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SUMMARY

The amount of genetic variation discovered in human populations is growing rapidly leading to chal-

lenging computational tasks, such as variant calling. Standard methods for addressing this problem

include read mapping, a computationally expensive procedure; thus, mapping-free tools have been

proposed in recent years. These tools focus on isolated, biallelic SNPs, providing limited support

for multi-allelic SNPs and short insertions and deletions of nucleotides (indels). Here we introduce

MALVA, a mapping-free method to genotype an individual from a sample of reads. MALVA is the first

mapping-free tool able to genotype multi-allelic SNPs and indels, even in high-density genomic re-

gions, and to effectively handle a huge number of variants. MALVA requires one order of magnitude

less time to genotype a donor than alignment-based pipelines, providing similar accuracy. Remark-

ably, on indels, MALVA provides even better results than the most widely adopted variant discovery

tools.

INTRODUCTION

The discovery and characterization of sequence variations in human populations is crucial in genetic

studies. A prime challenge is to efficiently analyze the variations of a freshly sequenced individual with

respect to a reference genome and the available genomic variations data. To reach this goal, the standard

pipeline includes aligning sequenced reads with software like BWA (Li and Durbin, 2009) and Bowtie

(Langmead and Salzberg, 2012) and then calling the genotypes (e.g., with GATK [McKenna et al., 2010]

or BCFtools [Li, 2011]); such an approach, though, can be highly time consuming and is thus impractical

for clinical applications, where time is often an issue. Typically, in diploid organisms variant calling requires

SNPs and indel detection and the identification of the pairs of alleles for each position of the studied

genome, called genotype.

Assembly-based methods such as Cortex (Iqbal et al., 2012) and discoSnp++ (Peterlongo et al., 2017)

form another line of research: the main idea of such tools consist in assembling the reads in a de Bruijn

graph and then analyzing the bubbles in this graph to detect the variants. However, since read assembly

is a computationally expensive task, such tools are still highly time consuming. Recent tools for genotyping

and variant calling like Graphtyper (Eggertsson et al., 2017) and vg (Sirén, 2017), which are based on a

graph representation of a pan-genome to avoid biases introduced by considering only the information

included in a set of genomes (Computational Pan-Genomics Consortium, 2016), are nevertheless heavy

in both computational space and time. Moreover, the size of indexes of variation graphs may be subjected

to an exponential growth in the number of variants included, and indexes typically require a great deal of

computational resources to be updated with newly discovered variants. When the task is to call the geno-

type in positions where variants have been previously annotated, alignment-free methods come to the aid.

This is a typical case in a medical setting, where the discovery of new variants is not desired, but, rather,

what is important is to know the genotype at certain loci that are already established to be of medical

relevance.

Recent mapping-free genotyping tools such as LAVA (Shajii et al., 2016) and VarGeno (Sun andMedvedev,

2018) are word-based methods that, given a list of known SNP loci, call SNPs as either mutant or wild-type

up to an order of magnitude faster than the usual alignment-basedmethods. A major shortcoming of these

tools is the large memory requirement, which can easily exceed hundreds of GB of RAM. Their strategy is to

create a dictionary for both the reference genome and the SNP list that maps each k-mer to the positions

at which it appears and then to call variants from the reads by evaluating k-mers frequency. FastGT

(Pajuste et al., 2017) is yet another k-mer-based method to genotype sequencing data: it strongly relies
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on a pre-compiled database of biallelic single nucleotide variants (SNVs) and corresponding k-mers,

obtained by subjecting the k-mers that overlap known SNVs to several filtering steps. Such filters remove

from the database the SNPs for which unique k-mers (i.e., not occurring elsewhere in the reference

genome) are not observed, those that are closely located (i.e., that are less than k bases apart), and others;

after the filtering steps, only 64% of biallelic SNVs survive and are therefore identifiable. These tools imple-

ment strategies to represent and analyze SNPs that improve the time performance but, on the other hand,

do not allow to model indels and close variants.

Short insertions and deletions of nucleotides (indels) are believed to represent around 16%–25% of human

genetic polymorphism (Mills et al., 2006). The presence of indels can be associated with a number of human

diseases (Hasan et al., 2015; Ku et al., 2010; Mullaney et al., 2010): for instance, cystic fibrosis (Mullaney

et al., 2010), lung cancer (Sequist et al., 2008), Mendelian disorders (MacArthur and Tyler-Smith, 2010),

and Bloom syndrome (Kaneo et al., 1996) are all known to be closely correlated to indels. Indels are partic-

ularly challenging to call from NGS data, because mapping is more difficult when the reads overlap with

indels (Montgomery et al., 2013).

Recently, mapping-free strategy was also applied to the discovery of de novo variants (Standage et al.,

2019), i.e., variants that exist in a child but do not exist in both its parents.

In this paper we introduce MALVA, a rapid, lightweight, alignment-free method to genotype known

(i.e., previously characterized) variants, including indels and close SNPs, in a sample of reads. MALVA is

a word-based method: each allele of each known variant is assigned a signature in the form of a set of

k-mers, which allows to efficiently model indels and close variants. The genotypes will be called according

to the frequency of such signatures in the input reads. Based on the well-known Bayes’ formula, we also

design a new rule to genotype multi-allelic variants (i.e., variants such that more than one alternate allele

is known): even if such variants are trickier to genotype than biallelic ones, we are still able to achieve high

precision and recall, as revealed in the real-data experiments we conducted. MALVA directly analyzes a

sample leveraging on the information of the variants included in a VCF file, which is the standard format

released by the 1000 Genomes Project (Sudmant et al., 2015) (1KGP from now on). To the best of our knowl-

edge, MALVA is the first mapping-free tool able to call indels. Moreover, it proved to be the only such

tool capable of handling the huge number of variants included in the latest version of the VCF released

by the 1KGP.
RESULTS

In this section we will describe the implementation details of MALVA and we will provide an experimental

analysis on real data. All the analyses were performed on a 64-bit Linux (Kernel 4.4.0) system equipped with

four 8-core Intel Xeon 2.30 GHz processors and 256 GB of RAM.

