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Abstract

Bacteria form complex and highly elaborate surface adherent communities known as biofilms which are held together by a
self-produced extracellular matrix. We have previously shown that by adopting a biofilm mode of existence in vivo, the
Gram negative bacterial pathogens Bordetella bronchiseptica and Bordetella pertussis are able to efficiently colonize and
persist in the mammalian respiratory tract. In general, the bacterial biofilm matrix includes polysaccharides, proteins and
extracellular DNA (eDNA). In this report, we investigated the function of DNA in Bordetella biofilm development. We show
that DNA is a significant component of Bordetella biofilm matrix. Addition of DNase I at the initiation of biofilm growth
inhibited biofilm formation. Treatment of pre-established mature biofilms formed under both static and flow conditions
with DNase I led to a disruption of the biofilm biomass. We next investigated whether eDNA played a role in biofilms
formed in the mouse respiratory tract. DNase I treatment of nasal biofilms caused considerable dissolution of the biofilm
biomass. In conclusion, these results suggest that eDNA is a crucial structural matrix component of both in vitro and in vivo
formed Bordetella biofilms. This is the first evidence for the ability of DNase I to disrupt bacterial biofilms formed on host
organs.
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Introduction

The genus Bordetella currently consists of nine species of Gram

negative bacteria. Some members of this genus are known

mammalian and avian pathogens that colonize the respiratory

tracts of humans, animals and birds. B. pertussis and some strains of

B. parapertussis are the causative agents of whooping cough in

humans, while B. bronchiseptica causes multiple respiratory syn-

dromes and diseases in a wide variety of animal species, including

dogs, pigs, cats, rabbits and rats. B. avium infects commercially

grown turkeys as well as wild and domesticated birds [1,2,3].

A hallmark of B. bronchiseptica and B. avium infections is long-

term to life-long asymptomatic carriage. Although vaccination

considerably decreases mortality and severity of the respiratory

disease, B. bronchiseptica and B. avium continue to circulate and

persist in mammalian and avian species. B. bronchiseptica is

frequently isolated from the nasal cavities of vaccinated animals

suggesting that vaccines fail to protect animals from infections [4].

Similarly, despite excellent vaccine coverage, pertussis remains

endemic in the USA and many European countries. Outbreaks of

pertussis are observed frequently. It is becoming clear that the

current pertussis vaccines, although effective against severe

symptoms of the disease, do not prevent prolonged colonization.

B. pertussis continues to circulate by residing mainly in the

nasopharynx of adolescents and adults, resulting in asymptomatic

or milder infections [5,6,7].

Despite enhanced awareness of the need for increased and

efficient detection [8], a large number of adult pertussis cases often

remain undiagnosed [6,9]. Infected individuals silently harbour

the pathogen, resulting in heightened transmission risk to

susceptible children [10,11]. Intra-familial and other modes of

person-person pertussis transmission have been documented

[10,12]. In a recent population-based study of families having an

infant diagnosed with pertussis, 53% of the household contacts

had laboratory-confirmed pertussis. Strikingly, in 60% of the

households, the source of transmission to infants was clearly

established to be one of the family members [13].

One proposed hypothesis to explain the survival and continued

persistence of Bordetella Spp. in the mammalian nasopharynx is that

these organisms form surface-adherent communities known as

biofilms [14,15]. Recent studies from our laboratory and others

have supported this hypothesis by demonstrating that both B.

pertussis and B. bronchiseptica are capable of forming biofilms on

abiotic surfaces [16,17,18,19] and in the mouse respiratory tract
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[14,15]. The ability to form biofilms in mice suggests a role for this

mode of existence during human infections. In this context,

clusters and tangles (reminiscent of biofilms) of B. pertussis adherent

to ciliated cells in explant cultures and tissue biopsies of pertussis

patients have been demonstrated [20,21,22].

Biofilms are defined as a community of surface-adherent

bacteria encased in a self-produced polymeric matrix that holds

the cells together. Limitations of oxygen within the biofilm matrix,

altered metabolic rate of the surface-adherent organisms com-

bined with the function of the matrix as a physical barrier results in

biofilm cells becoming resistance to killing by host defenses,

antimicrobial compounds and surfactants [23,24]. While the

composition of biofilm matrices varies depending upon the

bacterial species, growth media or the environmental conditions,

it is often composed of a polysaccharide biopolymer along with

proteins and extracellular DNA (eDNA) [25,26,27]. eDNA has

now emerged as one of the major components the biofilm matrix

of many bacteria and has been shown to perform diverse functions

in promoting the biofilm mode of existence [27,28,29,30,31,32].

