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Abstract

In a dynamic world, an accurate model of the environment is vital for survival, and agents
ought regularly to seek out new information with which to update their world models. This
aspect of behaviour is not captured well by classical theories of decision making, and the
cognitive mechanisms of information seeking are poorly understood. In particular, it is not
known whether information is valued only for its instrumental use, or whether humans also
assign it a non-instrumental intrinsic value. To address this question, the present study
assessed preference for non-instrumental information among 80 healthy participants in two
experiments. Participants performed a novel information preference task in which they
could choose to pay a monetary cost to receive advance information about the outcome of a
monetary lottery. Importantly, acquiring information did not alter lottery outcome probabili-
ties. We found that participants were willing to incur considerable monetary costs to acquire
payoff-irrelevant information about the lottery outcome. This behaviour was well explained
by a computational cognitive model in which information preference resulted from aversion
to temporally prolonged uncertainty. These results strongly suggest that humans assign an
intrinsic value to information in a manner inconsistent with normative accounts of decision
making under uncertainty. This intrinsic value may be associated with adaptive behaviour in
real-world environments by producing a bias towards exploratory and information-seeking
behaviour.

Author Summary

Acquiring information about the external world is vital for planning and decision making.
However, recent research has shown that some animals choose to acquire information at
considerable cost even when the information is of no practical benefit, a counter-intuitive
behavior associated with suboptimal outcomes. In this study, we demonstrate that humans
also engage in this suboptimal behavior by forfeiting future monetary reward in exchange
for early but unusable information about future outcomes. Our results suggest that partici-
pants attach a value to information beyond its purely instrumental value. This preference
for information may help account for apparent anomalies in human choice behavior such
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wasteful use of uninformative laboratory testing in hospitals.

Introduction

In many decision situations, agents possess only incomplete information about decision out-
comes, and may choose to seek out further information before choosing a course of action [1,
2]. For instance, a surgeon considering whether to operate on a tumor might first request a
biopsy to determine whether the tumor is malignant or benign. Despite being a key feature of
choice problems in natural settings, information seeking is not considered within many stan-
dard accounts of decision making under risk and uncertainty [3-5]. Moreover, it has been
shown that some animals choose to seek information even when that information cannot be
used to improve future outcomes [6-8]. This behaviour, which is suboptimal from the perspec-
tive of expected reward maximization, suggests that biological agents may attach a value to
information which is not solely defined in terms of tangible future outcomes [9].

Historically, many theories of information valuation have adopted an instrumental frame-
work, in which the value of information is calculated solely in terms of expected instrumental
benefit [10-12]. These theories predict that a decision-maker should seek information only if
the information is expected to impart a tangible benefit in excess of its cost [11]. For instance, a
clairvoyant charging $100 to reveal whether stock prices will rise or fall should only be con-
sulted if a payoff greater than $100 is expected to result from using this information. Instru-
mental valuation of information is normatively optimal, in the sense that it maximises
expected monetary reward. However, one strong prediction of instrumental valuation is that
information of no instrumental use for acquiring payoffs (henceforth termed non-instrumental
information) should not affect choice behaviour. As a result, instrumental valuation of infor-
mation cannot easily explain curiosity-driven or purely exploratory behaviours [13, 14].

An alternative proposal is that biological agents may attach an intrinsic value to informa-
tion, such that information about relevant future outcomes is valued for its own sake, indepen-
dent of direct, tangible payoffs [15]. Similarly, economic decision theory has posited that
humans might possess a preference for early resolution of uncertainty which would result in
intrinsic value of information [16-18], and recent theories of active inference propose that
choice behaviour can be explained by sensitivity to information gain as well as to extrinsic
reward [19]. In support of intrinsic valuation of information, human participants have been
shown to prefer early to late information about receiving an unavoidable electric shock [20],
and to be conditioned by non-instrumental information in a behavioural conditioning para-
digm [21]. Moreover, neural data from humans and non-human primates have shown that
non-instrumental information is encoded using similar mechanisms, and within similar cir-
cuits, to primary and monetary reward [9, 22-24]. These findings are consistent with the
hypothesis that biological agents assign an intrinsic reward value to non-instrumental informa-
tion about future outcomes using a coding scheme commensurate with primary and monetary
reward.

One limitation of previous empirical work assessing preference for information in humans
is that information available in decision-making tasks is usually of instrumental benefit to par-
ticipants, such that it is difficult to dissociate the intrinsic value of information from its instru-
mental value [25, 26]. To address this issue, the present study adapted a task from the animal
literature which allowed preferences for non-instrumental information to be elicited in a
well-controlled and incentive-compatible manner [22]. Using this task, we sought to test one
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counterintuitive prediction of intrinsic valuation of information: that, like starlings and
pigeons, human participants would trade off information against extrinsic reward by sacrific-
ing part of an uncertain future reward in exchange for early but non-instrumental information
about reward likelihood [27].

Furthermore, among theories positing an intrinsic value of information, the source of this
value is often unspecified. For instance, the Kreps-Porteus model in economic decision theory
predicts a preference for early resolution of uncertainty from a particular axiomatic formula-
tion of utility, but does not specify a cognitive mechanism which might drive this preference
[16]. One proposal is that preference for non-instrumental information might result from an
aversion to temporally prolonged uncertainty, such that agents may seek information in order
to obtain relief from uncertainty [13, 28-30]. We therefore tested a novel computational cogni-
tive model, which assumed that inter-individual variability in the intrinsic value of information
resulted from stable trait-level individual differences in degree of aversion to uncertainty,
against a standard expected reward maximization model, which assumed that information was
assigned solely instrumental value [11]. Finally, in order to determine whether the duration of
uncertainty affected participants’ preference for information, we also conducted an additional
experiment in the rate at which non-instrumental information was delivered was experimen-
tally manipulated.