We performed an experimental analysis on real data to evaluate the real feasibility of our method,

comparing MALVA to one mapping-free method, one assembly-based approach, and two different align-

ment-based pipelines. Among the mapping-free methods proposed in the literature we chose VarGeno,

as it is an improved version of LAVA that provides better efficiency and accuracy (Sun andMedvedev, 2018).

For completeness, we included in our evaluation discoSnp++(assembly-based) and the two most widely

used alignment-based pipelines, denoted by BCFtools and GATK, respectively. The pipeline denoted by

BCFtools consists of an alignment step performed with BWA-MEM (Li and Durbin, 2009) followed by a

variant discovering step performed using BCFtools (Li, 2011). The latter consists of an alignment step

performed with BWA-MEM and a variant discovering step performed with GATK (McKenna et al., 2010), as

recommended by the GATK Best Practices (DePristo et al., 2011).

MALVAwas run setting ks equal to 47, kc equal to 53, 3equal to 0.1%, and Bloom filters size equal to 8GB and

considering the genotype data and the a priori frequencies of the alleles of the EUR population, since the

individual under analysis is part of it.

We tested the tools using the IlluminaWGS dataset of the well-studiedNA12878 individual provided by the

Genome In A Bottle (GIAB) consortium (Zook et al., 2014). We chose this individual because the variant calls

provided are highly reliable and can be effectively used to assess the precision and the recall of the

considered methods. We downloaded the alignments of its 30x downsampled version and used
iScience 18, 20–27, August 30, 2019 21



Dataset Tool PSNP RSNP PINDEL RINDEL Time (hh:mm) RAM (GB)

HalfGenome MALVA 93.8% 91.1% 86.0% 81.4% 04:33 30

HalfGenome VarGeno 97.5% 88.1% 39.5% 0.1% 02:31 52

HalfGenome discoSnp++ 89.5% 39.3% 80.8% 24.2% 07:45 7

HalfGenome BCFtools 91.2% 94.8% 44.9% 55.4% 24:35 6

HalfGenome GATK 91.7% 95.1% 53.2% 79.9% 34:43 32

FullGenome MALVA 92.5% 90.0% 85.0% 80.6% 09:18 39

FullGenome VarGeno – – – – – –

FullGenome discoSnp++ 86.9% 37.7% 80.0% 22.6% 14:19 9

FullGenome BCFtools 91.6% 94.4% 44.7% 54.6% 54:23 9

FullGenome GATK 92.1% 94.7% 53.2% 79.2% 73:36 33

Table 1. Accuracy and Efficiency Results on the HalfGenome and FullGenome Datasets

For each dataset, we reported the values of Precision (P) and Recall (R) obtained by the considered tools on both SNPs and

indels. The efficiency results are shown in terms of wall clock time and peak memory usage. VarGeno could not complete the

analysis of the FullGenome dataset; thus, we did not report its results on this dataset. See also Figure S1.
SAMtools (Li et al., 2009) to extract the corresponding FASTQ file, obtaining 696,168,435 150-bp-long

reads. As reference genome and set of known variants, we used the GRCh37 primary assembly and the

VCF files provided by Phase 3 of the 1KGP (Sudmant et al., 2015). These VCF files contain a total of

84,739,838 variants, the phased genotype information of 2,504 individuals, and the a priori frequency of

each allele of each variant of five populations. As stated earlier, from this VCF, in our evaluation MALVA

extracted and considered only the individuals from the EUR population, for a total of 502 individuals.

We note that we also removed the NA12878 individual from the input to better analyze MALVA and its

capability in genotyping an unknown individual.

We note that VarGeno requires a different formatting of the fields describing the a priori frequencies of the

alleles than the ones in the VCF file provided by the 1KGP. Thus, we formatted the input files as required

before running VarGeno.

VarGeno could not complete the analysis of this dataset, from now on denoted by FullGenome, on our

server. To test whether VarGeno crashed owing to excessive memory usage, we tried to run it on the same

instance on a cluster with 1 TB of RAM, but nevertheless it could not complete the analysis, crashing after

20 min. To include VarGeno in our evaluation, we chose 12 chromosomes to create a smaller dataset,

denoted by HalfGenome, that thus contains some half of the variants and the reads of the FullGenome

dataset.

Each tool was evaluated in terms of variant calling accuracy and efficiency (wall time and memory usage).

We note that some steps of the previously cited tools can use multiple threads to improve the time

performance (namely, KMC3 for MALVA, discoSnp++, BWA-MEM for BCFtools and GATK, and the variant

discovery steps of GATK). Whenever we had this choice, we provided four threads to each tool. We used

hap.py (Krusche et al., 2019), the tool developed for the evaluation of variant callers in the recent

PrecisionFDA Truth Challenge (https://precision.fda.gov/challenges/truth), and the/usr/bin/time

system tool to gather the required data.

Table 1 shows the results obtained by the considered tools on both the FullGenome and the HalfGenome

datasets. We point out that hap.py computes precision and recall considering only non-reference VCF

records (i.e., non 0/0 calls). A qualitative representation of these results is available in Figure S1 of the

Supplemental Information.