Previous studies from our laboratory and others have clearly

established that, like some bacterial pathogens, Bordetella biofilm

development is also mutifactorial [24,26]. We have shown that the

exopolysaccharide Bps is a component of the biofilm matrix and is

essential for maintaining the biofilm architecture in both B.

bronchiseptica and B. pertussis [14,15,17]. Others have examined

mutant strains containing deletions in outermembrane proteins

that show biofilm formation in the animal pathogen B. bronchiseptica

is protein-mediated [18]. In this report, we demonstrate that DNA

is a significant component of the Bordetella biofilm matrix. We show

that DNase I not only led to inhibition of biofilm growth, but also

disrupted established mature biofilms formed under both static

and continuous flow conditions. These results provide strong

evidence for the crucial function of eDNA in maintaining the

integrity of laboratory biofilms formed on artificial surfaces.

Despite the wealth of in vitro data on the different bacterial

biofilm developmental programs and the mechanisms by which

many bacterial factors contribute to these processes, large gaps

exist in the research on biofilms formed on host organs. Very few

animal models are able to mimic the characteristics of biofilms

formed in vitro. We have recently established an in vivo model of

Bordetella biofilms in the mouse respiratory tract [14,15]. One of

the strengths of this model is that the Bordetella microcolonies

attached to the nasal epithelium are surrounded by an

extracellular matrix composed of the Bps polysaccharide, thereby

satisfying the definition of in vivo biofilms [23,33]. To examine if

DNA contributed to the structural stability of these nasal biofilms,

we treated nasal septa from mice infected with B. bronchiseptica and

B. pertussis with DNase I. Immunofluorescence and scanning

electron microscopic examination revealed that this treatment

resulted in considerable dissolution of nasopharyngeal biofilms.

These results suggest that DNA promotes the stability and

development of Bordetella biofilms in the upper respiratory tract.

Materials and Methods

Bacterial strains and culture conditions
Wild type strain (RB50) of B. bronchiseptica was grown in Stainer-

Scholte (SS) broth [57]. For culturing B. pertussis strain (Bp536), the

SS medium was supplemented with heptakis (6-di-O-methyl-b-

cyclodextrin) [16]. For culturing strains harboring the pTac-Gfp

plasmid, the SS medium was supplemented with 50 mg/ml of

chloramphenicol [17]. All strains were maintained on Bordet-

Gengou (BG) agar supplemented with 7.5% defibrinated sheep

blood and streptomycin (50mg/ml).

Growth and treatment with DNase I of static biofilms
Biofilms were cultivated in microtitre plates at 37uC as

described previously [17]. Briefly overnight grown culture of B.

bronchiseptica was inoculated in the wells of a 96 well microtitre

plate at OD600 of 0.05 followed by addition of either DNase I

reaction buffer (10mM Tris-HCl, pH 7.5, 50% glycerol, 10mM

MgCl2), or with DNase I (40 Kuntz units/ml)(Sigma or Promega)

resuspended in the DNase I reaction buffer. A time course of

biofilm formation was performed over 48h under static conditions.

At each time point, non attached planktonic bacteria were

removed and the plate was rinsed thoroughly. The biofilms were

stained with 100ml of 0.1% crystal violet solution by incubating at

room temperature for 30 min. After washing, the attached crystal

violet was solubilized in 200 ml of 95% ethanol and transferred to a

new polystyrene plate and absorbance was measured at 540nm. A

similar procedure was employed for B. pertussis but with some

modifications. The biofilms were grown in 12 well tissue culture

plates and these plates were inoculated with B. pertussis cultures

grown for 3–4 days [15].

Reversibility of DNase I inhibition
B. bronchiseptica biofilms were inoculated as described above with

DNase I or media alone. After 24h, the media was removed from

one set of six wells containing DNase I as well as the mock wells

and replaced with fresh media. The original media and DNase I

was left undisturbed in an additional set of six wells. All samples

were then incubated at 37uC for an additional 24h before

processing with crystal violet as described above.

DNase I stability assays
DNase I from both Sigma and Promega were incubated at 37uC

for 48h in their appropriate reaction buffer at a concentration of

100 Kuntz units/ml. Following the incubation, approximately

1 mg of genomic DNA from RB50 was added. The reactions were

continued for 3h at 37uC. Samples were then run on a 1% agarose

gel and stained with ethidium bromide for visualization of the

DNA.

Growth and treatment with DNase I of pre-existing static
biofilms

B. bronchiseptica cultures were inoculated into 96 well plates in a

100ml volume at an OD600 of 0.05. Biofilms were then allowed to

form for 48h at 37uC under static conditions. After 2 days, the

biofilms were washed once with sterile PBS before the addition of

either 100ml of sterile PBS, PBS with reaction buffer, PBS with 40

Kuntz units/ml of DNase I, PBS with 40 Kuntz units/ml of heat

inactivated DNase I, or PBS with reaction buffer and DNase I for

2h at 37uC. All wells were then washed 3 times and then treated

for crystal violet staining as described above.