Results

To titrate preferences for non-instrumental information in human participants, we developed
a novel variant of an experimental task used in animal research [7, 8, 22]. In each trial of this
task, a lottery was played out in which participants could either win (receiving 20 cents) or lose
(receiving 0 cents), with equal probability (see Fig 1a). Participants were asked to express their
preference for observing one of two stimuli (termed ‘Set A’ and ‘Set B’) in the delay period
prior to the presentation of the lottery outcome. Both stimuli took the form of five-slot arrays
of red and black cards, with card colours initially hidden and then revealed one-by-one at a
constant rate (see Fig 1b). One of the two stimuli (the ‘informative stimulus’) imparted infor-
mation regarding the lottery outcome: a majority of black cards indicated that the participant
would win, whereas a majority of red cards indicated a loss. By contrast, the other stimulus
(the ‘non-informative stimulus’) consisted of five black and red cards whose colours were
determined pseudo-randomly, and which therefore imparted no information about the lottery
outcome. Informative and non-informative stimuli were therefore perceptually equivalent, but
only the informative stimulus imparted information regarding the lottery outcome. Crucially,
the information gained by observing the informative stimulus was non-instrumental, since it
affected only the participant’s certainty regarding the lottery outcome, not the probabilities of
the lottery itself.

To assess participants’ willingness to sacrifice monetary reward for non-instrumental infor-
mation, on each trial a monetary cost was associated with the informative stimulus. Four cost
conditions were assessed: 0 cents (free information), 1 cent, 3 cents, and 5 cents. If participants
chose the informative stimulus, this cost was deducted from lottery winnings in the case of a
win outcome, but not in the case of a loss outcome (see Fig 1a). Participants could not lose
money by observing the informative stimulus, ensuring that information preference was not
confounded by loss aversion. Since lottery probabilities were unaffected by participants’ choice
of stimulus, expected reward was greater for the non-informative stimulus than the informative
stimulus in all non-zero cost conditions. In the zero-cost condition, the expected monetary
reward of informative and non-informative stimuli was equal.
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A) Choice Schematic
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Fig 1. Task schematic. (A) Choice schematic. In the informative stimulus, the colour composition of cards
perfectly predicted lottery outcome. In the non-informative stimulus, cards had no predictive validity for the
lottery outcome. The information cost ¢ was subtracted from lottery winnings only in the case of a win
outcome. As a result, a loss always resulted in the same outcome (receive 0 cents) regardless of the
participant’s choice of stimulus. (B) Trial schematic. Participants first received information regarding the
identity and cost of the informative stimulus (both counterbalanced across trials), and then made a choice
using left and right arrow keys within 2 seconds (left/right mapping of A and B counterbalanced across trials).
Participants were then presented for 2 seconds with a choice information screen, following which cards from
the chosen stimulus were revealed sequentially at a constant rate of 3 seconds per card (18 seconds total
delay). Participants were informed that all outcomes were predetermined, and that choice of stimulus was
unrelated to win probability. If the participant failed to respond during the choice window, the non-informative
stimulus was shown and no reward was subsequently delivered.

doi:10.1371/journal.pcbi.1005020.g001

We conducted two separate experiments using this paradigm. In Experiment 1, only infor-
mation cost varied between trials. In Experiment 2, both information cost and information rate
(the speed at which cards were revealed) differed between trials.

Preference for non-instrumental information

Experiment 1 assessed participants’ willingness to forfeit monetary reward in exchange for
non-instrumental information, and examined the effect of information cost on information
preference. Across cost conditions, participants chose the informative stimulus on 43.95 per-
cent of trials (SD = 20.28), while showing good task engagement as evidenced by a low propor-
tion of missed responses (M = 1.67 percent, SD = 1.72). On average, across cost conditions
participants sacrificed 2.87 percent of available winnings in exchange for early information
about the lottery outcome (SD = 3.21). A one-way repeated-measures analysis of variance
(ANOVA) revealed that choice proportions were modulated by the cost of information
(F(1.89,73.60) = 65.68, p < .001; partial n* = 0.63; see Fig 2a), with information choice propor-
tion monotonically decreasing with increases in information cost. Control analyses revealed
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Fig 2. Behavioral results for Experiment 1. (A) Mean proportion of informative stimulus choices (denoted
Pr(Info)) as a function of information cost. Error bars represent the standard error of the mean (SEM). Mean
proportion of information-seeking choices was monotonically decreasing in cost of information. (B) Histogram
of overall proportion of informative stimulus choices across participants, demonstrating inter-individual
differences in behaviour. N = 40.

doi:10.1371/journal.pcbi.1005020.g002

that behaviour was not significantly affected by the key used to select responses (left versus
right arrow: £(39) = -0.71, p = .24) or the nominal identity of the informative stimulus (A versus
B: #(39) = 1.40, p = .08).

We next used post-hoc t-tests with Bonferroni correction to assess whether participants’
behavior was consistent with expected reward maximization. Expected reward maximization,
which implies solely instrumental valuation of information, predicts that participants should
be indifferent between the informative and non-informative stimulus when information is free,
and that the non-informative stimulus should dominate the informative stimulus for any non-
zero information cost [11]. In the zero-cost condition, informative stimulus choice proportion
was significantly greater than the indifference point of 0.5 (£(39) = 16.83, p < .001). In each of
the non-zero cost conditions, informative stimulus choice proportion was significantly greater
than zero (1-cent condition: #(39) = 7.17, p < .001; 3-cent: #(39) = 5.41, p < .001; 5-cent: #(39)
=4.76, p < .001). These results indicate that participants sacrificed future reward for early
information, which is inconsistent with expected reward maximization. In addition, we
observed notable individual differences in patterns of information seeking behaviour (see Fig
2b), indicating heterogeneity of task strategies between participants.