As expected, MALVA, VarGeno, and discoSnp++ are faster than the tested alignment-based approaches,

i.e., BCFtools and GATK. Indeed, MALVA, VarGeno, and discoSnp++ required 4.5, 2.5, and 7.5 h to

analyze the HalfGenome dataset, respectively, whereas BCFtools and GATK required 24.5 and 34.5 h.
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Figure 1. Time and RAM Required by Each Tool to Analyze Both Datasets

The running times are partitioned by steps performed, whereas the RAM usage represents the peak memory of the entire

process. For ease of presentation, we denoted the FullGenome dataset as FG and the HalfGenome dataset as HG. Note

that we did not include VarGeno running time and RAM usage on the FullGenome dataset since it crashed after 20 min.
We note that half of the time required by BCFtools and one-third of the time required by GATK was spent

running BWA-MEM, which completed its task in 12.5 h (using four threads). The same trend applies to the

analysis of the FullGenome dataset, on which each tool required roughly twice the time required on

the HalfGenome dataset. A qualitative representation of the running time and the memory usage of

each tool is shown in Figure 1.

For what concerns the memory usage, BCFtools proved to be the least memory intensive approach,

requiring less than 10 GB of RAM on both datasets to map the reads and less than 1 GB of RAM to call

the variants. MALVA and GATK showed similar memory requirements, with GATK showing almost no differ-

ence between the two analyses and MALVA increasing the memory consumption by only 23% for the

bigger dataset. VarGeno required slightly less than twice the amount of memory required by MALVA on

the HalfGenome dataset.

Precision and recall of all the tools varied little over the two datasets, proving that the number of variants

and reads only slightly affects their accuracy. As expected, BCFtools and GATK achieved the best recall

for non-homozygous reference SNPs owing to the mapping step, which provides a more precise coverage

of the alleles and allows to better discern repeated regions of the reference genome. discoSnp++

achieved the lowest recall, whereas VarGeno obtained 3% less recall than MALVA, which in turn called

correctly 91.1% of the SNPs. On the other hand, MALVA, discoSnp++, BCFtools, and GATK achieved

comparable precision on SNPs, whereas VarGeno obtained the highest one. Overall, on non-homozygous

reference SNPs, VarGeno seems to be the most conservative tool among those tested, as it prefers not to

call SNPs when there is any uncertainty. On the contrary, MALVA, in avoiding the loss of any potentially inter-

esting information, deliberately prefers to detect any potential alternate allele in the donor, at the cost of a

slight loss in precision.

Remarkably, on indels MALVA obtained significantly better recall than BCFtools and discoSnp++ and

better precision than any other tool. As expected, since the method of VarGeno is not designed to

manage indels, it was only able to genotype a negligible percentage of them. On the other hand,

discoSnp++ achieved a high precision but it was only able to call less than a quarter of the total indels.

Finally, BCFtools showed a very low precision and recall on indels, whereas GATK achieved a recall similar

to MALVA but a low precision. The low precision achieved by the alignment-based tools is mainly due to the

difficulties in aligning reads that overlap with indels. We also performed a more detailed analysis on the
iScience 18, 20–27, August 30, 2019 23



Figure 2. Influence of Indel Size on the Recall Achieved by the Four Considered Tools on the FullGenome Dataset

The histogram shows the frequency distribution (on logarithmic scale) of the indels with respect to their length. The scatterplot shows the recall of the tools

with respect to the indel size.
influence of indel size on the recall obtained by the tools on the FullGenome dataset. As shown in Figure 2,

MALVA proved to be the only tool able to call long indels (more than�40/50 bases), whereas the other tools

are limited to short indels (that are also the most common ones). In any case, MALVA outperformed the

other tools even on these shorter indels. We did not include VarGeno in this analysis since its recall on

indels was lower than 1% even on the HalfGenome dataset.

Overall, MALVA proved to be an accurate and efficient alternative to mapping-based pipelines for variant

calling, achieving good results both on SNPs and indels. The experimental evaluation shows the usefulness

of the formalization of signature of an allele, of the extension to multi-allelic SNPs and indels, and of the

ability to manage variants in dense genomic regions. A more in-depth comparison of MALVA and VarGeno

is provided in the next section.
Comparison of MALVA and VarGeno Output

To assess whether themapping-free approaches under analysis produce some systematic error, we consid-

ered the HalfGenome dataset and performed a more in-depth analysis of the SNPs genotyped by the

two tools. For each tool, Figure 3 reports the number of correct genotypes output, grouping them in

homozygous reference (i.e., 0j0), heterozygous reference (i.e., 0j1, 0j2, and so on), homozygous alternate

(i.e., 1j1, 2j2, and so on), and heterozygous alternate (i.e., 1j2, 1j3, 2j3, and so on). As stated in the previous

section, we recall that the precision and recall output by hap.py do not consider homozygous reference

genotypes; thus, the analysis we present in this section allows us to better understand the behavior of the

tools. Since VarGeno is not able to manage indels, we decided to not include them in this analysis.

Consistently with the precision and recall results of hap.py, MALVA detects between 5% and 10% more

correct variants than VarGeno in all classes, at the cost of producing more erroneous calls. We note

that overall VarGeno filters out 2,004,259 of the 39,796,878 SNPs in the truth.

Both tools show a similar pattern in erroneous calls. More precisely, erroneously genotyped homozygous

reference variants were mostly genotyped as heterozygous reference and, vice versa, erroneously
24 iScience 18, 20–27, August 30, 2019



Figure 3. Comparison between Real Genotype (Provided by the 1000 Genomes Project) and Genotype Called by

MALVA and VarGeno

HomoRef stands for Homozygous Reference, HetRef stands for Heterozygous Reference, HomoAlt stands for

Homozygous Alternate, HetAlt stands for Heterozygous Alternate, and Uncalled means that the given variant was not

called by the tool.
genotyped heterozygous reference variants were mostly genotyped as homozygous reference. On the

other hand, erroneous homozygous alternate variants in the donor were mostly genotyped as heterozy-

gous reference by VarGeno, whereas MALVA evenly distributed the errors between homozygous refer-

ence and heterozygous reference calls. Finally, erroneous heterozygous alternate variants in the donor

were mostly genotyped as homozygous alternate variants by MALVA, meaning that the method proposed

in this paper was able to detect the fact that the allele was not the reference allele but it called one of

the two alternate alleles of the donor erroneously. Figure 3 shows a comparison between real genotype

(provided by the 1000 Genomes Project) and genotype called by MALVA and VarGeno on SNPs. Figure 4

shows the same data row-normalized.

