $\mathrm{PF}_{2}\left(\mathrm{X}^{2} \mathrm{~B}_{1} ; \mathrm{C}_{2 v}\right)$, and $\mathrm{PH}_{3}\left(C_{3 \mathrm{v}}\right)$.
2. Target molecules: $\mathrm{PF}_{3}\left(C_{3 v}\right), \mathrm{PCl}_{3}\left(C_{3 v}\right), \mathrm{PH}_{3} \mathrm{~F}_{2}\left(D_{3 h}\right)$, $\mathrm{PF}_{5}\left(D_{3 h}\right), \mathrm{PCl}_{3} \mathrm{~F}_{2}\left(D_{3 h}\right)$, and $\mathrm{PCl}_{5}\left(D_{3 h}\right)$.
The experimental ground-state rotational constants of $\mathrm{PH}_{2},{ }^{67} \mathrm{PD}_{2}{ }^{68} \mathrm{PF}_{2},{ }^{69} \mathrm{PH}_{3},{ }^{70} \mathrm{PD}_{3},{ }^{71} \mathrm{PF}_{3},{ }^{72} \mathrm{PCl}_{3},{ }^{5,6} \mathrm{PH}_{3} \mathrm{~F}_{2},{ }^{7,8}$ and $\mathrm{PF}_{5}{ }^{11,12}$ were used to determine a semiexperimental ${ }^{13} r_{\mathrm{e}}$ structure for these species. To be more specific, we utilized for the asymmetric top species $\mathrm{PX}_{2}(\mathrm{X}=\mathrm{H}, \mathrm{D}, \mathrm{F})$ the measured ${ }^{67-69}$ constants A_{0}, B_{0}, and C_{0}, and for the oblate symmetric top molecules $\mathrm{PH}_{3}, \mathrm{PD}_{3}$, and PF_{3} the B_{0} and C_{0} constants, ${ }^{70-72}$ which refer to the so-called B-reduction of the rotational Hamiltonian for PH_{3} and $\mathrm{PD}_{3}{ }^{70,71}$ Furthermore, we used the B_{0} constants ${ }^{5,6}$ of the $\mathrm{P}^{35} \mathrm{Cl}_{3}$ and $\mathrm{P}^{37} \mathrm{Cl}_{3}$ isotopologues, as well as the published ${ }^{7,8,11,12} A_{0}$ and B_{0} constants for the prolate symmetric tops $\mathrm{PH}_{3} \mathrm{~F}_{2}$ and PF_{5}. In order to deduce the equilibrium rotational constants, the corresponding zeropoint vibrational corrections ${ }^{13,73,74} \Delta X_{\text {vib }}(\mathrm{X}=\mathrm{A}, \mathrm{B}, \mathrm{C})$ are needed. For this purpose, we determined the required cubic normal coordinate force constants at the (UHF-)CCSD(T) level of theory with the use of the CFOUR code, ${ }^{49}$ employing various basis sets (see below) and using a finite difference procedure ${ }^{75}$ that involved displacements along reduced (dimensionless) normal coordinates (step size $\Delta q=0.05$) and the calculation of analytic Hessians ${ }^{76,77}$ at these displaced geometries. At the respective equilibrium geometries optimized at the same level of theory as adopted for the force field calculations, the internal gradient components were always less than $2 \times 10^{-10} E_{\mathrm{h}} / a_{0}$. The vibration-rotation interaction constants (α-constants) were derived from the theoretical normal coordinate force constants by applying standard formulas based on second-order rovibrational perturbation theory. ${ }^{73}$ In addition, the α-constants of $\mathrm{PCl}_{3} \mathrm{~F}_{2}$ and PCl_{5} were also calculated. For PCl_{5}, only those parts of the cubic force field were computed that are required for the calculation of the α-constants ${ }^{73}$ (using the CFOUR ${ }^{49}$ input option ANHARMONIC $=$ VIBROT $)$. The following basis sets were employed: AVQZ for $\mathrm{PH}_{2}, \mathrm{PD}_{2}, \mathrm{PF}_{2}, \mathrm{PH}_{3}, \mathrm{PD}_{3}, \mathrm{PF}_{3},{ }^{72} \mathrm{P}^{35} \mathrm{Cl}_{3}$, and $\mathrm{P}^{37} \mathrm{Cl}_{3}$; VQZ for $\mathrm{PH}_{3} \mathrm{~F}_{2}, \mathrm{PD}_{3} \mathrm{~F}_{2}, \mathrm{PF}_{5}, \mathrm{P}^{35} \mathrm{Cl}_{3} \mathrm{~F}_{2}$, and $\mathrm{P}^{37} \mathrm{Cl}_{3} \mathrm{~F}_{2}$; VTZ for $\mathrm{P}^{35} \mathrm{Cl}_{5}$ and $\mathrm{P}^{37} \mathrm{Cl}_{5}$. The VQZ and VTZ basis sets have already been described (see above). The AVQZ basis is derived from VQZ by the addition of diffuse functions: it consists of the aug-cc-pVQZ ${ }^{63}$ basis for H and F and aug-cc- $p V(Q+d) Z^{46}$ for P and Cl . Most of these results serve as predictions, in particular those for $\mathrm{PD}_{3} \mathrm{~F}_{2}, \mathrm{PCl}_{3} \mathrm{~F}_{2}$, and PCl_{5} whose rotational constants have not yet been measured.

Besides the vibrational correction $\Delta X_{\text {vib }}$, there is a small electronic (magnetic) contribution $\Delta X_{\text {el }}$, which is related to the rotational g-tensor. ${ }^{13,74,78}$ Such contributions were also included to investigate their effects on the semiexperimental structural parameters. Thus, the rotational g-tensors of the various species mentioned above were computed at the level of $\operatorname{CCSD}(\mathrm{T}) /$ AWCVTZ theory at the associated best estimated equilibrium geometries from this study. The CFOUR ${ }^{49}$ program was used for these computations to ensure gaugeorigin independence and fast basis set convergence by employing rotational London atomic orbitals. ${ }^{79,80}$ However,

Table 1. Computed and Experimental Equilibrium Bond Lengths (pm) in PX ($\mathrm{X}=\mathrm{H}, \mathrm{F}, \mathrm{Cl}$)

method ${ }^{a}$	basis	PH	PF	PCl
		$r_{\mathrm{e}}(\mathrm{PH})^{b}$	$r_{\mathrm{e}}(\mathrm{PF})^{b}$	$r_{\mathrm{e}}(\mathrm{PCl})^{b}$
$\operatorname{CCSD}(\mathrm{T})$	VDZ	143.78	164.16	205.53
$\operatorname{CCSD}(\mathrm{T})$	VTZ	142.58	159.69	203.33
$\operatorname{CCSD}(\mathrm{T})$	VQZ	142.40	159.41	202.38
$\operatorname{ccsi}(\mathrm{T})$	V5Z	142.36	159.28	202.08
$\operatorname{CCSD}(\mathrm{T})$	V6Z	142.35	159.22	201.95
$\operatorname{CCSD}(\mathrm{T})$	AWCVTZ	142.23	159.59	202.88
$\operatorname{CCSD}(\mathrm{T})$	AWCVQZ	142.11	159.10	201.74
$\operatorname{CCSD}(\mathrm{T})$	AWCV5Z	142.07	158.89	201.46
DKH2-CCSD (T)	AWCVTZ-DK	142.24	159.65	202.93
DKH2-CCSD (T)	AWCVQZ-DK	142.12	159.16	201.79
DKH2-CCSD (T)	AWCV5Z-DK	142.09	158.95	201.51
CCSDT	VDZ	143.84[.84]	164.26[.26]	205.69[.68]
CCSDT	VTZ	142.63 [.63]	159.76[.75]	203.47[.47]
CCSDT	VQZ	142.46[.46]	159.46[.46]	202.51[.51]
CCSDT	V5Z	142.41[.41]	159.32[.32]	202.20[.20]
CCSDT	V6Z	142.40[.40]	159.26[.26]	202.07[.07]
CCSDT(Q)	VDZ	143.85	164.35	205.75
CCSDT(Q)	VTZ	142.65	159.84	203.55
CCSDT(Q)	VQZ	142.47	159.54	202.59
CCSDT(Q)	V5Z	142.43	159.41	202.28
CCSDT(Q)	V6Z	142.42	c	c
CCSDTQ	VDZ	143.85	164.32	205.73
CCSDTQ	VTZ	142.65	159.81	203.54
CCSDTQ	VQZ	142.47	159.52	${ }^{\text {c }}$
$\operatorname{CCSD}(\mathrm{T})$-F12b	CVTZ-F12	142.09	158.87	201.39
$\operatorname{CCSD}(\mathrm{T})-\mathrm{F} 12 \mathrm{~b}$	CVQZ-F12	142.07	158.81	201.31
best estimate ${ }^{a}$		142.14	159.03	201.57
experimental ${ }^{d}$		$142.182772(89)^{e}$	158.9329(20)	201.4609(49)
experimental f^{f}		142.2179(16)	158.96	
experimental ${ }^{g}$		142.140(22)		

${ }^{a}$ See text. ${ }^{b}$ Decimal places in square brackets refer to the corresponding UHF-CCSDT results (see text). ${ }^{c}$ Not calculated. ${ }^{d}$ Reference 86 for PH, ref 89 for PF , and ref 91 for PCl . ${ }^{e}$ Value determined for PD. ${ }^{f}$ Reference 87 for PH and ref 90 for ${ }^{\text {PF. }}{ }^{g}$ Reference 88.
due to program limitations the rotational g-tensors were not calculated for the open-shell molecules. All g-factors and $\Delta X_{\text {el }}$ values computed presently are contained in Tables S1 and S2 of the Supporting Information, together with the $\Delta X_{\text {vib }}$ data (see above). While most of the g-factors stand as predictions, they may be compared with experiment in a few cases, e.g., for $\mathrm{PH}_{3}{ }^{81}$ and $\mathrm{PF}_{3}{ }^{82}$ It turned out that neglecting these electronic contributions has no significant impact on the present equilibrium geometrical parameters: the bond lengths and angles change at most by 0.0033 pm and 0.0026°, respectively (these maximum values apply to PCl_{3}), the only exception being $r_{\mathrm{e}}(\mathrm{PH})$ in $\mathrm{PH}_{3} \mathrm{~F}_{2}$ where a somewhat larger effect (0.012 pm) occurs.

Several of the basis sets employed in calculations with the programs CFOUR ${ }^{49}$ and MRCC ${ }^{52}$ were downloaded from the EMSL basis set library using the Basis Set Exchange web portal. ${ }^{83,84}$

3. RESULTS AND DISCUSSION

3.1. Test Molecules. The computed equilibrium geometries of the diatomic test molecules PH, PF, and PCl are collected in Table 1, and those of $\mathrm{PH}_{2}, \mathrm{PF}_{2}$, and PH_{3} are listed in Table 2. Considering the raw results, those calculated at the DKH2-(U)CCSD(T)/AWCV5Z-DK and (U)CCSD(T)-F12b/CVQZ-F12 levels of theory should be the most reliable and accurate ones, due to the size of the basis sets as well as the
inclusion of core-valence electron correlation and scalar relativistic effects (in case of the DKH2 results). Moreover, structures optimized at the level of explicitly correlated CC theory are known to be reasonably close to the basis set limit. ${ }^{22}$ For this reason, they were selected as starting points to derive theoretical best estimates for the r_{e} structures (see section 2).