Computational model of intrinsic value of information

To formalise the comparison between instrumental and intrinsic theories of information valua-
tion, we implemented these theories as competing computational cognitive models, and
assessed which model provided the best account of both group- and individual-level data.

The two models we assessed were termed the Expected Value of Information (EVI) model,
which incorporated solely instrumental valuations of information, and the Uncertainty Penalty
(UP) model, which also incorporated intrinsic valuation of information by assuming that the
source of information’s intrinsic value was an aversion to temporally prolonged uncertainty
[13,28-30]. Both models considered the task in a Markov Decision Process (MDP) framework,
and differed only in choice of state value function [31] (see also Experimental Protocols). We
found that, in addition to providing the best overall account of choices across participants
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Table 1. Behavioural model fits for 4405 choices by 40 participants.

Model Free parameters (per participant) -LL BIC McFadden’s R? n best fit
EVI 934.06 2212.13 0.51 3
up 264.89 1209.40 0.86 37

-LL: negative log-likelihood. BIC: Bayesian Information Criterion. Numbers in the n best fit column are based on a comparison of individual-participant BIC

values for each model.

doi:10.1371/journal.pcbi.1005020.t001

(smallest overall Bayesian Information Criterion (BIC) value; see Table 1 and Fig 3), the UP
model provided the best fit for a large majority of individual participants. Accordingly, a likeli-
hood-ratio test revealed that including the participant-specific uncertainty penalty parameter k
greatly improved the overall fit of the UP model relative to the EVI model (x*(40) = 1338.34,

p < .001). Moreover, the UP model provided an unbiased fit to the data of all participants,
including those who displayed a relatively weak overall preference for information (see Fig 4).
By contrast, the EVI model systematically underestimated informative stimulus choice propor-
tions across all participants.

Furthermore, we found that the best-fitting values of the UP’s scaling parameter k were
greater than zero across participants (Wilcoxon signed-rank test: Z = 5.51, p < .001) and, in
addition, were strongly correlated with overall proportion of information-seeking choices
across participants (Spearman’s rho = 0.95, p < .001). This indicates that participants with a
stronger aversion to uncertainty (higher k values) assigned a greater intrinsic value to informa-
tion, and therefore made more information-seeking choices (see also SI section 1 for individual
parameter estimates and parameter-behaviour correlations). Although unsurprising given the
structural design of the UP model, the strength of this relationship serves to demonstrate that
the UP model parameter designed to capture individual differences in information preference
succeeded in doing so.

In addition, since the UP model’s implementation of intrinsic valuation of information
assumes that aversion to uncertainty is a stable trait of participants, a secondary prediction of
this model is that information’s intrinsic value ought to be stable across time for each partici-
pant. In order to test this prediction, we calculated information choice proportion separately
in each of the seven experimental blocks in Experiment 1, and assessed the effect of block num-
ber on information preference using a 4x7 repeated-measures ANOVA with within-subjects

B Actual
B Predicted

Pr(Info)

0 1 3
Cost (cents)

Fig 3. Model fit. Actual (blue) and UP-predicted (grey) group-level mean proportions of information-seeking
choices as a function of information cost across participants. Error bars represent SEM. N = 40.

doi:10.1371/journal.pcbi.1005020.g003
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Fig 4. Individual-participant model fits. (A) Actual informative choice proportion, denoted Pr(Info)
(horizontal axis) versus informative choice proportion as predicted by the UP model (vertical axis). Each circle
indicates one participant. Euclidean distance from the diagonal (grey line) represents error in prediction. (B)
Actual informative choice proportion (horizontal axis) versus informative choice proportion as predicted by the
EVI model (vertical axis). Each circle indicates one participant. Euclidean distance from the diagonal (grey
line) represents error in prediction. Across all participants, the EVI systematically under-predicted informative
choice proportions (all participants fell below the diagonal).

doi:10.1371/journal.pchi.1005020.g004

factors of information cost (0, 1, 3, 5 cents) and task block (1 to 7). We found no significant
main effect of task block on information choice proportion (F(3, 117.37) = 1.73, p = .16) and
no significant interaction between task block and information cost (F(9.58, 373.59) = 1.05,

p = .40). These results indicate that informative stimulus choice proportions did not differ sig-
nificantly across the task (see Fig 5), as predicted by the UP model.

Finally, we performed an additional control analysis to ensure that the relative advantage of
the UP model relative to the EVI model was not simply due to its better performance in the
zero-cost condition. To this end, we repeated the model-fitting procedure while excluding all
trials in the zero-cost condition (that is, the models were fit solely on the basis of the 1, 3, and

0.75

0.5"

Pr(Info)

0.25

0 1 3 5
Cost (cents)
Fig 5. Block-wise behavioural results for Experiment 1. Mean proportion of information-seeking choices,
denoted Pr(Info), as a function of information cost and block number across participants. Choice proportions

for blocks one to seven are presented in ascending order left to right within each of the four cost conditions.
Error bars represent SEM. Preference for information was static across the task.

doi:10.1371/journal.pcbi.1005020.9005
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5-cent cost conditions). Once again, we found that the UP model (BIC = 718.31) provided a
significantly better fit to data than the EVI model (BIC = 1031.60; likelihood ratio test: x*(40) =
489.88, p < .001). This indicates that the UP model, which incorporated intrinsic valuation of
information, outperformed the EVI model even when zero-cost trials were excluded from
analysis.