Overall, the errors produced by both tools were ‘‘partial’’ errors in the sense that they rarely mis-call both

alleles of the donor.
DISCUSSION

In this article, we presented MALVA, the first efficient mapping-free genotyping tool that is able to handle

multi-allelic variants and indels. We compared MALVA with VarGeno, the state-of-the-art mapping-free

genotyping tool, and showed that our method is less memory intensive, achieves better recall, handles

dozens of millions of variants effectively, and provides correct genotypes even for indels. We also

compared our tool with two variant discovery pipelines, namely, GATK and BCFtools, showing that

MALVA is an order of magnitude faster while achieving better accuracy on indels and similar accuracy

on SNPs.

MALVA proved to be able to efficiently manage a huge amount of variants like those provided by the 1000

Genome Project (about 80 million variants) and to handle multi-allelic variants and indels. These funda-

mental features allow our method to exploit the whole information in input, without filtering out any

data that might be crucial in successive analyses. Most notably, MALVA’s ability to genotype indels allows

one to apply mapping-free techniques to many clinical contexts, including screens for genetic predisposi-

tions for disease linked to the presence of indels (Rimmer et al., 2014; Warren et al., 1987).

Future steps will be devoted to improving the efficiency of MALVA by exploiting the parallel architecture of

modern machines and to extending the method to genotype trios. Another possible future direction con-

sists in designing a mapping-free method for genotyping known variants using long reads such those pro-

duced by the latest PacBio and Oxford Nanopore technologies. Indeed, MALVA is specifically designed for

dealing with Illumina short-read data and cannot be directly applied to long-read data owing to their

higher error rate.
iScience 18, 20–27, August 30, 2019 25



Figure 4. Comparison between Real Genotype (Provided by the 1000 Genomes Project) and Genotype Called by

MALVA and VarGeno, Normalized by Rows

HomoRef stands for Homozygous Reference, HetRef stands for Heterozygous Reference, HomoAlt stands for

Homozygous Alternate, HetAlt stands for Heterozygous Alternate, and Uncalled means that the given variant was not

called by the tool.
Limitations of the Study

MALVA achieves high accuracy and efficiency by analyzing only a subset of the sequences in input, i.e., the

k-mers centered on the alleles. Although using the concept of signature proved to be effective in this

context, in some edge cases two alleles might share the same signature and our method will not be

able to discern between the two. A simple solution to reduce the occurrences of different alleles sharing

the same signature is to increase the value of k. Unfortunately, increasing k beyond 40–50 has two main

drawbacks: (1) it is computationally expensive and (2) owing to errors, the probability that such k-mers

appear in the input reads decreases. To face this limitation, future works should (1) investigate the effect

of using multiple k-mers spanning each allele and (2) exploit the k-mers flanking the potential occurrence

of an allele in the read.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2019.07.011.
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Figure S1: Qualitative representation of the accuracy results, Related to Table 1. Each violin

plot represents the precision and the recall (computed with hap.py) achieved by the consid-

ered tools on both SNPs and indels. This is a qualitative representation of the information

summarized by the table in the main document.
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S1. Transparent Methods

We will first introduce some preliminary definitions and then we will describe

the approach we propose (MALVA) for the mapping-free genotyping of known

variants.

S1.1. Preliminaries

Let Σ be an ordered and finite alphabet of size σ and let t = c1, . . . , ck, where

cj ∈ Σ for j = 1, . . . , k, be an ordered sequence of k characters drawn from Σ,

we say that t is a k-mer. When a k-mer originates from a double stranded

DNA, it is common to consider it and its reverse-complemented sequence as the

same k-mer, and to say that the one that is lexicographically smaller among the

two is the canonical one. In the following, we will abide by this definition and

whenever we refer to a k-mer we implicitly refer to its canonical form. Moreover,

to avoid k-mers being equal to their reverse-complement, we will only consider

odd values of k.

A Bloom filter (Bloom, 1970) is a probabilistic space-efficient data structure

that represents a set of elements and allows approximate membership queries.

The result of such queries may be a false positive but never a false negative.

Bloom filters are usually represented as the union of a bitvector of length m

and a set of h hash functions {H1, . . . , Hh}, each one mapping one element of the

universe to one integer in {1, . . . ,m}. Using these data structures, the addition

of an element e to the set is performed by setting to 1 the bitvector’s cells in

positions {H1(e), . . . , Hh(e)}, while testing if an element is in the set boils down

to checking whether the same positions are all set to 1. Due to collisions of

the hash functions, an element can be reported as present in the set even if it

is absent. Nevertheless, the false positive rate of a Bloom filter of a set of n

elements, with h hash functions and an array of m bits is (1− ehn
m )h; therefore,

to increase the size of the Bloom filter decreases the false positive rate. Due

to their simplicity and efficiency, Bloom filters have been applied to multiple

problems in bioinformatics, such as representing de Bruijn graphs (Chikhi and

Rizk, 2013) and counting k-mers in a sample (Melsted and Pritchard, 2011).
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Let B be a bitvector, the rank1 function reports, for each position i ∈

{1, . . . , |B|+ 1}, the number of 1s from the beginning of B to i (excluded); we

refer to such value as rank1(i, B). Clearly, rank1(i, B) is not defined for i ≤ 0

and for i > |B|+1, rank1(1, B) is 0, and rank1(|B|+1, B) is the number of 1s in

B. By using succinct support data structures and by a linear time preprocessing

step, it is possible to answer rank1 queries in constant time for any position of

the bitvector (Vigna, 2008).