Upon comparison of the results from (ROHF-)CCSDT/ VTZ and (ROHF-)CCSD (T)/VTZ, the full treatment of connected triple excitations appears to increase the bond lengths in the test molecules, by +0.03 pm in PH_{3} up to +0.14 pm in PCl . The bond angles in $\mathrm{PH}_{2}, \mathrm{PF}_{2}$, and PH_{3} decrease very slightly $\left(0.009-0.015^{\circ}\right)$. Upon enlargement of the basis from VTZ to VXZ ($\mathrm{X}=6$ for $\mathrm{PH}, \mathrm{PF}, \mathrm{PCl}$, and $\mathrm{PH}_{2} ; \mathrm{X}=5$ for PF_{2} and PH_{3}), the effects arising from the full treatment of connected triple excitations change the bond distances in PH , $\mathrm{PH}_{2}, \mathrm{PF}_{2}$, and PH_{3} minutely (at most by 0.01 pm), and only slightly more in PF and PCl (decreasing by $0.02-0.03 \mathrm{pm}$). The corresponding effect on the bond angle is negligible in PF_{2} (by 0.001°) and still tiny in PH_{2} and PH_{3} (decrease in absolute value by 0.009° and 0.007°, respectively). Thus, typically, the CCSDT versus $\operatorname{CCSD}(\mathrm{T})$ corrections are already converged reasonably well for the VTZ basis. This is in line with previous observations. ${ }^{17}$ Even in the two cases where the effects may not seem completely negligible (bond angles in PH_{2} and PH_{3}), they are still so small in absolute value (on the order of 0.01°)

Table 2. Computed and Semiexperimental Equilibrium Geometries ($\mathrm{pm}, \operatorname{deg}$) of $\mathrm{PX}_{2}(\mathrm{X}=\mathrm{H}, \mathrm{F})$ and PH_{3} as Well as Experimental Equilibrium Geometries (pm, deg) of PH_{3}

method $^{\text {a }}$	basis	PH_{2}		PF_{2}		PH_{3}	
		$r_{\mathrm{e}}(\mathrm{PH})^{b}$	$\theta_{\mathrm{e}}(\mathrm{HPH})^{b}$	$r_{\mathrm{e}}(\mathrm{PF})^{b}$	$\theta_{\mathrm{e}}(\mathrm{FPF})^{b}$	$r_{\mathrm{e}}(\mathrm{PH})$	$\theta_{\mathrm{e}}(\mathrm{HPH})$
$\operatorname{CcsD}(\mathrm{T})$	VDZ	143.06	91.714	162.57	98.894	142.54	93.358
$\operatorname{CCSD}(\mathrm{T})$	VTZ	141.99	91.840	158.39	98.657	141.56	93.505
$\operatorname{CcsD}(\mathrm{T})$	VQZ	141.86	91.871	158.12	98.427	141.47	93.554
$\operatorname{CCSD}(\mathrm{T})$	V5Z	141.83	91.878	157.96	98.350	141.44	93.560
$\operatorname{CCSD}(\mathrm{T})$	V6Z	141.82	91.878	157.90	98.300	141.44	93.561
$\operatorname{CCSD}(\mathrm{T})$	AWCVTZ	141.67	91.761	158.18	98.239	141.27	93.426
$\operatorname{CCSD}(\mathrm{T})$	AWCVQZ	141.57	91.812	157.76	98.320	141.17	93.487
$\operatorname{CCSD}(\mathrm{T})$	AWCV5Z	141.53	91.813	157.57	98.321	141.14	93.492
DKH2-CCSD (T)	AWCVTZ-DK	141.67	91.695	158.23	98.258	141.27	93.339
DKH2-CCSD (T)	AWCVQZ-DK	141.57	91.745	157.81	98.338	141.17	93.399
DKH2-CCSD (T)	AWCV5Z-DK	141.54	91.746	157.62	98.338	141.14	93.404
CCSDT	VDZ	143.11[.11]	91.695[.695]	162.66[.66]	98.887[.888]	142.57	93.344
CCSDT	VTZ	142.03[.03]	91.825[.825]	158.43[.43]	98.647[.649]	141.59	93.496
CCSDT	VQZ	141.90[.90]	$91.862[.862]$	158.15[.14]	98.417[.419]	141.50	93.550
CCSDT	V5Z	141.87[.87]	91.871[.871]	157.99[.99]	98.339[.341]	141.47	93.558
CCSDT	V6Z	141.86[.86]	91.872[.872]	c	c	c	c
CCSDT(Q)	VDZ	143.11	91.685	162.74	98.911	142.58	93.332
$\operatorname{CCSDT}(\mathrm{Q})$	VTZ	142.04	91.806	158.50	98.669	141.60	93.474
CCSDT(Q)	VQZ	141.92	91.839	c	c	141.51	93.524
CCSDTQ	VDZ	143.11	91.684	162.72	98.908	142.58	93.331
CCSDTQ	VTZ	142.04	91.804	c	c	141.60	93.473
$\operatorname{CCSD}(\mathrm{T})$-F12b	CVTZ-F12	141.55	91.747	157.55	98.291	141.15	93.454
$\operatorname{CCSD}(\mathrm{T})$-F12b	CVQZ-F12	141.53	91.807	157.50	98.304	141.13	93.489
best estimate ${ }^{\text {a }}$		141.57	91.72	157.67	98.34	141.17	93.38
semiexperimental ${ }^{a}$		141.636(8)	91.686(13)	157.612(2)	98.338(2)	141.195	93.378
semiexperimental ${ }^{\text {a,d }}$		141.612(2)	91.706(3)			141.185	93.383
experimental ${ }^{e}$						141.1607(83)	93.4184(95)
experimental ${ }^{\text {e } f}$						141.1785(57)	93.4252(68)

${ }^{a}$ See text. ${ }^{b}$ Decimal places in square brackets refer to the corresponding UHF-CCSDT results (see text). ${ }^{c}$ Not calculated. ${ }^{d}$ Values evaluated for PD_{2} and PD_{3}, respectively. ${ }^{e}$ Reference 71. ${ }^{f}$ Values determined for PD_{3}.
that they do not significantly affect the final theoretical best estimate of the associated r_{e} structures.

Higher-order correlation effects beyond CCSDT are approximated by the differences between (UHF-)CCSDT(Q)/VDZ and (UHF-)CCSDT/VDZ results. Contributions from connected quadruple excitations to bond distances should converge faster with basis set size than those from connected triples. ${ }^{17}$ In the current test molecules, the perturbative treatment of connected quadruples slightly increases the bond lengths. In the case of PH bonds (PH, $\mathrm{PH}_{2}, \mathrm{PH}_{3}$) the elongations do not exceed 0.01 pm . They are somewhat more pronounced for the PF and PCl bonds ($0.07-$ 0.09 pm). The bond angles in PH_{2} and PH_{3} decrease by 0.010° and 0.012°, respectively, whereas the angle in PF_{2} increases by 0.023°. In the present test molecules, these contributions agree in sign with the corresponding (ROHF-)CCSDT versus (ROHF-)CCSD(T) differences (see above) so that both effects enhance each other. The only exception from this finding is provided by the bond angle in PF_{2} for which a partial cancellation of both effects occurs. When enlarging the basis from VDZ to VXZ ($\mathrm{X}=6$ for $\mathrm{PH} ; \mathrm{X}=5$ for PF and $\mathrm{PCl} ; \mathrm{X}=$ Q for PH_{2} and $\mathrm{PH}_{3} ; \mathrm{X}=\mathrm{T}$ for PF_{2}), the effects of the connected quadruple excitations on the bond distances in the test molecules change typically at most by 0.01 pm . The effects on the bond angles in PH_{2} and PH_{3} are slightly larger (increase in absolute value by 0.013° and 0.014°, respectively) but remain small enough to not significantly affect the final
theoretical best estimate of the associated r_{e} structures. In view of these data, we evaluate the (UHF-) $\operatorname{CCSDT}(\mathrm{Q})$ versus (UHF-)CCSDT contributions with the VDZ basis, assuming that they are sufficiently converged to serve as increments when deriving theoretical best estimates for the geometrical parameters, as in our previous study. ${ }^{21}$ Generally, in order to achieve quantitative accuracy in the prediction of r_{e} structures quadruple excitations must be taken into account. ${ }^{\text {e } 8,19}$ In this context, the question arises whether quadruple excitation effects on molecular geometries are sufficiently well described by the (UHF-)CCSDT(Q) approximation (i.e., by the noniterative treatment of quadruples). To check this issue, the geometries of the test molecules were additionally optimized at the (UHF-)CCSDTQ/VDZ level of theory. We find that the bond lengths in $\mathrm{PH}, \mathrm{PH}_{2}$, and PH_{3} remain unaltered upon a full rather than a perturbative treatment of quadruple excitations. The bond distances in $\mathrm{PF}, \mathrm{PCl}$, and PF_{2} are shortened by $0.02-0.03 \mathrm{pm}$. The bond angles in $\mathrm{PH}_{2}, \mathrm{PF}_{2}$, and PH_{3} decrease by $0.001-0.003^{\circ}$. Essentially the same alterations occur in those cases where larger basis sets (VTZ, VQZ) could be employed (see Tables 1 and 2). Keeping in mind that the target accuracy of the present study is $\pm 0.10 \mathrm{pm}$ for bond lengths and $\pm 0.10^{\circ}$ for bond angles, these deviations are considered small enough to justify the use of the noniterative (UHF-)CCSDT(Q) approximation.