The effect of information rate on preference for information

A logical consequence of intrinsic valuation of information is that the temporal profile of
uncertainty ought to affect participants’ preference for observing an informative stimulus.

In particular, the same amount of information should have a different value to participants
depending on the rate at which it resolves uncertainty. In Experiment 2, we tested this predic-
tion among a new sample of participants. In Experiment 2, cards could be revealed at a rate of
either 1, 3 or 5 seconds per card in each trial, instead of a constant rate of 3 seconds per card as
in Experiment 1.

Participants in Experiment 2 made information-seeking choices on 42.89 percent of trials
(SD =24.72), indicating comparable task performance to Experiment 1. Participants showed
good levels of task engagement, with low levels of missed responses (M = 1.11 percent,

SD = 1.87). On average, participants sacrificed 2.75 percent of available winnings in exchange
for early information about the lottery outcome (SD = 3.49). A 4x3 repeated-measures
ANOVA was used to assess the effect of information cost (0, 1, 3, 5 cents) and information rate
(1, 3, 5 seconds per card) on information-seeking choice proportions. The significant main
effect of information cost on information-seeking choice proportions was replicated, (F(1.86,
72.70) = 84.16, p < .001; partial n2 = 0.68), and, crucially, we also found a significant main
effect of information rate on information-seeking choice proportions (F(2, 78) = 3.60, p < .05;
partial n* = 0.08; see Fig 6). This indicates that behaviour was modulated by the rate as well as
the cost of information, though the effect size of information rate was substantially smaller
than the effect size of information cost. There was no significant interaction between informa-
tion cost and information rate (F(6, 234) = 1.85, p = .09) although there was a non-significant
trend for the effect of information rate to be larger in the positive cost conditions (1, 3, and 5
cents) than in the zero-cost condition.

.Fast (1 sec/card)
. Moderate (3 sec/card)
.Slow (5 sec/card)

0.8

0.6

Pr(Info)

0.4

0.2

0 1 3 5
Cost (cents)

Fig 6. Behavioural results for Experiment 2. Mean proportion of informative stimulus choices (denoted Pr
(Info)) as a function of information cost and information rate. Light blue bars represent the fast speed
condition, medium blue bars the moderate speed condition, and dark blue bars the slow rate conditions. Error
bars represent SEM. Proportions of information-seeking choices decreased as information rate slowed,
particularly for positive information cost conditions (costs of 1, 3, and 5 cents). N = 40.

doi:10.1371/journal.pcbi.1005020.g006
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One potential explanation of this effect is that participants may have preferred sooner rather
than later resolution of uncertainty. To explore this possibility, we formulated and compared
additional computational models assuming temporal discounting of future states. For most
participants, these models did not provide a better fit to data than the undiscounted UP and
EVI models. However, the degree to which participants discounted future information was
associated with individual differences in the effect size of information rate (see S3 Text).

Discussion

Participants in the present study consistently preferred an informative stimulus to a perceptu-
ally equivalent non-informative stimulus, despite the fact that information could not be used to
improve future outcomes. Moreover, in many cases participants were willing to sacrifice future
monetary reward in exchange for this early but non-instrumental information. Since the non-
informative stimulus was always of equal or greater expected monetary reward, this pattern

of results strongly suggests that participants assigned an intrinsic value to information. This
stands in contrast to predictions of instrumental theories of information valuation based on
expected reward maximization [10-12], but is consistent with the preference for early resolu-
tion of uncertainty posited by decision theory [16-18], and with the behavioural sensitivity to
information gain proposed by active inference [19]. Although it has previously been conjec-
tured that intrinsic valuation of information may result in willingness to pay for payoft-irrele-
vant information [27], this effect has not previously been demonstrated in humans using a
well-controlled cognitive task.

We found that the UP model, a novel computational model of information seeking, pro-
vided a good account of intrinsic valuation of information by assuming that preference for
information resulted from aversion to temporally prolonged uncertainty [13, 28-30]. Notably,
we found that the model was able to capture individual differences in strength of information
preference across participants, as well as providing a good account of group-level results. It is
important to note that aversion to temporally prolonged uncertainty as implemented in the UP
model is mathematically and conceptually distinct from the economic concept of risk aversion
[32]. Risk aversion as commonly understood cannot predict the preference for information
exhibited by participants in the present task, since at the point of choice informative and non-
informative stimuli were associated with identical outcome probabilities, and differed only in
the rate at which outcome uncertainty was resolved. Similarly, although the informative stimu-
lus was associated with reduced payoff variance in non-zero cost conditions, a simple mean-
variance tradeoft [33] does not provide a coherent account of preference for information either,
since participants’ information preference was strongest in the zero-cost condition, where both
mean and variance of payoffs were identical for the two stimuli. Notwithstanding this result,
however, we also found that the UP model fit data well even when trials in the zero-cost condi-
tion were excluded from analysis, thus giving us confidence that participants assigned an
intrinsic value to information in both zero and non-zero information cost conditions.

Furthermore, consistent with the theory that information valuation is a stable trait-level fea-
ture of individuals, we found that information preference was stable across time within the
task. This would not have been expected if, for instance, participants only sought information
in order to learn payoff contingencies in early blocks of the task. In addition, we found that
preference for information was modulated by the rate at which uncertainty was resolved, such
that participants exhibited a stronger preference for non-instrumental information when infor-
mation was delivered at a faster rate. This result is analogous to the preference for faster mone-
tary reward rate in choice behaviour [34]. Moreover, although the effect of information rate
cannot be directly captured within the UP model, the direction of the information rate effect is

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005020 July 14,2016 9/21
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consistent with discounting of future information, analogous to the temporal discounting of
future rewards in human judgment and decision making [35]. As such, the results of the pres-
ent study are in line with the proposal that humans treat information as though it has an intrin-
sic reward value commensurable with (and perhaps encoded in the same neural circuits as)
primary and monetary reward [2, 15, 22]. However, we also note that the results of Experiment
2 demonstrated a relatively small effect size of information rate; future research should there-
fore further investigate the nature and robustness of this effect.