The difference between the genetic sequence of two unrelated individual of

the same species is estimated to be smaller than 0.1% (Venter et al., 2001);

therefore, it is common to represent the DNA sequence of an individual as a set

of differences from a reference genome. Indeed, thorough studies (Consortium

et al., 2015, 2003; consortium et al., 2015) of the variations across different indi-

viduals encode such information as a VCF (Variant Calling Format) file (Danecek

et al., 2011). In the following, we will call variant the information encoded by

a data line of a VCF file. Besides the genotype data, we are interested in the

information carried by the second, fourth, fifth, and eighth field of a VCF line,

namely: (i) field POS that is the position of the variant on the reference, (ii) field

REF that is the reference allele starting in position POS, (iii) field ALT that is a

list of alternate alleles that in some sample replace the reference allele, and (iv)

field INFO that is a list of additional information describing the variant. From

the latter list we will get the frequencies of reference and alternate alleles, which

are needed to call the genotype of a given individual. We denote with POS(v),

REF(v), ALT(v), FREQ(v), and GTD(v) the reference position, reference allele, list

of alternate alleles, list of allele frequencies, and genotype data of a variant v,

respectively. The variants we take into account are SNPs (i.e., both REF and all

the elements of ALT are single base nucleotides) and indels (REF and at least one

element of ALT are not of the same length). Moreover, given an allele a (either

reference or alternate) of some variant v, we refer to its sequence of nucleotides

as SEQ(a), i.e., SEQ(a) is the string that represents a.

Let R be a reference genome and let V be a VCF file that describes all the

known variants of R. Since the genotype data provides information on the
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alleles expressed in each genome, another way of thinking of a VCF file is as an

encoding of a set of genomes G. Each haplotype of the genomes in G can be

reconstructed by modifying R according to the genotype information associated

to each variant. For ease of presentation, in the following we use the term

genome and haplotype interchangeably, although each genome of a polyploid

organism is composed of multiple haplotypes.

Let G be the set of genomes encoded by a VCF file and let a be an allele of

some variant v, we denote by Ga ⊆ G the subset of genomes that include a. We

say that a variant v is k-isolated if there is no other known variant within a

radius of bk/2c from the center of any of its alleles, as formally stated in the

following definition.

Definition 1 (k-isolated variant). A variant v is k-isolated if, for all a ∈

ALLELES(v) and g ∈ Ga, there is no variant v′ 6= v with an allele a′ ∈ ALLELES(v′)

such that g ∈ Ga′
and either |BEGINg(a′)−CENTERg(a)| ≤ bk/2c or |CENTERg(a)−

ENDg(a′)| ≤ bk/2c, where ALLELES(v) = REF(v) ∪ ALT(v), BEGINg(a) is the po-

sition of the first base of a in g, ENDg(a) the position of the last base, and

CENTERg(a) the position of the d |a|2 e-th base of a in g.

The procedure we will present in the next section is heavily based on the concept

of signature of an allele. Intuitively, a signature of the allele a of a variant v

is the k-mer centered in a in some genome g in Ga. Note that, depending on

the genomes encoded by the VCF file (specifically, if variants less than k bases

apart are known), an allele might have multiple signatures. Moreover, if SEQ(a)

is longer than k bases, the previous definition is not well formed, since there is

no k-mer that can be centered in a. In this case, we define the signature of a

as the set of its substrings of length k. The following definition formalizes the

notion of signature of an allele.

Definition 2 (Signature of an allele). Let G be the set of all the genomes

encoded by a VCF file V and let k be an odd positive value. Let v be a variant

in V, let a be one of the alleles of v, and let Ga ⊆ G be the set of the genomes

that include a. If SEQ(a) is longer than k bases, we say that the signature of a
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Pos Ref Alts Donors
5 C AAA 0|1 0|0 1|1
7 T G 0|1 0|1 0|1
10 G A,C 0|0 1|2 2|0

v1
v2
v3

A G A T C C T G C G A A G

1 2 3 4 5 6 7 8 9 10 11 12 13

R

a0 = T

a1 = G

Allele Signatures

{ {TCCTGCG}, {TCCTGCA}, {AACTGCC} }
{ {AACGGCG}, {TCCGGCC} }

v2

Variant

Figure S2: Signatures of the alleles of variant v2. R is the reference sequence and the table

on the right is a VCF information associated to it, representing 3 variants: an indel (v1), a

bi-allelic SNP (v2), and a multi-allelic SNP (v3). The last columns of the VCF file carry the

genotype information of 3 individuals. The table at the bottom reports the signatures of each

allele of variant v2. Note that there are only 5 signatures although 6 haplotypes are encoded

by the VCF file since the second haplotype of the first and third individual are the same. We

highlighted in red the genotype information associated to the second haplotype of the second

genome and the corresponding signature.

is the set of all the substrings of length k of SEQ(a). If SEQ(a) is shorter than

k bases, we say that {xSEQ(a)y} is the signature of a in a genome g in Ga if:

(i) xSEQ(a)y is a k-mer, (ii) |x| = bk−|SEQ(a)|2 c, (iii) |y| = dk−|SEQ(a)|2 e, (iv) x is a

suffix of the sequence that precedes a in g, and (v) y is a prefix of the sequence

that follows a in g.

We will refer to the set of all the possible signatures of an allele a as SIGN(a)

and we say that k is the length of the signature. An example of signatures of

an allele is shown in Figure S2. Notice that the same k-mer may appear in the

signature of more than one allele.

In the following we will leverage on the definition of signature of an allele to

detect its presence in an individual without mapping the reads to the reference

genome. More precisely, we will analyze whether the k-mers of a given signature

are present in the reads and use such information as an hint of the presence of

the allele. Unlike other approaches (Pajuste et al., 2017), Definition 2 admits

the presence of the alleles of multiple variants in a single signature, allowing

MALVA to manage variants that are not k-isolated. Indeed, the set of signatures

of an allele represents all the genomic regions where the allele appears in the

genomes encoded by the VCF file.
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S1.2. MALVA’s approach

In this section we will describe MALVA, the method we designed to genotype

a set of known variants directly from a read sample. The general idea of MALVA

is to use the frequencies of the signatures of a variant in the sample to call

its genotype. The method works under the assumption that given a sample of

reads from a genome with standard coverage depth, if an allele is included in the

genome then at least one of its signatures must exist as substrings in multiple

reads (depending on the coverage depth and the length of the signature). We

leverage on this concept to genotype known variants directly from the input

reads.