Scalar relativistic effects on the equilibrium molecular geometries are presently evaluated from the differences

Table 3. Computed, Semiexperimental, and Experimental Equilibrium Geometries ($\mathbf{p m}, \operatorname{deg}$) of $\mathbf{P F}_{3}$ and $\mathbf{P C l}_{3}$

method	basis	PF_{3}		PCl_{3}	
		$r_{\mathrm{e}}(\mathrm{PF})$	θ_{e} (FPF)	$r_{\mathrm{e}}(\mathrm{PCl})$	$\theta_{\mathrm{e}}(\mathrm{ClPCl})$
$\operatorname{CCSD}(\mathrm{T})$	VDZ	$160.84^{\text {a }}$	$97.500^{\text {a }}$	207.32	100.517
$\operatorname{CCSD}(\mathrm{T})$	VTZ	$156.84{ }^{\text {a }}$	$97.662^{\text {a }}$	205.64	100.384
$\operatorname{CcsD}(\mathrm{T})$	VQZ	$156.61{ }^{\text {a }}$	$97.593{ }^{\text {a }}$	204.74	100.249
$\operatorname{CCSD}(\mathrm{T})$	AVQZ	$156.71{ }^{\text {a }}$	$97.525^{\text {a }}$	204.79	100.171
$\operatorname{CCSD}(\mathrm{T})$	AWCVTZ	156.61	97.494	205.16	100.189
$\operatorname{CCSD}(\mathrm{T})$	AWCVQZ	$156.24{ }^{\text {a }}$	$97.565^{\text {a }}$	204.14	100.198
DKH2-CCSD (T)	AWCVTZ-DK	156.65	97.496	205.21	100.186
DKH2-CCSD (T)	AWCVQZ-DK	$156.28^{\text {a }}$	$97.566{ }^{\text {a }}$	204.19	100.194
CCSDT	VDZ	$160.90^{\text {a }}$	$97.492^{\text {a }}$	207.43	100.526
CCSDT	VTZ	$156.86{ }^{\text {a }}$	$97.656^{\text {a }}$	205.72	100.397
CCSDT	VQZ	156.62	97.589	b	b
CCSDT(Q)	VDZ	$160.98^{\text {a }}$	$97.503^{\text {a }}$	207.50	100.533
CCSDT(Q)	VTZ	156.93	97.665	b	b
$\operatorname{CCSD}(\mathrm{T})-\mathrm{F} 12 \mathrm{~b}$	CVTZ-F12	156.05	97.556	203.80	100.191
$\operatorname{CCSD}(\mathrm{T})-\mathrm{F} 12 \mathrm{~b}$	CVQZ-F12	$156.00^{\text {a }}$	$97.556^{\text {a }}$	203.75	100.171
best estimate ${ }^{c}$		$156.14{ }^{\text {d }}$	$97.56{ }^{\text {d }}$	203.95	100.19
semiexperimental ${ }^{c}$		156.10(10)	97.57(10)	203.94(10)	100.18(10)
experimental ${ }^{e}$		156.099(14)	97.57(4)	203.9(3)	100.28(10) ${ }^{f}$
experimental ${ }^{g}$		156.1(1)	97.7(2)		

${ }^{a}$ From ref $72 .{ }^{b}$ Not calculated. ${ }^{c}$ See text. ${ }^{d}$ Numerically identical to the best estimate in ref $72 .{ }^{e}$ Reference2 for PF_{3} and ref 25 for PCl_{3}. ${ }^{f}$ Estimate of uncertainty from ref $95 .{ }^{g}$ Reference 94.
between the DKH2-(U)CCSD(T)/AWCVTZ-DK and (U)$\operatorname{CCSD}(\mathrm{T}) / \mathrm{AWCVTZ}$ results. On an absolute scale, these effects are quite small for molecules containing first- and second-row atoms only: ${ }^{85}$ the bonds in $\mathrm{PF}, \mathrm{PF}_{2}$, and PCl are lengthened by $0.05-0.06 \mathrm{pm}$, whereas the bond distances in $\mathrm{PH}, \mathrm{PH}_{2}$, and PH_{3} remain virtually unchanged. The bond angles in PH_{2} and PH_{3} decrease by 0.066° and 0.087°, respectively, whereas the angle in PF_{2} increases by 0.019°. To examine basis set convergence, we performed analogous geometry optimizations at the (U$) \operatorname{CCSD}(\mathrm{T})$ level of theory with and without the DKH2 Hamiltonian employing the AWCVQZ and AWCV5Z basis sets. The DKH2 calculations were carried out using the corresponding recontracted ${ }^{65}$ basis sets, as before (see Tables 1 and 2). It turns out that the scalar relativistic effects calculated with the AWCVTZ basis vary in absolute value at most by 0.01 pm and 0.002°, respectively, when enlarging the basis as stated above. Thus, basis set convergence of the scalar relativistic effects appears to be reached for the AWCVTZ basis.

Tables 1 and 2 also show the best estimates of the r_{e} structures of the test molecules resulting from the current composite approach. They may be compared with the corresponding experimental r_{e} structures for $\mathrm{PH},{ }^{86-88}$ $\mathrm{PF},{ }^{89,90} \mathrm{PCl}^{91}$ and $\mathrm{PH}_{3} .{ }^{71}$ However, for PH_{2} and PF_{2} there are no such experimental data available in the literature. For this reason semiexperimental r_{e} structures were determined for the $\mathrm{PX}_{2}(\mathrm{X}=\mathrm{H}, \mathrm{D}, \mathrm{F})$ species (see section 2). These structural data and their uncertainties were evaluated from the semiexperimental rotational constants A_{e}, B_{e}, and C_{e} in complete analogy to the procedure used to infer the experimental r_{0} structure of $\mathrm{PF}_{2} .{ }^{69}$ Using the experimental ${ }^{67-69}$ ground-state rotational constants, the corresponding inertial defects Δ_{0} are presently calculated to be $0.0688\left(\mathrm{PH}_{2}\right), 0.0958$ $\left(\mathrm{PD}_{2}\right)$, and $0.1906 \mathrm{u} \AA^{2}\left(\mathrm{PF}_{2}\right)$ whereas the respective semiexperimental equilibrium values Δ_{e} appear to be $-0.000861,-0.000443$, and $+0.00202 \mathrm{u}^{2}$. As expected, the Δ_{e} values are significantly closer to zero than their Δ_{0}
counterparts. Additionally, we have determined semiexperimental r_{e} structures for PH_{3} and PD_{3} (see section 2), the uncertainties of which should be roughly similar to those from experiment. ${ }^{71} \mathrm{We}$ note that the calculated electronic contributions to the rotational constants (see Table S2 of the Supporting Information) have a particularly small effect on the semiexperimental r_{e} structures of PH_{3} and PD_{3} : in the former, the bonds are lengthened by 0.00017 pm and $\theta_{\mathrm{e}}(\mathrm{HPH})$ decreases by 0.0013° due to the magnetic corrections, while in the latter the corresponding effects are smaller by about a factor of $2\left(0.000081 \mathrm{pm}\right.$ and 0.00063°, respectively). Thus, the neglect of these corrections in the experimental ${ }^{71}$ determination of the r_{e} structures of PH_{3} and PD_{3} is fully justified by these results. The semiexperimental r_{e} structures of both species are in excellent agreement with their purely experimental ${ }^{71}$ counterparts (see Table 2).

The deviations between the best estimated bond lengths and their experimental or semiexperimental analogues usually do not exceed 0.10 pm . A slightly larger deviation (0.11 pm) occurs for the internuclear distance in the PCl radical. The best estimated bond angles in $\mathrm{PH}_{2}, \mathrm{PF}_{2}$, and PH_{3} agree with the semiexperimental and experimental ${ }^{71}$ values, respectively, to within 0.05° (see Table 2). Applying a similar computational scheme as adopted presently, the r_{e} structure of PH_{2} was best estimated ${ }^{92}$ to be $r_{\mathrm{e}}(\mathrm{PH})=141.58 \mathrm{pm}$ and $\theta_{\mathrm{e}}(\mathrm{HPH})=91.78^{\circ}$. Scalar relativistic effects on the molecular geometry were neglected. ${ }^{92}$ The corresponding correction indeed vanishes for the bond distance in PH_{2} whereas relativity appears to narrow the bond angle by 0.066° (see Table 2). When excluding this correction, our current best estimate for the PH_{2} structure is $r_{\mathrm{e}}(\mathrm{PH})=141.57 \mathrm{pm}$ and $\theta_{\mathrm{e}}(\mathrm{HPH})=91.78^{\circ}$, which is in almost perfect agreement with the result from ref 92 (see above).

In our previous investigation, ${ }^{21}$ we noted that structural data computed at the $\operatorname{CCSD}(\mathrm{T})-\mathrm{F} 12 \mathrm{~b} / \mathrm{CVQZ}-\mathrm{F} 12$ level of theory differ from those obtained at the $\operatorname{CCSD}(\mathrm{T})$-F12b/CVTZ-F12 level at most by 0.02 pm and 0.04°, respectively. However, this

Table 4. Computed and Semiexperimental Equilibrium as Well as Experimental Effective Ground-State Structures (pm) of $\mathbf{P H}_{3} \mathbf{F}_{2}$ and PF_{5} and Experimental Equilibrium and Mean Internuclear Distances (pm) in PF_{5}

method	basis	$\mathrm{PH}_{3} \mathrm{~F}_{2}$		PF_{5}	
		$r_{\mathrm{e}}\left(\mathrm{PH}_{\mathrm{eq}}\right)^{a}$	$r_{\mathrm{e}}\left(\mathrm{PF}_{\mathrm{ax}}\right)^{a}$	$r_{\mathrm{e}}\left(\mathrm{PF}_{\mathrm{eq}}\right)^{a}$	$r_{\mathrm{e}}\left(\mathrm{PF}_{\mathrm{ax}}\right)^{a}$
$\operatorname{CCSD}(\mathrm{T})$	VDZ	139.89	167.02	157.29	160.82
$\operatorname{CCSD}(\mathrm{T})$	VTZ	138.82	164.14	153.89	157.73
$\operatorname{CCSD}(\mathrm{T})$	VQZ	138.78	164.33	153.68	157.64
$\operatorname{CCSD}(\mathrm{T})$	AVQZ	138.80	164.72	153.74	157.72
$\operatorname{CCSD}(\mathrm{T})$	AWCVTZ	138.49	164.68	153.57	157.64
$\operatorname{CCSD}(\mathrm{T})$	AWCVQZ	138.46	164.27	153.25	157.32
DKH2-CCSD (T)	AWCVTZ-DK	138.43	164.73	153.56	157.64
DKH2-CCSD (T)	AWCVQZ-DK	138.40	164.32	153.24	157.31
CCSDT	VDZ	139.92	167.06	157.33	160.86
CCSDT	VTZ	138.84	164.16	153.90	157.74
CCSDT(Q)	VDZ	139.93	167.11	157.40	160.92
$\operatorname{CCSD}(\mathrm{T})$-F12b	CVTZ-F12	138.46	164.03	153.10	157.12
$\operatorname{CCSD}(\mathrm{T})-\mathrm{F} 12 \mathrm{~b}$	CVQZ-F12	138.45	164.00	153.06	157.08
best estimate ${ }^{b}$		138.42	164.12	153.13	157.15
semiexperimental ${ }^{\text {b }}$		138.38(10)	164.15(10)	153.10(10)	157.14(10)
experimental ${ }^{c}$				152.9(3)	157.6(3)
experimental ${ }^{d}$				153.0	157.6
r_{0} structure e		139.4(2)	164.68(2)	$153.43(30)^{f}$	$157.46(30)^{f}$
r_{g} structure g				153.4(4)	157.7(5)

${ }^{a}$ Subscripts eq and ax refer to equatorial and axial ligands, respectively. ${ }^{b}$ See text. ${ }^{c}$ Reference 26 . ${ }^{d}$ Reference 28. ${ }^{e}$ References 7 and 8 for $\mathrm{PH}_{3} \mathrm{~F}_{2}$ and ref 12 for $\mathrm{PF}_{5} .{ }^{f}$ Estimate of uncertainties from ref $95 .{ }^{g}$ Reference 27.
observation ${ }^{21}$ refers to molecules consisting only of first-row atoms and hydrogen. Considering the test molecules of this paper, the deviations may be somewhat larger: $0.02-0.08 \mathrm{pm}$ and $0.01-0.06^{\circ}$, respectively. Similar deviations are seen for the title molecules (see below), with the notable exception of the axial bond length in $\mathrm{PCl}_{5}(0.13 \mathrm{pm})$. Thus, in the presence of second-row atoms the significantly smaller CVTZ-F12 basis may be employed for the calculation of molecular geometries whenever the larger basis set is no longer feasible due to the size of the molecule under study or when the target accuracy is somewhat relaxed.