Participants in the present study sacrificed future monetary reward in exchange for early
but payoff-irrelevant information. This behaviour, which is suboptimal from the perspective of
expected reward maximization, has previously been observed in pigeons and starlings [6-8]. In
the present study we present for the first time a well-controlled cognitive paradigm with which
to assess this behaviour in humans. We note that previous studies in human participants have
reported results generally consistent with a willingness to pay for early resolution of uncer-
tainty, such as a greater preference for a risky lottery whose uncertainty was resolved immedi-
ately relative to an equivalent lottery whose uncertainty was resolved gradually [36, 37], and a
willingness to pay for immediate resolution of uncertainty rather than a 50 percent probability
of delayed resolution of uncertainty [38]. Among cognitive studies explicitly assessing the
value of non-instrumental information, Pierson & Goodman (2014) found that participants
self-reported a willingness to pay for non-instrumental information [39]. However, this behav-
iour was only assessed using a hypothetical survey task, which may have confounded results
given the well-documented disparity in behaviour between hypothetical and incentive-compat-
ible choice tasks [40]. Separately, a behavioural economic study using an incentive-compatible
task concluded that observing non-instrumental information was related not to intrinsic valua-
tion of information per se, but to a desire to increase one’s post-hoc confidence regarding an
earlier decision [41]. This explanation predicts that participants will only seek non-instrumen-
tal information if it provides feedback on an earlier decision. Our results are inconsistent with
this explanation, since no such decision was present in the task used in the present study. The
strength of our conclusions is based on a well-controlled task in which informative and non-
informative stimuli were perceptually identical, and in which preferences for information were
elicited in a fully incentive-compatible fashion.

The results of the present study are also conceptually consistent with the preference for
early resolution of uncertainty described in economic decision theory by the Kreps-Porteus
model [16], and used to account for anomalous patterns of stock pricing in finance by Epstein
and Zin [18]. Our empirical and computational findings complement these theories: whereas
the Kreps-Porteus model demonstrates that preference for early resolution of uncertainty is a
consequence of a particular formulation of recursive utility, in the present study we present a
cognitive process model which provides a psychologically plausible account of information-
seeking behaviour. Specifically, our results provide evidence that information seeking may
result from an aversion to temporally prolonged uncertainty [13, 28-30]. One interesting find-
ing in this respect was that there was a negative correlation across participants between the UP
model’s information preference parameter k and its response stochasticity parameter 3. This
correlation was such that participants who assigned a stronger intrinsic value to information
also tended to exhibit greater response stochasticity. This relationship is of theoretical interest,
since it has been proposed that information-seeking behaviour may result from high levels of
response stochasticity in exploration-exploitation dilemmas (e.g. [25], but see also [42]), or via
£-greedy action selection methods in reinforcement learning [43]. Although the superior good-
ness-of-fit of the UP model in the present study clearly indicates that response stochasticity
alone cannot account for participants’ information-seeking choices, the correlation between k
and S raises the interesting possibility that intrinsic valuation of information and response
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stochasticity may make separable but related contributions to exploratory behaviours. Under
this hypothesis, the k parameter would correspond to directed exploration, a goal-directed pro-
cess aimed specifically at reducing uncertainty, whereas the § parameter would correspond to a
more diffuse form of undirected exploration. Future research should further investigate this
hypothesis.

However, it is also important to note that behaviour could also be explained by an appetitive
drive for information as well as an aversion to uncertainty. Because, according to information
theory, uncertainty and information are mathematical conjugates [44], aversion to uncertainty
makes similar behavioural predictions to an appetitive desire for information. Accordingly, it is
possible to reparametrise the UP model to explain behaviour in terms of an information value
bonus, rather than an uncertainty penalty, with equivalent behavioural predictions. As such,
behavioural data alone may not be sufficient to distinguish between behaviour driven by uncer-
tainty aversion and behaviour driven by an appetitive desire for information. One possibility
for future research is that, since appetitive and aversive stimuli are processed in distinct neural
circuits [45], it may be possible to use neural recordings to disentangle these two potential cog-
nitive mechanisms for information valuation.

In accounting for the results of the present study we have primarily drawn upon theories
proposing that intrinsic valuation of information can result from an aversion to temporally
prolonged uncertainty [18, 28-30]. However, alternative theoretical frameworks can also
account for the present study’s results in terms of a positive information bonus (consistent
with an alternate parametrisation of the UP model described below). For instance, it has been
proposed that agents may derive utility from maintaining an internal model of the environ-
ment which is well-adapted to the statistics of natural stimuli [46, 47]. A natural consequence
of this model is that agents should place a non-zero value on information about the external
environment, even when no behaviour can be directly conditioned on this information (for
instance, an intrinsic curiosity reward, as proposed by Schmidhuber, 2009 [48]). Similar intui-
tions regarding the appetitive value of information have been formalised in several general the-
ories of cognition, including active inference theory [19, 47] and optimal Bayesian exploration
[49]. Such theories can be extended to account for seemingly paradoxical attitudes towards
information in other settings, such as participants’ preference for maximising entropy over
choice options as well as simply maximising expected reward [50], as well as seemingly para-
doxical patterns of self-deception in financial choices [51]. At a neurocomputational level,
appetitive valuation of information is also consistent with the notion of dopaminergic novelty
or exploration bonuses [52].