Mid log phase (OD600,0.7–1.0) grown cultures of B. bronchi-

septica and B. pertussis carrying the pTac-Gfp construct were

inoculated in two chambered coverslips and cultured in SS broth

with chloramphenicol. 12mm glass coverslips were partially

submerged in the culture and allowed to incubate for 48h with

B. bronchiseptica or 96h with B. pertussis at 37uC under static

conditions. Biofilms formed at the air liquid interface of the

coverslips were gently rinsed with PBS to remove any unattached

bacteria, followed by incubation with DNase I for 30 min or

90 min at 37uC. Coverslips were gently rinsed with PBS and

mounted with ProLong gold antifade reagent (Invitrogen),

followed by visualization using a Zeiss LSM 510 confocal scanning

laser microscope. Coverslips were incubated with PBS as a

negative control and treated in a similar manner.

eDNA and Nasal Biofilms of Bordetella
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Flow cell biofilms and DNase I treatment
Biofilms were grown in three chambered flow cells (Stovall), which

were aseptically inoculated with 200ml of mid log phase culture

(OD600,0.7–1.0) of Gfp-tagged RB50 cells using sterile 25 5/8 gauge

needles, followed by incubation at 37uC for 2h. Subsequently flow of

the SS media was initiated at a constant rate of 0.3ml/min. At various

time points (6, 72 and 120h), flow was stopped and the biofilms were

treated with 66 Kuntz units/ml of DNase I supplemented with 5mM

MgCl2 for 90 min. After this incubation, the channels were rinsed

gently by resuming the flow at the previous rate. Biofilm growth and

accumulation of extracellular DNA were visualized under 636water

objective by CSLM. Extracellular DNA in the biofilm was stained

with 2mM DDAO [7-hydroxy-9H-(1, 3-dichloro-9, 9 dimethylacri-

din-2-one)] for 30 min at 37uC.

Ethics statement
Animal husbandry and experimental procedures were per-

formed in accordance with Public Health Service policy and the

recommendations of the Association for Assessment and Accred-

itation of Laboratory Animal Care and approved by the Wake

Forest University Health Sciences Institutional Animal Care and

Use Committee (protocol #s A09-146, A06-153, A09-024).

In vivo biofilm formation on the mouse nasal septum,
DNase I treatment and immunofluorescence staining

Five to six week-old female C57BL/6 mice (Jackson Laboratory)

were partially anesthetized using isoflurane (Butler) and infected

intranasally with ,56105 cfus of RB50 or Bp536 in a 50ml

droplet. At 15 and 19 days after inoculation with RB50 or Bp536,

the nasal septa were excised and cut into two equal parts. One half

was incubated with PBS while the other half was treated with 100

Kuntz unit/ml of DNase I supplemented with 5mM MgCl2 for

90 min at 37uC. Both nasal sections were then briefly washed with

PBS before fixation with 2.5% glutaraldehyde.

Nasal septa were stained as described previously [58], Briefly,

fixed mouse nasal septa were rinsed with PBS and blocked with

5% normal donkey serum in PBS for 30 min. Immunochemical

staining of RB50 was performed using a polyclonal mouse sera

raised against a Bvg+ phase locked derivative of RB50. For B.

pertussis biofilms, polyclonal mouse sera raised against Bp536 was

used. Both sera were used at a 1:1000 dilution in PBS. The nasal

septa were incubated at room temperature for 2h. After multiple

washes with PBS, nasal septa were incubated with a 1:2000

dilution of goat anti-mouse antibody conjugated to Alexa fluor 488

for 1.5h. Samples were washed with PBS and permeabilized with

0.1% Triton X-100 for 5 min, followed by staining with 1:40

dilution of phalloidin conjugated with Alexa fluor 633 for 30 min

for visualization of eukaryotic F actin. Samples were washed again

with PBS and mounted using ProLong Antifade gold reagent

(Invitrogen) according to manufacturer’s instructions, and stored

in the dark to dry. The slides were viewed on a Zeiss 510 confocal

laser scanning microscope.

Scanning Electron microscopy (SEM)
Nasal septa harvested from infected or naı̈ve mice were treated

with either DNase I (as described above) or PBS as a negative

control. Samples were gently rinsed with PBS after treatment

followed by fixation with 2.5% glutaraldehyde for 1h followed by

routine processing for SEM as described previously [16].

Statistical analysis
All statistics were performed using the Student’s t-test and were

determined to be significant if P,0.05.

Results

The Bordetella biofilm matrix contains DNA
In our ongoing studies focused towards identifying the

constituents of the Bordetella biofilm matrix, we determined

whether DNA is a component of the biofilm matrix. GFP

expressing cells were inoculated in chambered coverslips and

allowed to form biofilms under dynamic flow conditions. After 72h

of flow, the biofilms were stained with DDAO which binds to

extracellular DNA (eDNA) or DNA inside the cells that have

compromised membranes [34]. The results showed that biofilms

formed by the wild type strain of B. bronchiseptica, RB50 (Fig. 1, top

panels) were mainly composed of cells which were not stained by

DDAO, and thus have impermeable membranes. In addition to

the green-staining live cells, bright red-staining dead cells were

observed along with a more diffuse weaker red stain which is

indicative of eDNA.