The results obtained for the best estimated r_{e} structures of the test molecules suggest that the current composite approach is suited to predict equilibrium bond lengths and angles with an accuracy of about $\pm 0.10 \mathrm{pm}$ and $\pm 0.10^{\circ}$, respectively, even if second-row atoms are present. Therefore, the same accuracy is expected to be achievable for the actual target molecules (see also ref 93).
3.2. PF_{3} and PCl_{3}. Table 3 collects the computed equilibrium structural parameters of PF_{3} and PCl_{3} which are needed in the present composite approach to derive the theoretical best estimates of the corresponding r_{e} structures. The latter are also given in Table 3. We include some further theoretical results, which are not involved in the evaluation of the best estimates but may be useful to check convergence issues. We point out that many results concerning PF_{3} have already been published previously ${ }^{72}$ (see Table 3, footnote a) and are included in Table 3 for the sake of easy reference. They are discussed in more detail in ref 72 .
The current semiexperimental r_{e} structure of PF_{3} is identical with its experimental ${ }^{2}$ counterpart (see Table 3), both with regard to the estimated uncertainties of the former $(\pm 0.10 \mathrm{pm}$ and $\pm 0.10^{\circ}$, respectively) and the even smaller experimental ${ }^{2}$ error bars ($\pm 0.014 \mathrm{pm}$ and $\pm 0.04^{\circ}$, respectively). The best estimated $r_{\text {e }}$ structure is also in excellent agreement with experiment ${ }^{2}$ (see Table 3). For the sake of completeness,

Table 3 also contains another experimental equilibrium geometry of PF_{3} determined in an earlier investigation. ${ }^{94}$ Both experimental ${ }^{2,94} r_{\mathrm{e}}$ structures are in complete accordance when considering the uncertainties $\left(\pm 0.1 \mathrm{pm}\right.$ and $\pm 0.2^{\circ}$, respectively) quoted in ref 94 . In view of the agreement with the current theoretical best estimate and the semiexperimental result, the purely experimental ${ }^{2} r_{\mathrm{e}}$ structure appears to be the most reliable and accurate equilibrium geometry of PF_{3} presently available. Thus, it is the recommended r_{e} structure for PF_{3} (see Table 3).

Turning to PCl_{3}, the current semiexperimental r_{e} structure is almost identical with the theoretical best estimate, the differences (0.01 pm and 0.01°, respectively) being 1 order of magnitude smaller than the expected uncertainties $(\pm 0.10$ pm and $\pm 0.10^{\circ}$, respectively) of both of them. This excellent agreement validates both results. The molecular structure of PCl_{3} was investigated by gas electron diffraction; ${ }^{96}$ this study provided an $r_{\text {a }}$ structure at two different temperatures, an estimate of the differences $r_{\mathrm{a}}-r_{\mathrm{e}}$, and hence a first estimate of the equilibrium geometry of PCl_{3}. The most reliable r_{e} structure of PCl_{3} published ${ }^{25}$ so far was derived from the r_{z} structure; it is identical with the semiexperimental r_{e} structure, within the corresponding uncertainties (see Table 3). However, we expect the present semiexperimental structural parameters to be superior in terms of reliability and accuracy, and we thus recommend the following equilibrium geometry for $\mathrm{PCl}_{3}: r_{\mathrm{e}}(\mathrm{PCl})=203.94(10) \mathrm{pm}$ and $\theta_{\mathrm{e}}(\mathrm{ClPCl})=$ $100.18(10)^{\circ}$. The additional inclusion of the ground-state rotational constants ${ }^{5}$ of the $\mathrm{P}^{35} \mathrm{Cl}_{2}{ }^{37} \mathrm{Cl}$ species through an unweighted least-squares structural fit (using the STRFIT code of Kisiel ${ }^{97}$) after having corrected them for the effects of zeropoint vibrations and electronic contributions (see Table S1 of the Supporting Information) does not alter the recommended geometry significantly: $r_{\mathrm{e}}(\mathrm{PCl})$ decreases by 0.01 pm and $\theta_{\mathrm{e}}(\mathrm{ClPCl})$ increases by 0.01°. These changes are 1 order of
magnitude smaller than the estimated error limits and are therefore currently neglected.

In contrast to PF_{3} whose ground-state rotational constants are well determined experimentally (see refs 1 and 72 as well as references therein), the axial ground-state rotational constants C_{0} of $\mathrm{P}^{35} \mathrm{Cl}_{3}$ and $\mathrm{P}^{37} \mathrm{Cl}_{3}$ have not yet been measured. Making use of the theoretical best estimate of the r_{e} structure, the rotational constants of ${ }^{35} \mathrm{Cl}_{3}\left(\mathrm{P}^{37} \mathrm{Cl}_{3}\right)$ are calculated to be $B_{\mathrm{e}}=$ 2623.81 (2493.77) MHz and $C_{e}=1476.09$ (1396.35) MHz (same unit as in the experimental work ${ }^{3-6}$). Adopting theoretical (CCSD (T)/AVQZ) vibrational and theoretical ($\operatorname{CCSD}(\mathrm{T}) /$ AWCVTZ) electronic corrections, the groundstate rotational constants amount to $B_{0}=2616.83$ (2487.24) MHz and $C_{0}=1470.38$ (1391.04) MHz. Analogously, we obtain for $\mathrm{P}^{35} \mathrm{Cl}_{2}{ }^{37} \mathrm{Cl}: A_{0}=2615.64 \mathrm{MHz}, B_{0}=2531.29 \mathrm{MHz}$, and $C_{0}=1443.32 \mathrm{MHz}$. It comes as no surprise that the electronic contributions are smaller in absolute value than the corresponding vibrational corrections (see Table S1 of the Supporting Information). The experimental ${ }^{5,6} \quad B_{0}$ values of $\mathrm{P}^{35} \mathrm{Cl}_{3}$ and $\mathrm{P}^{37} \mathrm{Cl}_{3}$ as well as the experimental ${ }^{5} X_{0}(\mathrm{X}=\mathrm{A}, \mathrm{B}, \mathrm{C})$ constants of $\mathrm{P}^{35} \mathrm{Cl}_{2}{ }^{37} \mathrm{Cl}$ are underestimated theoretically by 0.02%. The errors of the C_{0} values predicted for the two totally symmetric species of PCl_{3} are expected to be very similar to those of the other constants. Using the r_{0} structure of PCl_{3} from ref $5 C_{0}$ is tentatively estimated to be 1474 (1394) MHz, thus being about 0.2% larger than our best C_{0} values predicted above for $\mathrm{P}^{35} \mathrm{Cl}_{3}\left(\mathrm{P}^{37} \mathrm{Cl}_{3}\right)$.
3.3. $\mathrm{PH}_{3} \mathrm{~F}_{2}$ and PF_{5}. Table 4 contains the calculated bond lengths in $\mathrm{PH}_{3} \mathrm{~F}_{2}$ and PF_{5}, in particular those needed to arrive at the theoretical best estimates of the r_{e} structures. Both molecules assume a trigonal bipyramidal geometry. ${ }^{7,27}$ According to Muetterties' rule, ${ }^{98,99}$ the two axial positions will be occupied by the most electronegative ligands. The structure of $\mathrm{PH}_{3} \mathrm{~F}_{2}$ conforms to this rule, i.e., the $\mathrm{H}(\mathrm{F})$ atoms take up the equatorial (axial) sites resulting in $D_{3 h}$ point-group symmetry, just as in $\mathrm{PF}_{5} . \mathrm{PH}_{3} \mathrm{~F}_{2}$ and PF_{5} are examples of hypervalent species. Although a discussion of hypervalency ${ }^{100}$ is beyond the scope of this paper, we note that a decade ago a new model of hypervalent bonding has been introduced ${ }^{101}$ termed recoupled pair bonding. This concept has also been applied to the series of $\mathrm{PF}_{n}(n=1-5)$ species. ${ }^{102}$

Turning to the equilibrium geometry of $\mathrm{PH}_{3} \mathrm{~F}_{2}$, the best estimated r_{e} structure and its semiexperimental counterpart are in excellent agreement, with deviations of only 0.04 and 0.03 pm for $r_{\mathrm{e}}\left(\mathrm{PH}_{\mathrm{eq}}\right)$ and $r_{\mathrm{e}}\left(\mathrm{PF}_{\mathrm{ax}}\right)$, respectively (see Table 4). As before, the error bars of the semiexperimental r_{e} distances are assumed to equal those typically observed for the best estimates in our test calculations $(\pm 0.10 \mathrm{pm}$; see subsection 3.1). Experimentally, ${ }^{7,8}$ only the effective ground-state structure of $\mathrm{PH}_{3} \mathrm{~F}_{2}$ is available. As expected, the semiexperimental and the best estimated PH and PF equilibrium bond lengths are smaller than the associated r_{0} distances, by about 1.0 and 0.5 pm , respectively (see Table 4).

The theoretical best estimate for the r_{e} structure implies the following values for the rotational constants of $\mathrm{PH}_{3} \mathrm{~F}_{2}\left(\mathrm{PD}_{3} \mathrm{~F}_{2}\right)$: $A_{\mathrm{e}}=2.909996(1.456117) \mathrm{cm}^{-1}$ and $B_{\mathrm{e}}=0.160179$ (0.155895) cm^{-1} (same unit as in the experimental work ${ }^{7,8}$). Applying both theoretical $(\operatorname{CCSD}(\mathrm{T}) / \mathrm{VQZ})$ vibrational and theoretical (CCSD (T)/AWCVTZ) electronic corrections, we obtain $A_{0}=2.866446(1.440804) \mathrm{cm}^{-1}$ and $B_{0}=0.159112$ (0.154924) cm^{-1}. Compared to experiment, ${ }^{7,8}$ the purely theoretical A_{0} and B_{0} constants of $\mathrm{PH}_{3} \mathrm{~F}_{2}$ are too low by 0.054% and too large by 0.031%, respectively. In this context
we note that the uncertainty of the experimental ${ }^{7,8} A_{0}$ value was estimated ${ }^{8}$ to be $0.003 \mathrm{~cm}^{-1}$, which corresponds to 0.105%, about twice as much as the error of the theoretical A_{0} value. The rotational constants given above for $\mathrm{PD}_{3} \mathrm{~F}_{2}$ serve as predictions. The associated errors should be about the same as those in $\mathrm{PH}_{3} \mathrm{~F}_{2}$.