Notwithstanding the above, however, a further possibility proposed by Beierholm and
Dayan (2010) is that an apparent preference for informative stimuli might, in fact, be driven
by task disengagement, leading to a relatively greater decrease in the subjective value of
the non-informative stimulus [53]. The paradigm tested in the present study sought to pre-
vent such task disengagement by means of pseudo-randomly occurring ‘catch trials’, in
which participants were required to make a rapid button-press response to one of the cards
in either the informative or the non-informative stimulus. This manipulation helped to
ensure that participants maintained task engagement even when observing the non-informa-
tive stimulus. Although this cannot conclusively rule out the possibility that participants
were somewhat more engaged by the informative than the non-informative stimulus, it does
ensure that participants could not fully disengage from the task during observation of non-
informative stimuli. Moreover, the behavioural paradigm that we tested allows for well-con-
trolled manipulation of task engagement: by increasing or decreasing the frequency of catch
trials, it should be possible to manipulate the degree to which participants disengage during
viewing of the non-informative stimulus. The Beierholm and Dayan model makes the
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empirical prediction, which could be tested in future research, that information preference
ought to be strongest for greater degrees of task disengagement (that is, low catch trial fre-
quency), and that information preference ought to decrease in strength with increasing catch
trial frequency.

These theoretical caveats notwithstanding, the results of the present study provide clear
behavioural evidence that human participants derive utility from non-instrumental informa-
tion in a manner inconsistent with traditional models of information valuation. The beha-
vioural task assessed in the present study provides a well-controlled means for assessing
intrinsic valuation of non-instrumental information, and the UP model allows for individual
differences in the strength of information valuation to be quantified in a principled and mathe-
matically tractable fashion.

Since intolerance of uncertainty has been proposed as a trans-diagnostic treatment marker
for emotional disorders [54], understanding information-seeking behaviours may shed light on
the symptomatology of disorders including generalised anxiety disorder and obsessive compul-
sive disorder [55]. For instance, the compulsive checking behaviours which are a hallmark of
obsessive compulsive disorder may represent a form of pathological information-seeking
behaviour. From this perspective, it might be possible to redescribe some behavioural features
of obsessive compulsive disorder as an excessive intrinsic valuation of information driven by
excessive levels of aversion to uncertainty. As such, we would hypothesise that individuals with
obsessive compulsive disorder would exhibit a high willingness to pay for non-instrumental
information in the task used in the present study.

The results of the present study also have bearing on studies of the exploration-exploita-
tion dilemma, in which participants trade off information seeking and reward seeking [25]. A
common finding in this literature is that participants seek out more information than is opti-
mal [26]. Our results may help shed light on this finding: intrinsic valuation of information
may cause participants to place a premium on information, resulting in a valuation of infor-
mation in excess of its purely instrumental value. More broadly, we note that although prefer-
ence for information in the present task was suboptimal from the restricted perspective of
monetary reward maximisation, intrinsic valuation of information may be adaptive in more
naturalistic environments. Choices in natural settings often resemble dynamic constrained
optimisation problems, in that organisms are presented with epistemic uncertainty and
poorly defined action-outcome contingencies. In these environments, the instrumental value
of seeking information may be computationally intractable, and intrinsic valuation of infor-
mation might induce a bias toward gathering information that encourages exploratory
behaviour even when the usefulness of that exploratory behaviour is not immediately clear.
As such, intrinsic valuation of information may induce patterns of behaviour akin to an
exploration or novelty bonus [52]. Therefore, in dynamic and uncertain environments intrin-
sic valuation of information may be associated with profound long-run benefit, in spite of
locally suboptimal outcomes in artificial task environments such as that employed by the
present study. More broadly, we do not propose that there exists any single level of intrinsic
information valuation that will produce optimal behaviour across all environmental condi-
tions. For instance, a strong intrinsic valuation of information may be beneficial when explo-
ration costs are low and overall uncertainty is high, but result in suboptimal performance in
situations where exploration is relatively expensive, or where overall environmental uncer-
tainty is low.

In summary, our results provide strong evidence for intrinsic valuation of information in
humans, and we present a novel cognitive process model which suggests that aversion to pro-
longed uncertainty may be an important psychological determinant of this value. We show
that intrinsic valuation of information can result in seemingly suboptimal behaviours, such as
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a willingness to sacrifice future monetary reward in exchange for immediate but unusable
information about relevant future outcomes. More broadly, our results provide a plausible psy-
chological mechanism for human curiosity and exploration, and may explain features of deci-
sion making under uncertainty that have hitherto been considered irrational.

Materials and Methods
Participants

Participants were staff and students of the University of Melbourne. In Experiment 1, we
recruited forty-one participants (15 male, 26 female; 40 right-handed, 1 left-handed), aged 18
to 31 (M =22.28, SD = 2.63). In Experiment 2, we recruited 40 participants (14 male, 26 female;
all right-handed) aged 18 to 32 (M = 22.90, SD = 4.04). Participants gave voluntary informed
consent, research was conducted in accordance with the Declaration of Helsinki, and protocols
were approved by the University of Melbourne Human Research Ethics Committee (ID
1341084). As compensation for participation, participants received a flat payment of AUD $10
plus all lottery winnings (lottery winnings in Experiment 1: M = $9.10, SD = $1.86; Experiment
2: M =$7.15,SD = $0.91).

Procedure

Stimuli were presented using the Psychophysics Toolbox [56] and MATLAB R2012b (The
Mathworks, Natick, MA) on a Macintosh Mini connected to an LCD monitor with resolution
1920x1080 pixels at a screen refresh rate of 60Hz.