Similar to B. bronchiseptica, B. pertussis biofilms exhibited both

bright red-staining cells and a comparatively more diffuse weaker

red stain interspersed among the GFP-expressing live cells (Fig. 1,

bottom panels). This staining pattern is similar to eDNA detected

in other organisms such as Enterococcus, Listeria, and Staphylococcus

[35,36,37]. Taken together, these results suggest that DNA is a

component of biofilms formed by both B. bronchiseptica and B.

pertussis.

Extracellular DNA is required for biofilm formation and
stability

We hypothesized that by acting as a structural component,

DNA promotes biofilm stability. If this is the case, we reasoned

that removal of extracellular DNA from the biofilm matrix, by

treatment with DNase I, will lead to a reduction in the formation

of biofilms. Thus, we examined the ability of DNase I to inhibit

biofilm formation of both B. bronchiseptica (Fig. 2A) and B. pertussis

(Fig 2B). Presence of DNase I in the culture medium at the time of

inoculation resulted in a time-dependent effect on the ability of

both the species to form biofilms. At the early time-point of 6h,

addition of DNase I had no significant impact in inhibiting biofilm

growth (Fig. 2). In contrast, at 12h or later of biofilm growth,

DNase I significantly impaired the ability of both RB50 and

Bp536 to form biofilms. These results suggest that while DNase I

does not impede initial steps of biofilm development, it inhibits the

steps of biofilm development that occur after 6h.

We performed several control experiments to ensure that the

observed inhibitory effect was due to DNase I and not due to

contaminating factors. Highly purified DNase I from another

vendor (See Materials and Methods) resulted in similar levels of

inhibition (Fig. S1). Incubation with either the DNase I reaction

buffer (Fig. 2, black bars) or the heat inactivated enzyme did not

result in any significant effect on biofilm formation (Fig. 3). The

observed inhibition was also not due to a general bactericidal or

bacteriostatic effect of DNase I, since the wild type strain showed

similar growth in batch culture irrespective of the addition of

DNase I (Fig. S2).

To determine whether the inhibitory effect of DNA on biofilm

formation is reversible, we cultured RB50 in the presence of

DNase I for 24h, washed with PBS to remove the enzyme followed

by incubation in the culture medium for another 24h. As shown in

Fig. S3, an increase in the levels of crystal violet staining was

observed, suggesting that biofilm formation can progress after the

removal of DNase I. We also determined that the DNase I used in

these experiments was enzymatically active after 48h of incubation

at 37uC, suggesting that biofilm formation at the extended time

points involves an eDNA-dependent mechanism (Fig. S4).

eDNA and Nasal Biofilms of Bordetella
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Detachment of preformed mature biofilms by DNase I
To further characterize the role of eDNA in Bordetella biofilms,

specifically its contribution to the development of late stage

biofilms, we determined if DNase I can disrupt statically

established mature biofilms.

Microtitre biofilm assays
Fig. 3 shows 48h biofilms formed in microtitre plates treated for

2h with DNase I. It is clear that incubation of these surface-

associated biofilms with DNase I resuspended in the reaction

buffer caused significant detachment. In control experiments,

incubation with PBS alone, with PBS containing the DNase I

reaction buffer, or with DNase I resuspended in PBS did not result

in any significant removal of these biofilms from the surface. The

failure of DNase I in PBS to have any effect on biofilm disruption

is consistent with the requirement of cations for optimum activity

of this enzyme.

Microscopic analyses
To visualize the effect of DNase I on impacting biofilm

structure, we continued this experiment with biofilms of GFP-

expressing cells formed on glass coverslips in biphasic cultures. For

B. bronchiseptica, the biofilms were grown for 48h followed by

incubation with or without DNase I for either 30 or 90 minutes. In

the absence of DNase I, the glass coverslip was extensively

colonized resulting in the visualization of a thick layer of cells at

the air-liquid interface (Fig. 4A). DNase I treatment for 30 min led

to the dissolution of the preformed bacterial films and the cells

existed in patchy localized clusters (Fig. 4A). On longer incubation

with DNase I, we found that large areas of the coverslips were

essentially devoid of bacterial cells, suggesting significant detach-

ment of the biofilm biomass (Fig. 4A).

Because B. pertussis has a longer generation time [38], we treated

B. pertussis biofilms established for 4 days with DNase I. We have

previously observed that at this time point, B. pertussis biofilms have

defined architecture and reach structural maturity [15]. Treat-

ment of preformed B. pertussis biofilms with DNase I resulted in

dissolution of the biofilm (Fig 4B). Similar to that observed in

Fig. 3, incubation with DNase I reaction buffer only did not have

any visible effect on the formation of these biofilms (Fig. 4B).

These results suggest that DNase I leads to detachment of

preformed biofilms of both B. bronchiseptica and B. pertussis. The

effect of DNase I on established biofilms was further quantified

with the COMSTAT software package. This analysis revealed that

DNase I treatment resulted in a drastic reduction in both the

average and maximal thickness of the biofilms formed by both B.

bronchiseptica and B. pertussis (Table 1).