Turning to PF_{5}, the situation is very similar to that found for $\mathrm{PH}_{3} \mathrm{~F}_{2}$ as well as for PF_{3} and PCl_{3} : the best estimated and the semiexperimental r_{e} structures are essentially the same, the deviations being as small as 0.03 and 0.01 pm , respectively, for the equatorial and axial bond distances (see Table 4). The most recent experimental ${ }^{26} r_{\mathrm{e}}$ structure of PF_{5} was derived from the r_{z} structure. Prior to this experimental work, ${ }^{26}$ the gas electron diffraction data ${ }^{27}$ were reanalyzed ${ }^{28}$ to deduce not only a barrier height ($3.4 \mathrm{kcal} / \mathrm{mol}$) for the pseudorotation ${ }^{103}$ in PF_{5} but also the equilibrium internuclear distances (see Table 4, no uncertainties quoted in ref 28). The two experimental ${ }^{26,28} r_{\mathrm{e}}$ structures agree within the error limits of $\pm 0.3 \mathrm{pm}$ estimated in the more recent work. ${ }^{26}$ Comparing the semiexperimental r_{e} structure with experiment, ${ }^{26}$ the equatorial bond lengths differ by 0.2 pm , which is still covered by the experimental ${ }^{26}$ uncertainty, whereas the difference between the axial bond lengths is somewhat more pronounced (0.46 pm). Similar to $\mathrm{PH}_{3} \mathrm{~F}_{2}$, there is also an experimental ${ }^{12} r_{0}$ structure for PF_{5} which was determined from the measured ${ }^{11,12} A_{0}$ and B_{0} constants. As expected, the r_{0} bond lengths are somewhat larger (by about 0.3 pm) than their semiexperimental r_{e} counterparts (see Table 4). While the equatorial r_{0} bond lengths are also larger ($0.4-0.5 \mathrm{pm}$) than their experimen$\operatorname{tal}^{26,28} r_{\mathrm{e}}$ analogues, in contrast to expectation this does not hold for the axial bonds. However, a definitive assessment is difficult due to the relatively large uncertainties $(\pm 0.3 \mathrm{pm})^{26,95}$ of these structures. ${ }^{12,26}$

The equatorial r_{e} distance in PF_{5} is shorter than the equilibrium bond length in PF_{3} by about 3 pm (see Tables 3 and 4 for the best estimated, semiexperimental, and experimental r_{e} structures). Similarly, the PH r_{e} distance in $\mathrm{PH}_{3} \mathrm{~F}_{2}$ is shorter than the equilibrium bond length in PH_{3} by about 2.8 pm (see Tables 2 and 4). The axial r_{e} distance in PF_{5} turns out to be much smaller than in $\mathrm{PH}_{3} \mathrm{~F}_{2}$, by about 7 pm (see Table 4). It is well-known that the axial bonds in PF_{5} are distinctly longer than the equatorial ones. ${ }^{27}$ Considering the best estimated and semiexperimental r_{e} as well as the r_{0} structure, ${ }^{12}$ this difference appears to be 4.0 pm , in good agreement with the result from gas electron diffraction. ${ }^{27}$

Using the theoretical best estimate of the r_{e} structure, the rotational constants of PF_{5} are calculated to be $A_{\mathrm{e}}=3781.45$ MHz and $B_{\mathrm{e}}=3145.63 \mathrm{MHz}$ (same unit as in the experimental work $\left.{ }^{11,12}\right)$. With the use of theoretical ($\left.\operatorname{CCSD}(\mathrm{T}) / \mathrm{VQZ}\right)$ vibrational and theoretical ($\operatorname{CCSD}(\mathrm{T}) /$ AWCVTZ) magnetic corrections we obtain $A_{0}=3765.39 \mathrm{MHz}$ and $B_{0}=3132.61$ MHz. The experimental ${ }^{11,12}$ values for A_{0} and B_{0} in PF_{5} are underestimated theoretically by $0.025-0.035 \%$.

We complete this discussion for $\mathrm{PH}_{3} \mathrm{~F}_{2}$ and PF_{5} by emphasizing that the semiexperimental r_{e} structures of both species are in excellent agreement with the corresponding theoretical best estimates. Thus, both types of results validate each other. Therefore, we recommend the semiexperimental r_{e} structures of $\mathrm{PH}_{3} \mathrm{~F}_{2}$ and PF_{5} (see Table 4) as the most reliable and accurate equilibrium geometries available at present for these two species.
3.4. $\mathrm{PCl}_{3} \mathrm{~F}_{2}$ and PCl_{5}. The computed equilibrium bond lengths including the best estimates for $\mathrm{PCl}_{3} \mathrm{~F}_{2}$ and PCl_{5} are

Table 5. Computed Equilibrium and Experimental Average Structural Parameters ($\mathbf{p m}$) of $\mathrm{PCl}_{3} \mathrm{~F}_{2}$ and PCl_{5}

method	basis	$\mathrm{PCl}_{3} \mathrm{~F}_{2}$		PCl_{5}	
		$r_{\mathrm{e}}\left(\mathrm{PCl}_{\text {eq }}\right)^{a}$	$r_{\mathrm{e}}\left(\mathrm{PF}_{\mathrm{ax}}\right)^{a}$	$r_{\mathrm{e}}\left(\mathrm{PCl}_{\text {eq }}\right)^{a}$	$r_{\mathrm{e}}\left(\mathrm{PCl}_{\mathrm{ax}}\right)^{a}$
$\operatorname{CCSD}(\mathrm{T})$	VDZ	202.85	163.57	204.97	214.94
$\operatorname{CCSD}(\mathrm{T})$	VTZ	202.02	159.73	203.14	213.22
$\operatorname{CCSD}(\mathrm{T})$	VQZ	201.11	159.74	202.14	212.59
$\operatorname{CCSD}(\mathrm{T})$	AVQZ	201.06	159.95	202.14	212.73
$\operatorname{CCSD}(\mathrm{T})$	AWCVTZ	201.23	159.84	202.40	213.03
$\operatorname{CCSD}(\mathrm{T})$	AWCVQZ	200.42	159.52	201.46	212.08
DKH2-CCSD (T)	AWCVTZ-DK	201.22	159.89	202.43	213.03
DKH2-CCSD (T)	AWCVQZ-DK	200.40	159.56	201.49	212.08
CCSDT	VDZ	202.93	163.62	205.08	215.04
CCSDT	VTZ	202.07	159.75	203.21	213.30
CCSDT(Q)	VDZ	203.00	163.68	205.17	215.09
$\operatorname{CCSD}(\mathrm{T})-\mathrm{F} 12 \mathrm{~b}$	CVTZ-F12	200.11	159.31	201.14	211.83
$\operatorname{CCSD}(\mathrm{T})-\mathrm{F} 12 \mathrm{~b}$	CVQZ-F12	200.10	159.24	201.10	211.70
best estimate ${ }^{b}$		200.21	159.37	201.29	211.83
r_{g} structure c		200.5(3)	159.6(2)	202.3(3)	212.7(3)
r_{α} structure d				201.7(3)	212.4(3)

${ }^{a}$ Subscripts eq and ax refer to equatorial and axial ligands, respectively. ${ }^{b}$ See text. ${ }^{c}$ Reference 29 for $\mathrm{PCl}_{3} \mathrm{~F}_{2}$ and ref 30 for PCl_{5}. ${ }^{d}$ Reference 30 .
reported in Table 5. The rotational constants of both species have not yet been measured. Therefore, the semiexperimental strategy ${ }^{13}$ could not be applied in these two cases. However, the r_{g} structures of both phosphoranes as well as the r_{α} and r_{a} structures of PCl_{5} are known from gas electron diffraction studies. ${ }^{29-31}$ The experimental ${ }^{29,30} r_{g}$ and r_{α} internuclear distances are listed in Table 5. Like $\mathrm{PH}_{3} \mathrm{~F}_{2}$ and PF_{5} (see subsection 3.3), $\mathrm{PCl}_{3} \mathrm{~F}_{2}$ and PCl_{5} form trigonal bipyramidal molecules of $D_{3 h}$ point-group symmetry in the gas phase. ${ }^{29-31}$ Appropriate to Muetterties' rule, ${ }^{98,99}$ in $\mathrm{PCl}_{3} \mathrm{~F}_{2}$ the most electronegative ligands (F atoms) occupy the two axial positions such that the equatorial sites are left over for the less electronegative ligands (Cl atoms).

As suggested by our current test calculations and by the results obtained for $\mathrm{PF}_{3}, \mathrm{PCl}_{3}, \mathrm{PH}_{3} \mathrm{~F}_{2}$, and PF_{5} (see above), the best estimated bond lengths in $\mathrm{PCl}_{3} \mathrm{~F}_{2}$ and PCl_{5} are expected to be accurate to within $\pm 0.10 \mathrm{pm}$. In the absence of any semiexperimental or experimental equilibrium geometries for these two species, it is obvious that our best estimates are the most reliable and accurate r_{e} structures available to date for $\mathrm{PCl}_{3} \mathrm{~F}_{2}$ and PCl_{5} (see Table 5).

In $\mathrm{PCl}_{3} \mathrm{~F}_{2}$, the best estimated PCl and $\mathrm{PF} r_{\mathrm{e}}$ distances are smaller than the corresponding r_{g} values ${ }^{29}$ by 0.3 and 0.2 pm , respectively. Qualitatively, this is in line with expectation. However, we note that these differences are still covered by the experimental ${ }^{29}$ error limits (see Table 5). The PCl bonds in $\mathrm{PCl}_{3} \mathrm{~F}_{2}$ may be compared with those in PCl_{3}, showing that the best estimated $\mathrm{PCl} r_{\mathrm{e}}$ distance is smaller in the phosphorane species by 3.7 pm (see Tables 3 and 5). The comparison of the axial bonds in $\mathrm{PCl}_{3} \mathrm{~F}_{2}$ with those in PF_{5} reveals that substitution of the equatorial F by Cl atoms elongates these bonds by 2.2 pm (best estimate; see Tables 4 and 5). In the corresponding r_{g} structures, ${ }^{27,29}$ this elongation is slightly smaller (1.9 pm).

Using the theoretical best estimate of the r_{e} structure of $\mathrm{PCl}_{3} \mathrm{~F}_{2}$, the rotational constants of $\mathrm{P}^{35} \mathrm{Cl}_{3} \mathrm{~F}_{2}\left(\mathrm{P}^{37} \mathrm{Cl}_{3} \mathrm{~F}_{2}\right)$ are calculated to be $B_{e}=1647.47(1585.41) \mathrm{MHz}$ and $C_{e}=$ 1201.83 (1136.90) MHz. Taking into account theoretical ($\operatorname{CCSD}(\mathrm{T}) / \mathrm{VQZ})$ vibrational and theoretical $(\operatorname{CCSD}(\mathrm{T}) /$ AWCVTZ) electronic corrections yields $B_{0}=1642.23$ (1580.47) MHz and $\mathrm{C}_{0}=1197.92$ (1133.27) MHz. On the
basis of our experience with analogously computed rotational constants of PF_{3} (see ref 72), PCl_{3} (see subsection 3.2), $\mathrm{PH}_{3} \mathrm{~F}_{2}$ and PF_{5} (see subsection 3.3), the B_{0} and C_{0} values predicted for $\mathrm{PCl}_{3} \mathrm{~F}_{2}$ should be accurate to within 0.05%.