Experiment 1 comprised seven blocks, each consisting of sixteen trials total: four trials in
each of the four cost conditions (0, 1, 3, 5 cents), with win probabilities pseudo-randomised to
ensure that win rates for each cost condition were identical. As is standard practice in computa-
tional modelling studies, participants were randomly assigned to one of four pre-generated
trial sequences. Participants completed the task in approximately 1 hour. In Experiment 2, the
rate at which cards were revealed differed between blocks. In each block, information could be
revealed at a rate of either 1, 3, or 5 seconds per card. As such, the lottery delay period varied
across blocks (6 seconds total in 1 sec/card blocks, 18 seconds for 3 sec/card blocks, 30 seconds
for 5 sec/card blocks). Participants completed 6 blocks of 12 trials each. Each participant was
assigned to one of three counterbalanced trial orders, in which no two adjacent blocks belonged
to the same information rate condition. Participants completed the task in approximately forty
minutes. The primary dependent variable Pr(Info) was the proportion of all choices (excluding
missed responses) in which participants elected to observe the informative stimulus.

To ensure that participants maintained task engagement and attended to each stimulus type
equally, approximately 10 per cent of all trials were designated as catch trials. In catch trials,
instead of revealing a black or red card, one of the cards was revealed to be a white X, to which
participants responded by pressing any key within 1.5 seconds. A successful response led to
progression to the subsequent trial without penalty; failure to respond resulted in a $1 penalty.
Participants who failed to respond to more than two catch trials across the experiment were
excluded from all further analyses. This resulted in the exclusion of one participant in Experi-
ment 1 (successful catch trial responses in Experiment 1: M = 96.88%, SD = 5.56%; Experiment
2: M =97.5%, SD = 5.80%). Rates of successful responses to catch trials did not differ signifi-
cantly between informative and non-informative stimuli (Experiment 1: #(37) = 0.74, p = .46;
Experiment 2: #(37) = 0.61. p = .55). There is therefore no evidence to suggest that participants’
catch trial performance differed as a function of stimulus type.
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(informative signal) (non-informative signal)
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win: loss: win: loss:

r,=20-c, n=0 r,=20 =0
Fig 7. Trial structure represented as a Markov Decision Process. Open circles represent states, filled
circles represent actions, and squares represent terminal (trial-end) states. Lines connecting states represent
state transitions; implicit in the above representation is that where no lines connect two states, the transition
probability between these states is zero. Participants begin each trial in the topmost state, and can make one
of two actions: to observe the informative signal (left filled circle), or to observe the non-informative signal
(right filled circle). Following this choice, participants move stochastically through one of two state trees,
representing the two signal types. Within each tree, transition probabilities are defined by the relative
probabilities of drawing black and red cards (transitions represented respectively by black and red lines).
State transitions which do not involve drawing a card are indicated in grey. The structure of the two signal
trees is identical, with the exception that in the informative signal tree, each of the six states which can result
after all cards are drawn (bottom row of circles) transitions to one of the two possible lottery outcomes (win/
loss) with probability 1. In the non-informative signal tree, states after all cards are drawn may transition to
either of the two possible outcomes.

doi:10.1371/journal.pcbi.1005020.9007

Computational models

Models represented the task as an MDP, in which each trial was a decision problem with two
actions (informative/non-informative stimuli), discrete states corresponding to different con-
figurations of red and black cards (see Fig 7), and state transition probabilities corresponding
to relative probabilities of red/black cards. Using dynamic programming, we calculated the
action value of observing each of the two stimuli under varying assumptions about the nature
of valuation, and used these action values to predict choice proportions. Competing models
used identical MDP task representations, and differed only in the definition of the equation
used to calculate action values.

The information seeking task used in the present study can be formally characterised as fol-
lows: in each trial x, participants chose an action a, from the set A = {I, N}, where I denotes a
choice to observe the informative signal and N denotes a choice to observe the non-informative
signal. The outcome of each trial was denoted y, and could be either a win, y, = 1, with proba-
bility Ppjer, OF 2 loss, y, = 0, with probability P, By definition, P,.y = 1—Ppj,ck and in the
present study, it was always the case that Py, = P,y = 0.5. Let ¢, denote the cost in cents of
observing the informative signal on a given trial, drawn from the set C = {0, 1, 3, 5}. Each trial’s
winnings, denoted r,, depended only on the action selected and the predetermined outcomes
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of the trial lottery, such that

20—c¢, a,=Iandy =1
r, =< 20, a,=Nandy, =1 (1)

X

0, otherwise

The task’s structure was implemented as an MDP by considering every different possible
configuration of red and black cards as a separate state. This is a natural way of discretising tri-
als of the task such that each state represents a perceptually distinct epoch within the trial. The
general structure can be described as follows: depending on the action selected, a participant
traverses one of two state trees, corresponding to the two signal types. As such, the two state
trees are structurally identical and differ only in the sense that the final card state reached in
the informative signal tree perfectly predicts whether the lottery outcome will be a win or a
loss, whereas the final card state in the non-informative signal tree may transition to either out-
come. Since transitions within the state trees depend on the relative likelihood of drawing red
and black cards, state transitions are governed by the probabilities Py, and P,,,. This struc-
ture is illustrated schematically in Fig 7.

The structure and parameters described above give a complete description of the states,
actions, rewards, and state transition probabilities of the information seeking task. As a result,
standard analytic techniques of MDPs can be applied to solve this decision problem. Specifi-
cally, using dynamic programming [57], it is possible to calculate the action value Q of each of
the actions I and N, and to use these action values to predict choice proportions for the two
actions. Each of the competing behavioural models used an identical MDP framework, and
models differed only in how the action values are calculated. More precisely, in each of the
models assessed, action values were calculated by solving a Bellman optimality equation, where
only the definition of this equation and its free parameters varied between models. Model fit-
ting procedures were identical for each of the models.