Taken together, results presented so far suggest that in the

presence of DNase I, while bacteria were able to attach to the

surface, they failed to form stable biofilms. These results also

indicate that eDNA is a crucial structural component of the

Bordetella biofilm matrix and its removal through DNase I

treatment disrupts the integrity of established biofilm.

Extracellular DNA is crucial for biofilm maturation under
hydrodynamic conditions

Biofilms grown under static conditions often lack or have less of

the characteristic architecture compared to those grown under

Figure 1. Bordetella biofilms contain eDNA. Three day old biofilms of B. bronchiseptica strain RB50 (upper panels) and B. pertussis strain Bp536
(lower panels) were stained with DDAO. CLSM images of live GFP expressing cells (green) and DDAO stained eDNA (diffuse red) or dead cells
(punctuate red) are shown. Yellow appearance indicates the presence of both live cells and eDNA. The images shown are representative of three
independent experiments.
doi:10.1371/journal.pone.0016861.g001

eDNA and Nasal Biofilms of Bordetella
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Figure 2. DNase I inhibits Bordetella biofilm formation. The indicated strains were grown in 96 well microtitre plates for RB50 or 12 well plates
for Bp536 for designated time points in SS medium supplemented with either DNase I resuspended in the reaction buffer or the reaction buffer
alone. Wells were rinsed and stained with crystal violet followed by quantification of bound crystal violet as described in Materials and Methods. Each
data point is the average of six wells, and error bars indicate the standard deviation. Representative data from one of at least three independent
experiments are shown. Asterisks designate a value of P,0.05 (students t-test).
doi:10.1371/journal.pone.0016861.g002

Figure 3. DNase I leads to the disruption of established Bordetella biofilms grown in microtitre plates. Preformed 48h RB50 biofilms
grown in 96 well plates were rinsed with PBS followed by incubation with PBS, PBS and reaction buffer, PBS and DNase I, PBS and heat inactivated (HI)
DNase I, or PBS with reaction buffer and DNase I. Biofilm formation was then quantitated via crystal violet staining. Each point is an average of at least
6 wells, and error bars indicate the standard deviation. Asterisks designate a value of P,0.05 (students t-test).
doi:10.1371/journal.pone.0016861.g003

eDNA and Nasal Biofilms of Bordetella
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hydrodynamic conditions. Previously, we have shown that mature

Bordetella biofilms formed under shear conditions appear in the

form of pillars and towers with distinctive water channels [15,17].

Thus, we examined whether eDNA is critical for the stability of

structured biofilms formed under hydrodynamic conditions. GFP

expressing B. bronchiseptica cells were inoculated into chambered

flow cells and imaged using CLSM at an early (6h), middle (72h)

and at late (120h) time-points during biofilm development. The

presence of DNA in the biofilms was tracked using DDAO.

At the early time point of biofilm formation, bacteria existed

mainly in diffuse thin patches with large areas of coverslips

remaining free of bacterial cells. At this time point, we were unable

to detect significant levels of DNA (Fig. 5). At 72h, the biofilm

increased in thickness and density with the emergence of some

structural features in the form of thin closely clustered spikes or

pillars. At this stage of biofilm formation, DNA was present in low

but detectable levels. Dramatically at 120h of growth, the bacterial

cells displayed attributes of highly structured biofilms with

appearance of thick dome shaped pillar structures and water

channels. Staining with DDAO revealed that this biofilm

contained large amounts of DNA as indicated by yellow staining

(Fig. 5). Unlike that observed with other bacteria, DNA did not

appear to be localized at specific regions of the dome shaped

biofilm structure [34,36]. Instead DNA was found to be

distributed throughout the biofilm. Note that these images are

Z-reconstructions of multiple frames of the biofilms formed in the

flow cell. Due to the compression and overlay of multiple images,

colocalization of the red and green stains will occur. Thus, the

yellow staining is indicative of eDNA closely associated with the

GFP expressing bacteria.

Immediately after initial imaging of the bacterial cells and DNA,

biofilms formed at the different time-points were treated with

DNase I and then re-imaged. As shown in Fig. 5, upon DNase I

treatment, there was very little effect on the biofilms formed at 6h,

further confirming that eDNA plays only a minor role in the

initiation of biofilm development. COMSTAT analysis also

confirmed that there were no obvious differences between the

DNase I treated and mock treated 6h biofilms, since for both the

samples the average and maximum thickness was approximately

2.0 mm and 11 mm, respectively. On treatment of 72h biofilms

with DNase I, we found that many areas of the coverslips were

unoccupied suggesting surface detachment of bacterial cells. For

the remaining biofilm that was resistant to DNase I treatment, the

spike-like structures observed at this time point were reduced in

Figure 4. DNase I leads to the disruption of established Bordetella biofilms grown on glass coverslips under static conditions.
Biofilms were grown on glass coverslips for 48h for RB50 (A) and 96 h for Bp536 (B). The coverslips were gently rinsed followed by treatment with
DNase I for either 30min or 90min. The cells were tagged with GFP and thus are green. For each micrograph, the middle panel represents the x-y
plane, and the adjacent top and side panels represent the x-z and y-z planes, respectively. The images of a biofilm not treated with DNase I and
treated only with DNase I buffer are also depicted. CLSM was utilized to image the biofilms.
doi:10.1371/journal.pone.0016861.g004

Table 1. COMSTAT analysis of statically grown Bordetella
biofilms treated with DNase I.