In PCl_{5}, the bond lengths at equilibrium (best estimates) are distinctly shorter than the corresponding r_{g} distances, ${ }^{30}$ by 1.0 and 0.9 pm , respectively, for the equatorial and axial bonds. These differences correspond to at least three times the experimental ${ }^{30}$ uncertainties (see Table 5), which appears to be quite substantial. This is in contrast to the situation in $\mathrm{PCl}_{3} \mathrm{~F}_{2}$ (see above). The associated $r_{\alpha}-r_{\mathrm{e}}$ differences are somewhat less pronounced (0.4 and 0.6 pm , respectively). The axial bonds in PCl_{5} are much longer than the equatorial ones, according to the best estimates by 10.5 pm . Similar such differences are found in the $r_{\mathrm{g}}(10.4(4) \mathrm{pm})$ and r_{α} (10.7(4) pm) structures. ${ }^{30}$ In PF_{5}, the corresponding difference is considerably smaller (close to 4 pm ; see above). Replacing the axial F atoms in $\mathrm{PCl}_{3} \mathrm{~F}_{2}$ by Cl atoms lengthens the equatorial PCl bonds by 1.1 pm (best estimate). This effect seems to be more pronounced (1.8(4) pm) when the equatorial r_{g} distances in PCl_{5} are compared with those in $\mathrm{PCl}_{3} \mathrm{~F}_{2}$ (see Table 5).

The best estimated r_{e} structure of PCl_{5} implies that the rotational constants of $\mathrm{P}^{35} \mathrm{Cl}_{5}\left(\mathrm{P}^{37} \mathrm{Cl}_{5}\right)$ are $A_{\mathrm{e}}=1188.97$ (1124.74) MHz and $B_{e}=960.15$ (908.28) MHz. Correcting them for the effects of zero-point nuclear motions ($\operatorname{CCSD}(\mathrm{T})$ / VTZ) and for electronic contributions ($\operatorname{CCSD}(\mathrm{T}) /$ AWCVTZ) results in $A_{0}=1184.94$ (1120.99) MHz and B_{0} $=956.82$ (905.18) MHz. Just as for $\mathrm{PCl}_{3} \mathrm{~F}_{2}$, the values of the rotational constants of PCl_{5} serve as predictions whose maximum errors should not exceed 0.05% (see above).

4. CONCLUSIONS

Accurate molecular equilibrium geometries of selected trivalent $\left(\mathrm{PF}_{3}\right.$ and $\left.\mathrm{PCl}_{3}\right)$ and pentavalent $\left(\mathrm{PH}_{3} \mathrm{~F}_{2}, \mathrm{PF}_{5}, \mathrm{PCl}_{3} \mathrm{~F}_{2}\right.$, and PCl_{5}) phosphorus compounds are reported. These geometries were calculated by means of a composite $a b$ initio approach, which is based on explicitly correlated coupled-cluster theory (CCSD (T)-F12b) employing a large correlation-consistent orbital basis set (CVQZ-F12) to include core-valence electron correlation. The equilibrium structures optimized at this level
of theory are corrected for the effects of an iterative treatment of triple excitations (CCSDT/VTZ versus CCSD $(\mathrm{T}) / \mathrm{VTZ})$ and of a noniterative treatment of quadruple excitations (CCSDT(Q)/VDZ versus CCSDT/VDZ). Scalar relativistic effects (DKH2-CCSD(T)/AWCVTZ-DK versus CCSD(T)/ AWCVTZ) are also included.

Extensive test calculations on diatomic ($\mathrm{PH}, \mathrm{PF}, \mathrm{PCl}$) and triatomic $\left(\mathrm{PH}_{2}, \mathrm{PF}_{2}\right)$ radicals as well as on phosphane $\left(\mathrm{PH}_{3}\right)$ establish the accuracy of the composite procedure. The errors of the best estimated bond lengths usually do not exceed ± 0.10 pm , and the best estimated bond angles turn out to be accurate to within $\pm 0.05^{\circ}$. We find that basis set convergence of the leading term of the composite approach is not as fast as observed previously in molecules consisting only of first-row atoms and hydrogen. ${ }^{21}$ Generally speaking, the CVQZ-F12 basis may often be replaced by the smaller CVTZ-F12 basis without significant loss of accuracy, but doing so seems to compromise the present target accuracy of $\pm 0.10 \mathrm{pm}$ in some cases, for example in the case of the axial bond lengths in PCl_{5} (see Table 5).

For $\mathrm{PF}_{3}, \mathrm{PCl}_{3}, \mathrm{PH}_{3} \mathrm{~F}_{2}$, and PF_{5} sufficiently accurate groundstate rotational constants are available from high-resolution rotational and vibrational spectroscopy. We corrected these constants for the effects of zero-point vibrations (CCSD (T)/ AVQZ and $\operatorname{CCSD}(\mathrm{T}) / \mathrm{VQZ}$, respectively) and for electronic contributions related to the rotational g-tensor $(\operatorname{CCSD}(\mathrm{T}) /$ AWCVTZ). The resulting empirical equilibrium rotational constants were used to determine semiexperimental r_{e} structures of these molecules. Throughout we find that these structures are in excellent agreement with the corresponding best theoretical estimates. This cross-validation confirms the accuracy of both approaches and suggests that best theoretical estimates can be used confidently instead of the semiexperimental r_{e} structures for species whose rotational constants have not yet been measured. The magnetic corrections of the experimental ground-state rotational constants are generally found to be negligible for structural purposes. In the case of $\mathrm{PCl}_{3}, \mathrm{PH}_{3} \mathrm{~F}_{2}$, and PF_{5} we recommend the current semiexperimental r_{e} structures (essentially identical with the best estimates; see Tables 3 and 4), whereas for PF_{3} the purely experimental ${ }^{2} r_{\mathrm{e}}$ structure continues to be the most reliable and accurate equilibrium geometry published to date.

The best estimated equilibrium geometries of $\mathrm{PCl}_{3} \mathrm{~F}_{2}$ and PCl_{5} are expected to be of the same accuracy $(\pm 0.10 \mathrm{pm}$ for bond lengths) as those for $\mathrm{PF}_{3}, \mathrm{PCl}_{3}, \mathrm{PH}_{3} \mathrm{~F}_{2}$, and PF_{5}. Therefore, we recommend these best estimates as the most reliable and accurate r_{e} structures of $\mathrm{PCl}_{3} \mathrm{~F}_{2}$ and PCl_{5} available at present (see Table 5).

- ASSOCIATED CONTENT

(s) Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpca.9b04406.

Two tables containing additional numerical results: computed vibrational corrections to the ground-state rotational constants of all title and selected test $\left(\mathrm{PH}_{2}\right.$, $\mathrm{PD}_{2}, \mathrm{PF}_{2}, \mathrm{PH}_{3}, \mathrm{PD}_{3}$) molecules as well as computed rotational g-tensors and related electronic contributions to the rotational constants of all title and closed-shell test $\left(\mathrm{PH}_{3}, \mathrm{PD}_{3}\right)$ molecules (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: thiel@mpi-muelheim.mpg.de.

ORCID

Walter Thiel: 0000-0001-6780-0350

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the Max Planck Society.