MALVA takes as input a reference genome, a VCF file representing all its known

variants, and a read sample; it outputs a VCF file containing the most probable

genotype for each variant. The main method is composed of four steps.

In the first step, MALVA computes the set of signatures of length ks of all the

alternate alleles of all the variants in VCF and stores them in the set ALTSIG. In

the same step, the signatures of the reference alleles are computed and stored in

a second set named REFSIG. For each ks-mer t of a signature s two weights, one

representing the number of occurrences of t in an alternate allele signature and

one representing the number of occurrences of t in a reference allele signature,

are stored. We will refer to these two values as wA
t and wR

t , respectively.

We note that for small values of ks the probability that the ks-mers that

constitute a signature appear in other regions of the genome is high. Since

in the following steps MALVA exploits the signatures’ sets of the alleles of each

variant to call the genotypes, the presence of conserved regions of the reference

genome identical to some signature could lead the tool to erroneously genotype

some variants. To get rid of a large amount of wrong calls, in the second step

MALVA makes use of the context around the allele to distinguish its signatures

from such regions. More precisely, if a ks-mer of a signature of an alternate

allele appears somewhere in the reference genome, MALVA extracts the context

of length kc (with kc > ks) covering the reference genome region and collects

such kc-mers in a third set (REPCTX).
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In the third step, MALVA extracts all the kc-mers from the sample along with

the number of its occurrences. For each kc-mer tc that occurs w times in the

sample, the ks-mer ts that constitutes the center of tc is extracted. If ts is found

in REFSIG, wR
ts is increased by w. Moreover, if tc is not found in REPCTX and

if ts is in ALTSIG, wA
ts is increased by w. Otherwise, if tc is in REPCTX, wA

ts is

not updated since, although its central ks-mer is identical to some ks-mer of

a signature of an alternate allele of some variant, it is indistinguishable from

another region of the genome not covering the variant. We note that when wA
ts

is not updated, our method might miss a variant in the donor and report a false

negative, although for large values of kc this would rarely occur. The rationale

behind this choice is to avoid biases due to kc-mers in conserved regions of the

reference genome, preferring not to include an alternate allele in the output

whenever ambiguities arise.

Finally, in the fourth step, MALVA uses the weights computed in the previous

step to call the genotypes.

In the rest of this Section we will detail each one of the four steps of MALVA.

Signature computation. The first step consists of building the signatures of the

alleles of all the variants and adding them either to ALTSIG, if they are the

signatures of an alternate allele, or to REFSIG, if they are the signature of the

reference allele. If a variant v is ks-isolated, we build 1+ |ALT(v)| signatures, one

for each allele of v. Otherwise, there are some genomes in G in which there is at

least another allele of a variant that lays within a radius of bks/2c nucleotides

from the center of the allele of v. In practice, this means that we have to look

at the genotype data of the variants within such radius: for each allele a of v

we reconstruct the ks bases long portions of the genomes in Ga that constitute

the signatures of a.

As pointed out in Definition 2, if |SEQ(a)| ≥ ks, the signature of a is the set

of ks-mers that appear in SEQ(a). In this case we extract all such ks-mers and

add them either to REFSIG or ALTSIG. Otherwise, if |a| < ks, we build the ks

bases long substrings of each genome in Ga centered in a by scanning the VCF
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file and reconstructing the sequences according to the genotype information it

includes. More precisely, let a be an allele of a variant v and let V = {v1, . . . , vn}

be the set of variants such that, for all 1 ≤ i ≤ n: (i) vi 6= v, (ii) there exists an

allele aj in ALLELES(vi) such that a and aj are both included in some genome

g, and (iii) either (END(aj) < BEGIN(a) and CENTER(a) − bks/2c ≤ END(aj)) or

(END(a) < BEGIN(aj) and CENTER(a) + bks/2c ≥ BEGIN(aj)) in g.

Given a, we use the genotype information stored in the VCF file to retrieve

the haplotypes in which it is included, i.e., a subset of the haplotypes in Ga, and

build the set V . Using V we gather all the alleles that precede and succeed a in

the selected haplotypes and we use them, together with the reference sequence,

to reconstruct on the fly the ks-mer that covers a, by interposing reference

substrings and allele sequences. Doing so, we don’t need to reconstruct the

whole haplotypes but we only analyze and reconstruct the required ks-mers

when needed.

Once all the ks-mers have been constructed, they are added to REFSIG if a

is the reference allele, to ALTSIG if it is an alternate allele.

Detection of repeated signatures. This step is aimed to detect and store in set

REPCTX all the kc-mers of the reference sequence whose central ks-mer is included

in some signature of some alternate allele, kc > ks. REPCTX will be used in a

further step to discard alternate alleles that might be erroneously reported as

expressed by MALVA only because they cannot be told apart from other identical

regions of the reference sequence. To compute REPCTX, we extract all the kc-mers

of the reference sequence and test whether their central ks-mer is in ALTSIG. If

so, we add the kc-mer to REPCTX to report that the ks-mer is indistinguishable

from some ks-mer that is included in the signature of an alternate allele. The

set REPCTX is then used in the next step as illustrated below. An example

comprising the first two steps is shown in Section S1.3.