Average
Thickness (mm)

Maximum
Thickness (mm)

RB50 No Treatment 27.3 28.8

RB50 30 min DNase I 4.5 19.2

RB50 90 min DNase I 5.6 13.6

Bp536 No Treatment 15.7 17.0

Bp536 30 min DNase I 0.05 3.0

RB50 DNase I Buffer Alone 22.9 26.1

doi:10.1371/journal.pone.0016861.t001

eDNA and Nasal Biofilms of Bordetella
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height and were well separated. Strikingly, 120h biofilms were

severely disrupted by DNase I leading to a complete dissolution of

the architecture and integrity of the biofilms. Only a few regions of

the coverslip were observed to have attached bacteria with no

apparent biofilm architecture. As determined by COMSTAT

analyses, the average biofilm thickness was reduced from 6.5 mm

to 4.0 mm and the maximal thickness was reduced from 16.0 mm

to 6.0 mm. In combination, these results suggest that DNA is a

central component that promotes the stability of Bordetella biofilms

formed on artificial surfaces.

DNase I treatment disrupts Bordetella biofilms formed in
the mouse nose

There is no information available on whether eDNA contributes

to the structural stability of in vivo biofilms formed in mammalian

hosts. Extracellular DNA was recently visualized in H. influenzae

biofilms formed in the chinchilla middle ear [39]. Although

treatment with DNase I led to the removal of DNA, mature

biofilms containing viable bacteria were still visible [39]. Because

DNase I disrupted highly-structured Bordetella biofilms formed on

abiotic surfaces, we hypothesized that eDNA will also be critical for

structural stability of nasal biofilms. Thus, we determined whether

DNase I treatment disrupted biofilms formed on the nasal septum of

a mouse intranasally inoculated with Bordetella. Nasal septa were

harvested from mice infected with B. bronchiseptica for 15 days or B.

pertussis for 19 days and treated with either DNase I or with the

DNase I reaction buffer. Bordetella biofilms formed on these tissues

were then visualized by CSLM as described in the Materials and

Methods. Microscopic analysis revealed the presence of bacteria in

the form of scattered mat like structures on nasal epithelia

represented by the green staining bacteria on the surfaces of the

red staining epithelium (Fig. 6). Treatment with DNase I resulted in

a fluorescent image where the vast majority of staining indicative of

only the nasal epithelia was visible. Only a few patches of green

fluorescence, indicative of bacterial cells, were observed for RB50,

whereas no green fluorescence was observed for Bp536 (Fig. 6).

An alternate explanation for the above outcome is that

treatment with DNase I is somehow interfering with the

recognition of the bacterial strains by the rat anti-Bordetella serum,

resulting in the inability to visualize the bacterial cells. To address

this, we treated in vitro grown strains with DNase I followed by

immunofluorescence staining. Microscopic observations revealed

that there was no apparent reduction in the fluorescence of the

bacterial cells as a result of DNase I treatment (data not shown).

Figure 5. Susceptibility of flow cell biofilms to DNase I. Representative z-reconstructions of RB50 biofilms grown under flow conditions for 6,
72, or 120h and imaged using CLSM for live GFP expressing cells (green) and eDNA stained with DDAO (red or yellow with co-localization). The image
of untreated biofilms (left panels) were taken immediately prior to incubation with DNase I and the images of same biofilms treated with DNase I for
1.5h (left panels). Images shown here are representative of two independent experiments.
doi:10.1371/journal.pone.0016861.g005

Figure 6. DNase I disrupts established biofilms of B. bronchiseptica and B. pertussis formed in the mouse respiratory tract. CLSM
images of biofilms harvested from mouse nose 15 and 19 days postinoculation with RB50 (top) or Bp536 (bottom), respectively. The harvested nasal
septum was excised into two equal parts and incubated either with DNase I buffer (Mock, left panels) or with DNase I (right panels) before processing
for staining as described in the Materials and Methods. Green staining depicts Bordetella biofilms formed on top of the host epithelium, which is
stained red.
doi:10.1371/journal.pone.0016861.g006