REFERENCES

(1) Najib, H.; Ben Sari-Zizi, N.; Bürger, H.; Rahner, A.; Halonen, L. High-Resolution FTIR Investigation of PF_{3} in the $300-550 \mathrm{~cm}^{-1}$ Region: The Ground, $\mathrm{v}_{2}=1$, and $\mathrm{v}_{4}=1$ States. J. Mol. Spectrosc. 1993, 159, 249-258.
(2) Ben Sari-Zizi, N.; Bürger, H.; Litz, M.; Najib, H.; Radtke, J. High Resolution FTIR Study of PF_{3} in the $800-950 \mathrm{~cm}^{-1}$ Region. The ν_{1} and ν_{3} Fundamental and $\nu_{2}+\nu_{4}$ Combination Bands. J. Mol. Spectrosc. 1996, 177, 46-57.
(3) Kisliuk, P.; Townes, C. H. The Microwave Spectra and Molecular Structure of Phosphorus and Arsenic Trichloride. J. Chem. Phys. 1950, 18, 1109-1111.
(4) Mirri, A. M.; Scappini, F.; Favero, P. G. Millimeter Wave Spectrum of PF_{3} and PCl_{3} and Force Constants Determination. Spectrochim. Acta 1965, 21, 965-971.
(5) Cazzoli, G. Force Constant Calculations of NCl_{3} and PCl_{3}. J. Mol. Spectrosc. 1974, 53, 37-44.
(6) Carpenter, J. H.; Walters, A.; Rabbett, M. D.; Baker, J. G. The Orientation of the Electric Field Gradient Tensor in Gaseous PCl_{3} by Millimeter-Wave and Supersonic-Jet Fourier Transform Microwave Spectroscopy. J. Mol. Spectrosc. 1988, 131, 77-88.
(7) Beckers, H.; Breidung, J.; Bürger, H.; Kuna, R.; Rahner, A.; Schneider, W.; Thiel, W. High-Resolution Rotation-Vibration Spectroscopy of Difluorophosphorane: A Combined Theoretical and Experimental Study. J. Chem. Phys. 1990, 93, 4603-4614.
(8) Beckers, H.; Bürger, H.; Rahner, A. FTIR Study of the ν_{7} Band of $\mathrm{PH}_{3} \mathrm{~F}_{2}$ near $340 \mathrm{~cm}^{-1}$. J. Mol. Spectrosc. 1992, 151, 197-205.
(9) Takami, M.; Kuze, H. Cold Jet Infrared Absorption Spectroscopy: The ν_{3} Band of PF_{5}. J. Chem. Phys. 1984, 80, 2314-2318.
(10) Dana, V.; Bordé, J.; Henry, L.; Valentin, A. Analysis of the Fourier Transform Spectrum of PF_{5} around $946 \mathrm{~cm}^{-1}$. J. Mol. Spectrosc. 1985, 114, 42-48.
(11) Prinz, H.; Kreiner, W. A. Resolution of the Q Branch in the ν_{3} Fundamental of PF_{5}. J. Mol. Spectrosc. 1989, 137, 204-214.
(12) Styger, C.; Bauder, A. Pure Rotational Spectrum of Phosphorus Pentafluoride Observed by Microwave Fourier Transform Spectroscopy. J. Mol. Spectrosc. 1991, 148, 479-493. J. Mol. Spectrosc. 1992, 151, 536-536.
(13) Vázquez, J.; Stanton, J. F. Semiexperimental Equilibrium Structures: Computational Aspects. In Equilibrium Molecular Structures; Demaison, J., Boggs, J. E., Császár, A. G., Eds.; CRC Press: Boca Raton, FL, 2011; pp 53-87.
(14) Pulay, P.; Meyer, W.; Boggs, J. E. Cubic Force Constants and Equilibrium Geometry of Methane from Hartree-Fock and Correlated Wavefunctions. J. Chem. Phys. 1978, 68, 5077-5085.
(15) Pawłowski, F.; Jørgensen, P.; Olsen, J.; Hegelund, F.; Helgaker, T.; Gauss, J.; Bak, K. L.; Stanton, J. F. Molecular Equilibrium Structures from Experimental Rotational Constants and Calculated Vibration-Rotation Interaction Constants. J. Chem. Phys. 2002, 116, 6482-6496.
(16) Müller, H. S. P.; Maeda, A.; Thorwirth, S.; Lewen, F.; Schlemmer, S.; Medvedev, I. R.; Winnewisser, M.; De Lucia, F. C.; Herbst, E. Laboratory Spectroscopic Study of Isotopic Thioformaldehyde, $\mathrm{H}_{2} \mathrm{CS}$, and Determination of Its Equilibrium Structure. Astron. Astrophys. 2019, 621, A143.
(17) Ruden, T. A.; Helgaker, T.; Jørgensen, P.; Olsen, J. CoupledCluster Connected Quadruples and Quintuples Corrections to the Harmonic Vibrational Frequencies and Equilibrium Bond Distances of HF, $\mathrm{N}_{2}, \mathrm{~F}_{2}$, and CO. J. Chem. Phys. 2004, 121, 5874-5884.
(18) Heckert, M.; Kállay, M.; Gauss, J. Molecular Equilibrium Geometries Based on Coupled-Cluster Calculations Including Quadruple Excitations. Mol. Phys. 2005, 103, 2109-2115.
(19) Heckert, M.; Kállay, M.; Tew, D. P.; Klopper, W.; Gauss, J. Basis-Set Extrapolation Techniques for the Accurate Calculation of Molecular Equilibrium Geometries Using Coupled-Cluster Theory. J. Chem. Phys. 2006, 125, No. 044108.
(20) Puzzarini, C. Accurate Molecular Structures of Small- and Medium-Sized Molecules. Int. J. Quantum Chem. 2016, 116, 15131519.
(21) Breidung, J.; Thiel, W. Equilibrium Structures of Pyrazine, sTriazine, and s-Tetrazine. J. Phys. Chem. C 2019, 123, 7940-7951.
(22) Werner, H.-J.; Adler, T. B.; Knizia, G.; Manby, F. R. Efficient Explicitly Correlated Coupled-Cluster Approximations. In Recent Progress in Coupled Cluster Methods; Čársky, P., Paldus, J., Pittner, J., Eds.; Springer: Dordrecht, 2010; pp 573-619.
(23) Hill, J. G.; Mazumder, S.; Peterson, K. A. Correlation Consistent Basis Sets for Molecular Core-Valence Effects with Explicitly Correlated Wave Functions: The Atoms $\mathrm{B}-\mathrm{Ne}$ and $\mathrm{Al}-$ Ar. J. Chem. Phys. 2010, 132, No. 054108.
(24) Peterson, K. A.; Adler, T. B.; Werner, H.-J. Systematically Convergent Basis Sets for Explicitly Correlated Wavefunctions: The Atoms H, He, B-Ne, and Al-Ar. J. Chem. Phys. 2008, 128, No. 084102.
(25) Dréan, P.; Paplewski, M.; Demaison, J.; Breidung, J.; Thiel, W.; Beckers, H.; Bürger, H. Millimeter-Wave Spectra, ab Initio Calculations, and Structures of Fluorophosphane and Chlorophosphane. Inorg. Chem. 1996, 35, 7671-7678.
(26) Kurimura, H.; Yamamoto, S.; Egawa, T.; Kuchitsu, K. Geometrical Structure of PF_{5} as Studied by Gas Electron Diffraction and Spectroscopic Data. J. Mol. Struct. 1986, 140, 79-86.
(27) Hansen, K. W.; Bartell, L. S. Electron Diffraction Study of the Structure of PF_{5}. Inorg. Chem. 1965, 4, 1775-1776.
(28) Spiridonov, V. P.; Ischenko, A. A.; Ivashkevich, L. S. A New Intensity Equation for Electron Diffraction Analysis: A Barrier to Pseudorotation in PF_{5} from Diffraction Data. J. Mol. Struct. 1981, 72, 153-164.
(29) Macho, C.; Minkwitz, R.; Rohmann, J.; Steger, B.; Wölfel, V.; Oberhammer, H. The Chlorofluorophosphoranes $\mathrm{PCl}_{n} \mathrm{~F}_{5-n}(n=1-$ 4). Gas-Phase Structures and Vibrational Analyses. Inorg. Chem. 1986, 25, 2828-2835.
(30) McClelland, B. W.; Hedberg, L.; Hedberg, K. An ElectronDiffraction Investigation of the Molecular Structure and Thermal Dissociation of Gaseous PCl_{5} at $90^{\circ} \mathrm{C}$. J. Mol. Struct. 1983, 99, 309313.
(31) Adams, W. J.; Bartell, L. S. Structure and Vibrational Assignments for PCl_{5}. An Electron Diffraction Study. J. Mol. Struct. 1971, 8, 23-30.
(32) Adler, T. B.; Knizia, G.; Werner, H.-J. A Simple and Efficient CCSD(T)-F12 Approximation. J. Chem. Phys. 2007, 127, 221106.
(33) Knizia, G.; Adler, T. B.; Werner, H.-J. Simplified CCSD(T)F12 Methods: Theory and Benchmarks. J. Chem. Phys. 2009, 130, No. 054104.
(34) Purvis, G. D., III; Bartlett, R. J. A Full Coupled-Cluster Singles and Doubles Model: The Inclusion of Disconnected Triples. J. Chem. Phys. 1982, 76, 1910-1918.
(35) Hampel, C.; Peterson, K. A.; Werner, H.-J. A Comparison of the Efficiency and Accuracy of the Quadratic Configuration Interaction (QCISD), Coupled Cluster (CCSD), and Brueckner Coupled Cluster (BCCD) Methods. Chem. Phys. Lett. 1992, 190, 112.
(36) Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M. A Fifth-Order Perturbation Comparison of Electron Correlation Theories. Chem. Phys. Lett. 1989, 157, 479-483.
(37) Knizia, G.; Werner, H.-J. Explicitly Correlated RMP2 for HighSpin Open-Shell Reference States. J. Chem. Phys. 2008, 128, 154103.
(38) Roothaan, C. C. J. Self-Consistent Field Theory for Open Shells of Electronic Systems. Rev. Mod. Phys. 1960, 32, 179-185.
(39) Watts, J. D.; Gauss, J.; Bartlett, R. J. Coupled-Cluster Methods with Noniterative Triple Excitations for Restricted Open-Shell Hartree-Fock and Other General Single Determinant Reference Functions. Energies and Analytical Gradients. J. Chem. Phys. 1993, 98, 8718-8733.
(40) Werner, H.-J.; Knowles, P. J.; Knizia, G.; Manby, F. R.; Schütz, M.; Celani, P.; Korona, T.; Lindh, R.; Mitrushenkov, A.; Rauhut, G.; et al. MOLPRO, version 2012.1, a Package of ab Initio Programs; 2012; see http://www.molpro.net.
(41) Werner, H.-J.; Knowles, P. J.; Knizia, G.; Manby, F. R.; Schütz, M. Molpro: A General-Purpose Quantum Chemistry Program Package. WIREs Comput. Mol. Sci. 2012, 2, 242-253.
(42) Noga, J.; Bartlett, R. J. The Full CCSDT Model for Molecular Electronic Structure. J. Chem. Phys. 1987, 86, 7041-7050. J. Chem. Phys. 1988, 89, 3401-3401.
(43) Scuseria, G. E.; Schaefer, H. F., III A New Implementation of the Full CCSDT Model for Molecular Electronic Structure. Chem. Phys. Lett. 1988, 152, 382-386.
(44) Stanton, J. F.; Gauss, J.; Watts, J. D.; Bartlett, R. J. A Direct Product Decomposition Approach for Symmetry Exploitation in Many-Body Methods. I. Energy Calculations. J. Chem. Phys. 1991, 94, 4334-4345.
(45) Dunning, T. H., Jr. Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen. J. Chem. Phys. 1989, 90, 1007-1023.
(46) Dunning, T. H., Jr.; Peterson, K. A.; Wilson, A. K. Gaussian Basis Sets for Use in Correlated Molecular Calculations. X. The Atoms Aluminum through Argon Revisited. J. Chem. Phys. 2001, 114, 9244-9253.
(47) Wilson, A. K.; van Mourik, T.; Dunning, T. H., Jr. Gaussian Basis Sets for Use in Correlated Molecular Calculations. VI. Sextuple Zeta Correlation Consistent Basis Sets for Boron through Neon. J. Mol. Struct.: THEOCHEM 1996, 388, 339-349.
(48) Watts, J. D.; Bartlett, R. J. The Coupled-Cluster Single, Double, and Triple Excitation Model for Open-Shell Single Reference Functions. J. Chem. Phys. 1990, 93, 6104-6105.
(49) Stanton, J. F.; Gauss, J.; Cheng, L.; Harding, M. E.; Matthews, D. A.; Szalay, P. G. with contributions from Auer, A. A.; Bartlett, R. J.; Benedikt, U.; Berger, C.; et al. CFOUR, a Quantum Chemical Program Package; For the current version, see http://www.cfour.de (accessed August 1, 2013).
(50) Bomble, Y. J.; Stanton, J. F.; Kállay, M.; Gauss, J. CoupledCluster Methods Including Noniterative Corrections for Quadruple Excitations. J. Chem. Phys. 2005, 123, No. 054101.
(51) Kállay, M.; Gauss, J. Approximate Treatment of Higher Excitations in Coupled-Cluster Theory. J. Chem. Phys. 2005, 123, 214105.
(52) Kállay, M.; Rolik, Z.; Ladjánszki, I.; Szegedy, L.; Ladóczki, B.; Csontos, J.; Kornis, B. MRCC, a Quantum Chemical Program Suite; 2013; see http://www.mrcc.hu.
(53) Kállay, M.; Surján, P. R. Higher Excitations in Coupled-Cluster Theory. J. Chem. Phys. 2001, 115, 2945-2954.
(54) Gauss, J.; Stanton, J. F. Analytic Gradients for the CoupledCluster Singles, Doubles, and Triples (CCSDT) Model. J. Chem. Phys. 2002, 116, 1773-1782.
(55) Kucharski, S. A.; Bartlett, R. J. Recursive Intermediate Factorization and Complete Computational Linearization of the Coupled-Cluster Single, Double, Triple, and Quadruple Excitation Equations. Theor. Chim. Acta 1991, 80, 387-405.
(56) Kucharski, S. A.; Bartlett, R. J. The Coupled-Cluster Single, Double, Triple, and Quadruple Excitation Method. J. Chem. Phys. 1992, 97, 4282-4288.
(57) Oliphant, N.; Adamowicz, L. Coupled-Cluster Method Truncated at Quadruples. J. Chem. Phys. 1991, 95, 6645-6651.
(58) Pople, J. A.; Nesbet, R. K. Self-Consistent Orbitals for Radicals. J. Chem. Phys. 1954, 22, 571-572.
(59) Wolf, A.; Reiher, M.; Hess, B. A. The Generalized DouglasKroll Transformation. J. Chem. Phys. 2002, 117, 9215-9226.
(60) Reiher, M.; Wolf, A. Exact Decoupling of the Dirac Hamiltonian. I. General Theory. J. Chem. Phys. 2004, 121, 20372047.
(61) Reiher, M.; Wolf, A. Exact Decoupling of the Dirac Hamiltonian. II. The Generalized Douglas-Kroll-Hess Transformation up to Arbitrary Order. J. Chem. Phys. 2004, 121, 10945-10956.
(62) Peterson, K. A.; Dunning, T. H., Jr. Accurate Correlation Consistent Basis Sets for Molecular Core-Valence Correlation Effects: The Second Row Atoms Al-Ar, and the First Row Atoms B-Ne Revisited. J. Chem. Phys. 2002, 117, 10548-10560.
(63) Kendall, R. A.; Dunning, T. H., Jr.; Harrison, R. J. Electron Affinities of the First-Row Atoms Revisited. Systematic Basis Sets and Wave Functions. J. Chem. Phys. 1992, 96, 6796-6806.
(64) Woon, D. E.; Dunning, T. H., Jr. Gaussian Basis Sets for Use in Correlated Molecular Calculations. III. The Atoms Aluminum through Argon. J. Chem. Phys. 1993, 98, 1358-1371.
(65) De Jong, W. A.; Harrison, R. J.; Dixon, D. A. Parallel DouglasKroll Energy and Gradients in NWChem: Estimating Scalar Relativistic Effects Using Douglas-Kroll Contracted Basis Sets. J. Chem. Phys. 2001, 114, 48-53.
(66) Knowles, P. J.; Hampel, C.; Werner, H.-J. Coupled Cluster Theory for High Spin, Open Shell Reference Wave Functions. J. Chem. Phys. 1993, 99, 5219-5227. J. Chem. Phys. 2000, 112, 31063107.
(67) Margulès, L.; Herbst, E.; Ahrens, V.; Lewen, F.; Winnewisser, G.; Müller, H. S. P. The Phosphidogen Radical, PH_{2} : Terahertz Spectrum and Detectability in Space. J. Mol. Spectrosc. 2002, 211, 211-220.
(68) Hirao, T.; Hayakashi, S.; Yamamoto, S.; Saito, S. Microwave Spectrum of the PD_{2} Radical in the ${ }^{2} B_{1}$ Ground Electronic State. J. Mol. Spectrosc. 1998, 187, 153-162.
(69) Saito, S.; Endo, Y.; Hirota, E. The Microwave Spectrum of the PF_{2} Radical in the $X^{2} B_{1}$ Ground Vibronic State. J. Chem. Phys. 1986, 85, 1778-1784.
(70) Fusina, L.; Di Lonardo, G. The ν_{2} and ν_{4} Bending Fundamentals of Phosphine $\left(\mathrm{PH}_{3}\right)$. J. Mol. Struct. 2000, 517-518, 67-78.
(71) Canè, E.; Fusina, L.; Bürger, H.; Jerzembeck, W.; Brünken, S.; Lewen, F.; Winnewisser, G. The Ground State Spectroscopic Parameters and Equilibrium Structure of PD_{3}. J. Mol. Spectrosc. 2002, 215, 1-9.
(72) Ceausu-Velcescu, A.; Pracna, P.; Breidung, J.; Thiel, W.; Badaoui, M. The $v_{4}=1$ and $v_{4}=2$ Rovibrational Levels of PF_{3} Revisited: New Solutions for Old Topics. J. Mol. Spectrosc. 2015, 316, 11-21.
(73) Mills, I. M. Vibration-Rotation Structure in Asymmetric- and Symmetric-Top Molecules. In Molecular Spectroscopy: Modern Research; Rao, K. N., Mathews, C. W., Eds.; Academic Press: New York, 1972; pp 115-140.
(74) Puzzarini, C.; Heckert, M.; Gauss, J. The Accuracy of Rotational Constants Predicted by High-Level Quantum-Chemical Calculations. I. Molecules Containing First-Row Atoms. J. Chem. Phys. 2008, 128, 194108.
(75) Schneider, W.; Thiel, W. Anharmonic Force Fields from Analytic Second Derivatives: Method and Application to Methyl Bromide. Chem. Phys. Lett. 1989, 157, 367-373.
(76) Gauss, J.; Stanton, J. F. Analytic CCSD(T) Second Derivatives. Chem. Phys. Lett. 1997, 276, 70-77.
(77) Szalay, P. G.; Gauss, J.; Stanton, J. F. Analytic UHF-CCSD(T) Second Derivatives: Implementation and Application to the Calculation of the Vibration-Rotation Interaction Constants of NCO and NCS. Theor. Chem. Acc. 1998, 100, 5-11.
(78) Perrin, A.; Demaison, J.; Flaud, J.-M.; Lafferty, W. J.; Sarka, K. Spectroscopy of Polyatomic Molecules: Determination of the Rotational Constants. In Equilibrium Molecular Structures;