Alleles’ signatures weights computation. In the third step, MALVA computes how

many times the ks-mers of each signature appear in the dataset. First, MALVA

extracts all the kc-mers of the read sample and tests their existence in REPCTX to
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check whether their central ks-mer cannot be told apart from some repetition in

the reference genome. Then, given a kc-mer tc that occurs w times in the read

sample, the ks-mer ts that constitutes its center is extracted. If ts is found in

REFSIG, i.e., ts is the signature of the reference allele of some variant, the weight

wR
ts is increased by w. Moreover, if tc is not found in REPCTX and ts is in ALTSIG,

i.e., ks-mer ts is uniquely associated to an alternate allele of some variant, the

weight wA
ts is increased by w. Conversely, if tc is in REPCTX, wA

ts is not updated.

The last scenario happens when ts is identical to the signature of an alternate

allele of some variant (indeed, ts is in ALTSIG), but even the enlarged context

tc (and consequently ts) appears somewhere else in the reference genome.

Genotype calling. In the last step, MALVA uses the allele frequencies stored in

the INFO field of the VCF file and the weights of the signatures computed in

the previous step to call the genotype of each variant. To this aim, we extend

the approaches proposed in the literature for bi-allelic variants (specifically, the

one introduced in LAVA (Shajii et al., 2016)) to multi-allelic variants. While the

approaches designed for genotyping bi-allelic variants only need to compute the

likelihood of three genotypes, our technique must consider a larger number of

possible genotypes.

Let v be a variant with n−1 alternate alleles. The number of possible distinct

genotypes is
(
n
2

)
+ n = n(n+1)

2 , that is one homozygous reference genotype,
(
n
2

)
heterozygous genotypes, and n−1 homozygous alternate genotypes. We will refer

to the homozygous reference genotype as G0,0, to the heterozygous genotypes as

Gi,j with 0 ≤ i < j ≤ n− 1, and to the homozygous alternate genotypes as Gi,i

with 1 ≤ i ≤ n − 1. Following well-established techniques (Shajii et al., 2016;

McKenna et al., 2010; Li, 2011), we compute the likelihood of each genotype Gi,j

by means of the Bayes’ theorem. Given the observed coverage C, we compute

the posterior probability of each genotype as:

P (Gi,j |C) =
P (Gi,j)P (C|Gi,j)

P (C)
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that, by the law of total probability, can be expressed as:

P (Gi,j |C) =
P (Gi,j)P (C|Gi,j)∑n−1

p=0

∑n−1
q=p P (Gp,q)P (C|Gp,q)

To calculate this probability, we compute the a priori probabilities of each

genotype Gi,j (P (Gi,j)) and the conditional probability of the observed coverage

given the considered genotype (P (C|Gi,j)). The Hardy-Weinberg equilibrium

equation ensures that for each variant v, (
∑n−1

i=0 fi)
2 = 1, where fi = FREQ(v)[i],

i.e., the frequency of the i-th allele of v. We recall that FREQ(v) is stored in

the INFO field of the VCF file. The a priori probability of each genotype Gi,j is

therefore computed as follows:

P (Gi,j) =

f
2
i if i = j

2fifj otherwise

To compute the conditional probability P (C|Gi,j), it is first necessary to

compute the coverages of the alleles of the variant. Without loss of generality,

let a0 be the first allele of the variant, i.e., a0 is the reference allele with index

0. We recall that SIGN(a0) is the set of signatures of allele a0 and that each

signature is a set of one or more k-mers. We also recall that, in the previous

step, for each k-mer t that belongs to some signature we computed two weights,

namely wR
t and wA

t . Given a signature s ∈ SIGN(a0), we define its weight as the

mean of the weights associated to the k-mers it contains, i.e.,
∑

t∈s wR
t

|s| where |s|

denotes the number of k-mers contained in signature s. Since the same allele may

exhibit more signatures, we define the coverage c0 of allele a0 as the maximum

value among the weights of its signatures, i.e., max{
∑

t∈s wR
t

|s| : s ∈ SIGN(a0)}.

This formula can be easily modified to compute the coverage of an alternate

allele (ci for i ≥ 1) by switching wR
t with wA

t . The coverage ci of an allele ai of

a variant is thus computed as follows:

ci =

max{
∑

t∈s wR
t

|s| : s ∈ SIGN(a0)} if i = 0

max{
∑

t∈s wA
t

|s| : s ∈ SIGN(ai)} otherwise

By extending the approach adopted in (Shajii et al., 2016), we consider each

P (C|Gi,j) to be multinomially distributed. Given a homozygous genotype Gi,i,
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we assume to observe the i-th allele, which is the correct one, with probability

1 − ε (where ε is the expected error rate) whereas the other n − 1 alleles (the

erroneous ones) with probability ε
n−1 each. Hence, we compute the conditional

probability of an homozygous genotype as:

P (C|Gi,i) =

(
ci + CE

ci

)
(1− ε)ci

(
ε

n− 1

)CE

where CE is the total sum of the coverages of the erroneous alleles, i.e., CE =∑
j∈{0,...,n−1}\{i} cj . For what concerns heterozygous genotypes, we assume to

observe the correct alleles, i.e., the i-th and the j-th allele, with equal probability

1−ε
2 whereas the other n − 2 erroneous alleles with probability ε

n−2 each. We

compute the conditional probability of an heterozygous genotype as follows:

P (C|Gi,j) =

(
ci + cj + CE

ci + cj

)(
ci + cj
ci

)(
1− ε

2

)ci (1− ε
2

)cj ( ε

n− 2

)CE

where, again, CE is the sum of the coverages of the erroneous alleles, i.e.,

CE =
∑

p∈{0,...,n−1}\{i,j} cp.

Finally, after computing the posterior probability of each genotype, MALVA

outputs the genotype with the highest likelihood.