eDNA and Nasal Biofilms of Bordetella

PLoS ONE | www.plosone.org 7 February 2011 | Volume 6 | Issue 2 | e16861



In addition to CSLM, we also utilized scanning electron

microscopy (SEM) to examine the contribution of eDNA to the

stability of in vivo biofilms. Mock treated nasal septa revealed the

presence of thick mats of B. bronchiseptica encased in matrix

material which appeared to completely obscure the underlying

ciliated epithelium (Fig. 7). Treatment with DNase I resulted in

dispersal of the biofilm exposing the ciliated epithelium under-

neath (Fig. 7). We also determined if incubation with DNase I

affected nasal morphology. When observed microscopically, no

gross and overt morphological differences were observed between

nasal septa from naı̈ve mice that were incubated with either PBS

or DNase I. (Fig. S5). Taken together, results from Figs. 6 and 7

strongly suggest that treatment with DNase I leads to the

detachment of respiratory tract biofilms of both B. bronchiseptica

and B. pertussis.

Discussion

Research on Bordetella biofilm development and macromolecules

that constitute the biofilm matrix is at a very early stage.

Specifically, the function of eDNA in the growth and the

establishment of Bordetella biofilms is not known. One of the

defining characteristics of bacterial biofilms is the presence of an

extracellular matrix composed primarily of extracellular polysac-

charides, embedded proteins and DNA, which provide the

structural scaffold critical for stability of these biofilms

[25,26,40]. Our study has uncovered a critical function for eDNA

as an important structural component for Bordetella biofilm

formation. Strikingly, we found that pre-established late-stage

biofilms formed under static conditions and mature highly

structured biofilms formed under shear forces were quite efficiently

disrupted by DNase I.

The structural role of eDNA in promoting biofilm stability is

highly variable and is dependent on the bacterial species, growth

conditions and age of the biofilm. The relative abundance of DNA

in the biofilm matrix compared to the other polymers does not

appear to be a critical stability determining factor. For reference

strains of P. aeruginosa, while extracellular DNA was the most

abundant matrix polymer in a mature biofilm, exopolysaccharides

appeared to be the most critical structural component [41]. Young

and relatively unstructured biofilms of P. aeruginosa are dissolved

easily by DNase I whereas mature and structured biofilms are

resistant or only marginally affected [42]. For Neisseria meningitidis,

only initial biofilm formation is supported by eDNA [43]. DNase I

appears to have more pronounced effect on mature biofilms

formed by Gram positive bacteria. For Staphylococcus epidermidis it

has been shown that the effect of DNase I on biofilm dispersion

decreased with time and DNase I had a minor effect on biofilms

that were older than 12h [44]. Older biofilms of S. aureus initiated

with high inoculum, and mature biofilms of Enterococcus faecalis and

Listeria monocytogenes are sensitive to DNase I treatment to varying

degrees [35,36,37]. Our finding that DNase I can disrupt a mature

multicellular Bordetella biofilm grown under both static and

hydrodynamic conditions has not been reported previously for

any other Gram negative bacteria. This suggests that unlike many

other Gram negative bacteria, Bordetella utilizes eDNA as a key

component to confer structural stability to biofilms. We have

previously shown that the Bps exopolysaccharide, a component of

the Bordetella biofilm matrix, is critical for the establishment of

mature and structured biofilm [15,17]. It appears the formation of

structured biofilms in Bordetella is dependent on at least two

macromolecules, Bps and eDNA. Based on protein homology of

biosynthetic components and antibody cross-reactivity, Bps is

similar to the poly-b-1,6-N-acetylglucosamine polysaccharides

synthesized by many pathogenic bacteria. These polysaccharides

in other species are partially deacetylated thereby imparting a net

positive charge on the bacterial surface [45,46,47]. The overall

positive charge of these polysaccharides may facilitate interactions

with the negatively charged eDNA. We hypothesize that by

forming a physical complex, eDNA and Bps promote the

Figure 7. Scanning electron microscopy of mock treated (left) or DNase I treated Bordetella biofilms formed in the mouse nose. Nasal
septa were harvested from mice 15 days post-inoculation, excised into two equal parts, treated with either the DNase I buffer (Mock, left panels) or
DNase I (right) followed by processing for SEM as described in the Materials and Methods.
doi:10.1371/journal.pone.0016861.g007
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formation of mature biofilms of Bordetella spp. The interaction of

DNA with polysaccharides has previously been demonstrated. The

b-1,3-glucans polysaccharides specifically interact with certain

polynucleotides to form triple-stranded and helical macromolec-

ular complexes [48]. Similarly eDNA from Caulobacter crescentus

binds to the holdfast polysaccharide, which is composed in part of

b-1,4-N-acetylglucosamine polysaccharides. Interestingly, this

interaction was demonstrated to prevent the settlement of cells

into biofilms and to promote dispersal [31].