Demaison, J., Boggs, J. E., Császár, A. G., Eds.; CRC Press: Boca Raton, FL, 2011; pp 89-124.
(79) Gauss, J.; Ruud, K.; Helgaker, T. Perturbation-Dependent Atomic Orbitals for the Calculation of Spin-Rotation Constants and Rotational g Tensors. J. Chem. Phys. 1996, 105, 2804-2812.
(80) Gauss, J.; Ruud, K.; Kállay, M. Gauge-Origin Independent Calculation of Magnetizabilities and Rotational g Tensors at the Coupled-Cluster Level. J. Chem. Phys. 2007, 127, No. 074101.
(81) Kukolich, S. G.; Flygare, W. H. The Molecular Zeeman Effect in $\mathrm{PH}_{2} \mathrm{D}$ and PHD_{2} and the Molecular g-Values, Magnetic Susceptibilities, and Molecular Quadrupole Moment in PH_{3}. Chem. Phys. Lett. 1970, 7, 43-46.
(82) Hüttner, W.; Nowicki, P.; Gamperling, M. Rotational Magnetism in the Ground and $\left(000^{\circ} 1^{1}\right)$ Vibrational States of Trifluorophosphine, PF_{3}. Chem. Phys. Lett. 1998, 288, 553-560.
(83) Feller, D. The Role of Databases in Support of Computational Chemistry Calculations. J. Comput. Chem. 1996, 17, 1571-1586.
(84) Schuchardt, K. L.; Didier, B. T.; Elsethagen, T.; Sun, L.; Gurumoorthi, V.; Chase, J.; Li, J.; Windus, T. L. Basis Set Exchange: A Community Database for Computational Sciences. J. Chem. Inf. Model. 2007, 47, 1045-1052.
(85) Michauk, C.; Gauss, J. Perturbative Treatment of ScalarRelativistic Effects in Coupled-Cluster Calculations of Equilibrium Geometries and Harmonic Vibrational Frequencies Using Analytic Second-Derivative Techniques. J. Chem. Phys. 2007, 127, No. 044106.
(86) Hughes, R. A.; Brown, J. M. A Determination of the Vibrational Anharmonicity of PD in Its $X^{3} \Sigma^{-}$State. J. Mol. Spectrosc. 1997, 185, 197-201.
(87) Ram, R. S.; Bernath, P. F. Fourier Transform Infrared Emission Spectroscopy of ND and PH. J. Mol. Spectrosc. 1996, 176, 329-336.
(88) Ohashi, N.; Kawaguchi, K.; Hirota, E. Far-Infrared Laser Magnetic Resonance Spectra of the PH and PD Radicals in $X^{3} \Sigma^{-}$. J. Mol. Spectrosc. 1984, 103, 337-349.
(89) Yamada, C.; Chang, M. C.; Hirota, E. Infrared Diode Laser Spectroscopy of the PF Radical. J. Chem. Phys. 1987, 86, 3804-3806.
(90) Douglas, A. E.; Frackowiak, M. The Electronic Spectra of PF and PF^{+}. Can. J. Phys. 1962, 40, 832-849.
(91) Kanamori, H.; Yamada, C.; Butler, J. E.; Kawaguchi, K.; Hirota, E. Infrared Diode Laser Spectroscopy of the PCl Radical. J. Chem. Phys. 1985, 83, 4945-4948.
(92) Puzzarini, C.; Barone, V. Toward Spectroscopic Accuracy for Open-Shell Systems: Molecular Structure and Hyperfine Coupling Constants of $\mathrm{H}_{2} \mathrm{CN}, \mathrm{H}_{2} \mathrm{CP}, \mathrm{NH}_{2}$, and PH_{2} as Test Cases. J. Chem. Phys. 2010, 133, 184301.
(93) Coriani, S.; Marchesan, D.; Gauss, J.; Hättig, C.; Helgaker, T.; Jørgensen, P. The Accuracy of ab Initio Molecular Geometries for Systems Containing Second-Row Atoms. J. Chem. Phys. 2005, 123, 184107.
(94) Kawashima, Y.; Cox, A. P. Microwave l-Type Resonance Transitions of the $v_{4}=1$ State in PF_{3} : Detailed Interactions and Molecular Structure. J. Mol. Spectrosc. 1977, 65, 319-329.
(95) Graner, G.; Hirota, E.; Iijima, T.; Kuchitsu, K.; Ramsay, D. A.; Vogt, J.; Vogt, N. In Structure Data of Free Polyatomic Molecules; Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology (New Series), Vol. II/25A; Kuchitsu, K., Ed.; Springer: Berlin, 1998.
(96) Hedberg, K.; Iwasaki, M. Effect of Temperature on the Structure of Gaseous Molecules. Molecular Structure of PCl_{3} at 300° and 505 K. J. Chem. Phys. 1962, 36, 589-594.
(97) Kisiel, Z. Least-Squares Mass-Dependence Molecular Structures for Selected Weakly Bound Intermolecular Clusters. J. Mol. Spectrosc. 2003, 218, 58-67.
(98) Muetterties, E. L.; Mahler, W.; Schmutzler, R. Stereochemistry of Phosphorus(V) Fluorides. Inorg. Chem. 1963, 2, 613-618.
(99) Muetterties, E. L.; Mahler, W.; Packer, K. J.; Schmutzler, R. Five-Coordinate Stereochemistry. Inorg. Chem. 1964, 3, 1298-1303.
(100) Musher, J. I. The Chemistry of Hypervalent Molecules. Angew. Chem., Int. Ed. Engl. 1969, 8, 54-68.
(101) Woon, D. E.; Dunning, T. H., Jr. Theory of Hypervalency: Recoupled Pair Bonding in $\mathrm{SF}_{n}(n=1-6)$. J. Phys. Chem. A 2009, 113, 7915-7926.
(102) Woon, D. E.; Dunning, T. H., Jr. Recoupled Pair Bonding in $\mathrm{PF}_{n}(n=1-5)$. J. Phys. Chem. A 2010, 114, 8845-8851.
(103) Berry, R. S. Correlation of Rates of Intramolecular Tunneling Processes, with Application to Some Group V Compounds. J. Chem. Phys. 1960, 32, 933-938.

[^0]: Received: May 9, 2019
 Revised: June 7, 2019
 Published: June 10, 2019