S1.3. Example of k-mers weight computation

In this section we present an example of computation of the weights asso-

ciated with the signatures’ ks-mers. Figure S3 shows an example composed of

three variants and two reads. In this example the values of ks and kc are set

to 7 and 11, respectively. Subfigure (a) shows the 26-bases long reference se-

quence. Subfigure (b) reports on the left two bi-allelic variants (v1 and v2) and

one multi-allelic variant (v3), and on the right the signatures of each allele of

v2. Subfigure (c) shows the elements of ALTSIG and REFSIG related to v2. We

note that the second signature in ALTSIG is composed of a single ks-mer (ts,

equal to TCCGGCG) that appears in the reference genome, starting from position

17. Thus, the kc-mer starting in position 15 and ending in position 25 (tc, equal

to GATCCGGCGAA) is added to REPCTX. Subfigure (d) shows two 11-bases long

reads including ts, extracted from position 3 and 15 of the donor. Clearly, only
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Pos Ref Alts Donors
5 C AAA 0|1 0|0 1|1
7 T G 0|1 0|1 0|1
10 G A,C 0|0 1|0 2|0

v1
v2
v3

A T A T C C T G C G T A G

1 2 3 4 5 6 7 8 9 10 11 12 13

R

a0 = T

a1 = G

Allele Signatures

{ {TCCTGCG}, {TCCTGCA} , {AACTGCC} }
{ {AACGGCG}, {TCCGGCG}}

v2

Variant

14 15 16 17 18 19 20 21 22 23 24 25 26

ALTSIG
{AACGGCG}

{TCCGGCG}

REFSIG
{TCCTGCG}
{TCCTGCA}
{AACTGCC}

A G A T C C G G C G A A G

REPCTX
GATCCGGCGAA

r1 T A T C C G G C G T A

1 2 3 4 5 6 7 8 9 10 11

G A T C C G G C G A Ar2

(a)

(b)

(c)

(d)

Figure S3: Example with 3 variants and two reads. Subfigure (a) shows a reference genome

of 26 bases, Subfigure (b) reports 3 variants and the signatures of each allele of variant v2,

Subfigure (c) reports the subsets of ALTSIG, REFSIG, and REPCTX including the elements related

to v2, and Subfigure (d) presents two reads of length 11.

r1 should contribute to the detection of the alternate allele of v2 in the donor,

since r2 was sequenced from another position of the genome (i.e., wA
ts should

be equal to 1 in this case). To this aim, REPCTX comes to an aid; indeed, when

analyzing r1 the kc-mer covering ts is extracted (i.e., the whole read) and its

inclusion in REPCTX is tested. Since TATCCGGCGTA is not in REPCTX and ts is

in ALTSIG, wA
ts is increased by one. On the other hand, since GATCCGGCGAA is

in REPCTX, the occurrence of ts in r2 is not considered in wA
ts , thus avoiding to

erroneously overestimate the frequency of allele a1 of v2.

We note that on one hand this approach allows us to avoid overestimating

the frequencies of some alternate allele but, on the other hand, it produces two

major side effects. The first one is that some allele might be underestimated

by MALVA; indeed, if the kc-mer covering an alternate allele in a donor is equal

to a kc-mer in the genome it will not be detected. The second side effect is

that MALVA might overestimate the frequency of some allele due to identical

signature. Indeed, suppose that the signature of some alternate allele ai of

another variant vj 6= v2 is equal to the signature of alternate allele a1 of variant
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v2. It is obvious that the weights of the ks-mers of the two signatures will be

identical and that the occurrences of both the alleles will concur towards their

final value, overestimating it.

Although the two side effects pose some limit to the method proposed in

this paper, they arise rarely and we think they are a fair price to pay to avoid

biases introduced by the reference genome.

S1.4. Implementation details.

MALVA is implemented in C++ and it is freely available at https://github.

com/AlgoLab/malva. Bloom filters were implemented as the union of a bitvec-

tor and a single hash function H. Although it is not conventional, in most cases

to use a single hash function has similar results as using multiple ones, as noticed

by other authors (Sun et al., 2017; Sun and Medvedev, 2018). To check this

claim, while developing the tool we tested whether using multiple hash func-

tions would improve the results by extending the Bloom filters to count-min

sketches (Cormode and Muthukrishnan, 2005). As expected, the deterioration

of the performance far outweighted the gain in precision and recall (that was

less than 0.1%). Moreover, to use a single hash function allows us to store wR
t

and wA
t efficiently for each k-mer t. Indeed, note that once all the signatures

of all the alternate alleles have been added to ALTSIG, the latter is only used

to check whether some ks-mer is part of a signature, i.e., it becomes static. By

representing ALTSIG as a Bloom filter BALTSIG we can create an integer array

CNTS of size rank1(|BALTSIG|+1, BALTSIG) to store the weights of each k-mer com-

pactly and, if a k-mer t of a signature s is in ALTSIG (i.e., if BALTSIG[H(s)] = 1)

we can access its weight by accessing CNTS[rank1(H(s), BALTSIG)]. In a nutshell,

after adding all the alternate alleles to BALTSIG, we freeze it, build a rank data

structure over it, compute the number of ones, and create the CNTS array of

the correct size. Similarly, we implemented REPCTX as a Bloom filter BREPCTX

using a single hash function. Conversely, REFSIG was implemented as a simple

hash table, because the number of elements it stores is usually smaller than the

number of elements stored in ALTSIG. The bitvectors, the rank data structure,
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and the CNTS array were implemented using the sdsl-lite library (Gog et al.,

2014). We pose an upper limit of 255 to the value of each cell of the CNTS array,

so as to store each counter using only 8 bits.

Finally, instead of scanning all the kc-mers in the read sample, we used

KMC3 (Dugosz et al., 2017) to efficiently extract them and counting their occur-

rences. Therefore, in step 3 MALVA parses the output of KMC3 and updates the

counts for each ks-mer accordingly.

S1.5. Data and Software Availability

MALVA is freely available at https://github.com/AlgoLab/malva. Informa-

tion and instruction on how to replicate the performed experiments are available

at https://github.com/AlgoLab/malva_experiments.
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