The mechanisms of the release and accumulation of eDNA in

biofilms are poorly understood. Autolysis of cells in microcolonies

has been hypothesized to mediate DNA release [49,50]. In E.

faecalis, regulated autolysis by the action of two proteases results in

release of eDNA in biofilm [51]. In Staphylococcus aureus, a finely

tuned holin/antiholin system is thought to mediate cell lysis and

programmed cell death. This system is comprised of the cidAB and

lrgAB operons which encode for proteins that are analogous to

bacteriophage holins and antiholins, respectively [49,52]. It has

been proposed that by differential expression of the Cid and the

Lrg proteins, cell lysis and subsequent release of eDNA is

controlled during biofilm development [49,50,53]. Our data show

that the release of DNA into biofilms is conserved in both B.

bronchiseptica and B. pertussis. Bordetella spp. harbor genes homolo-

gous to cidA and cidB of S. aureus [49]. B. bronchiseptica is considered

the evolutionary progenitor of B. pertussis. Despite this evolutionary

relationship, these two species differ greatly in genome size and

gene expression patterns. B. pertussis has lost close to 1 Mb of the

genome and contains a large number of pseudogenes, many of

which have been inactivated by insertion elements, in-frame stop

codons, and frameshift mutations [54]. Thus, it is reasonable to

speculate that the cid homologues of B. pertussis will be important

for one or more of the virulence characteristics and growth in

hosts. Our future efforts will be directed towards deciphering the

function of the Bordetella cidAB homologues in eDNA release,

biofilm development and virulence.

While it is clear that eDNA plays a critical role in maintaining

the architectural integrity of bacterial biofilms formed on abiotic

surfaces under laboratory conditions, its contribution to biofilm

stability in vivo remains largely unexplored. A network of

extracellular DNA fibers have been visualized in H. influenzae

biofilms formed in the chinchilla middle ear [39,55]. In one of

these studies, even though extracellular DNA was removed on

treatment with DNase I, viable bacteria were still visible in these

biofilms [39]. Our attempts to detect DNA in the mouse

nasopharynx have been unsuccessful. Utilization of stains routinely

used for DNA staining resulted in staining of the entire nasal

epithelium, making it difficult to detect the presence of potential

DNA fibres and the Bordetella cells. In this report, we have obtained

evidence of DNA being responsible for biofilm stability in

mammalian hosts. We found that DNase I treatment of the

mouse nasal septum led to a drastic dissolution of the resident

biofilms suggesting that extracellular DNA is a critical cell-cell

interconnecting macromolecule in respiratory tract biofilms.

To conclude, this study provides further insights into the

mechanisms responsible for biofilm development in Bordetella. Our

results strongly support the role of eDNA in maintaining biofilm

stability and document for the first time the ability of DNase I to

degrade biofilms formed in an animal model of bacterial virulence.

We propose that DNase I represents an accessory option along

with the already approved immunization regimens for the

management and treatment of Bordetella-associated infections in

both humans and animals [56].

Supporting Information

Figure S1 DNase I from different vendors disrupts
preformed Bordetella biofilms. 48 h B. bronchiseptica (RB50)

biofilms formed in 96 well plates were treated with DNase I (100

Kuntz units/ ml) from Promega or Sigma for 1 h. The biofilm was

then stained with crystal violet for quantification at O.D.540. Error

bars represent the standard deviation. Asterisks designate a value

of P,0.05 (students t-test).

(TIF)

Figure S2 Incubation with DNase I does not alter the
growth kinetics of B. bronchiseptica. SS broth was

supplemented with either the DNase I buffer or the buffer plus

DNase I (40 Kuntz units/ ml) followed by inoculation of RB50 at

an O.D.600 of 0.1. The culture tubes were incubated at 37uC with

shaking. At different time points, the O.D.600 was measured for

each culture.

(TIF)

Figure S3 Reversibility of DNase I biofilm disruption.
RB50 was grown in 96 well plates in SS medium with either

DNase I resuspended in the reaction buffer or in the reaction

buffer alone (Mock). Shown as controls are biofilms that were

treated with DNase I for 24h or for 48 h. For one set of DNase I

treated biofilms, the wells were washed with PBS after 24 h

followed by incubation in SS broth for an additional 24 h (24 h

DNase/wash). The biofilm were stained with crystal violet for

quantification at O.D.540. Error bars represent the standard

deviation. Asterisks designate a value of P,0.05 (students

t-test).

(TIF)

Figure S4 DNase I stability. DNase I from Sigma or from

Promega was incubated at 37uC for 48 h in the reaction buffer.

Genomic DNA from RB50 was then treated with either the

DNase I buffer alone (Mock) or with the pre-incubated DNase I

samples at 37uC for 3 h. Samples were run on a 1% agarose gel to

determine if the DNA had been digested by DNase I.

(TIF)

Figure S5 Incubation with DNase I does not alter the
morphology of the mouse nasal septum as observed by
SEM. Nasal septa harvested from naı̈ve mice were suspended in

PBS followed by treatment at 37uC for 2 h with either the DNase I

buffer (Mock, left panel) or with DNase I resuspended in the

DNase I buffer (DNase I, right panel) followed by visualization

with SEM. Bar, 10mm.

(TIF)
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