Expected Value of Information (EVI) model. The EVI model assumed that agents con-
sider solely the instrumental value of information [11]. As such, the state value equation for
this model is simply the standard recursive Bellman optimality equation for stochastic pro-
gramming in MDPs [57]:

V(s) = max, X _Pr(s'|s,a)[R(s,s,a) + V(5] (2)

This equation can be interpreted as a probability-weighted sum over future rewards and
states, where a represents an action taken in state s, causing a transition to a successor state s
with probability Pr(s's, a), with concurrent receipt of a transition reward R(s', s, a) (corre-
sponding to monetary payoffs in the present task). The value of the successor state s’ is denoted
V(s') and is itself also calculated recursively according to Eq 2. As such, the action-value equa-
tion for this model was simply the standard recursive Bellman optimality equation for stochas-
tic programming in MDPs:

Q(s,a) = Z,Pr(s'|s,a)[R(s,s,a) + V(5] (3)

The quantity Q(a) represents the value of taking the action a in state s, causing a transition
to a successor state s’ with probability Pr(s'|s, a), with concurrent receipt of a transition reward
R(s', s, a) (corresponding to monetary payoffs). Note that since there was only one state in the
present study from which actions could be taken (see Fig 7), we henceforth use the shorthand
Q(a) to denote the value of the action a.
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An implicit assumption of the EVI model is that information is only valuable to the extent
that it can be used by agents to increase future expected reward; that is, agents should only seek
information when it increases their expected reward. This follows from the fact that state values
in Eq 2 are calculated solely on the basis of the monetary reward matrix R. In a task such as
that used in the present study, where information and expected reward are orthogonal, this
model predicts that participants should display no preference for information. Specifically, the
EVI model’s prediction is that when there is no cost placed on observing the informative signal
participants should be indifferent between the two signals, and that when any non-zero cost is
placed on the informative signal, participants should prefer observing the non-informative
signal.

In describing the task as an MDP, we have adopted a somewhat different framework for
modelling the structure of the decision to standard decision analysis. However, for the model
presented above, the value of observing the informative signal Q(I) closely resembles the deci-
sion-analytic quantity termed the Expected Value of Sample Information [EVSI; 11]. In deci-
sion analysis, the EVSI is theoretically always non-negative, since information can either
increase future expected reward (in which case EVSI > 0) or not alter future expected reward
(in which case EVSI = 0). In the task used in the present study, observing the informative signal
had an EVSI equal to 0, since observing information could not increase future expected reward.
When the cost of observing the informative signal was also considered, this meant that observ-
ing the informative signal always had a EVSI equal to zero (for ¢ = 0), or less than zero (for
c>0).

Uncertainty Penalty (UP) model. The UP model was a hierarchical extension of the EVI
model, and assumed that as well as seeking to maximise expected reward, agents were averse to
the presence of uncertainty over time [29]. This aversion was implemented in UP model as a
penalty of all states s of the MDP according to the relative probabilities of winning and losing
from state s: P,,;,,(s) and Pj,(s). We defined this penalty function H(s) to be the binary entropy
function from information theory, since this function is zero in the case of complete certainty
and maximal in the case of equal probabilities of winning and losing:

H(s) = (=P,;,(s)log,P,;,(s)) — (P (5)10g, Py (5)) (4)

The state value equation for the UP model is created by incorporating this penalty function

into normative value equation of the EVI model via an additional exponential term:
V(s) = max, X Pr(s'|s,a)[R(s, s, a) + V(s')e )] (5)

Eq 5 describes the value of different states in the UP model; as such, this equation is func-
tionally equivalent to Eq 2 from the EVI model. However, these two equations differ in that Eq
5 penalises the values of successor states according to their outcome uncertainty (which, in
turn, is calculated using Eq 4). Importantly, Eq 5 allowed for the strength of the uncertainty
penalty to vary between participants according to a participant-specific scaling parameter k.
When k is equal to 0, the exponential term in Eq 5 is equal to one, meaning that states’ values
are unaffected by outcome uncertainty; in this case, the UP model reduces to the EVI model.
For k > 0, an uncertainty penalty is applied to all states. Since the informative stimulus reduces
uncertainty faster and in more states than the non-informative stimulus, non-informative
states are penalised more heavily than informative states, inducing a preference for observing
the informative stimulus. For k < 0, the converse is true: an uncertainty bonus applies to all
states, inducing a preference for the non-informative stimulus. The UP model therefore pre-
dicts information seeking from the fact that, although monetary reward is received at the same
time for each stimulus, the informative stimulus is associated with less time spent in uncertain
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states. Given this framework, action values for the UP model can then be calculated as:
Q(a) = Z,Pr(s'|s,a)[R(s',s,a) + V(s')e ] (6)

As an aside, we note that although the UP model used in the present study quantifies infor-
mation valuation in terms of aversion to states’ uncertainty, there exist alternative specifica-
tions of the action-value equation which can produce equivalent quantitative predictions
regarding behaviour. In particular, it is possible to reparametrise Eq 6 such that intrinsic valua-
tion of information is expressed in terms of value bonus for information, rather than an aver-
sion to states’ uncertainty (see also Sun, Gomez & Schmidhuber, 2011 [49] for a discussion of
conceptual differences between information reward signals and standard reinforcement learn-
ing rewards). This is because moving from one uncertain (and therefore aversive) state to a less
uncertain (and therefore less aversive) state is mathematically equivalent to receiving an infor-
mation-related value bonus during the state transition. This value bonus will be equal to the
amount of uncertainty which has been reduced in the transition, scaled by an individual infor-
mation preference parameter:

Q(a) =X Pr(s|s,a)[R(s,s,a) + IAc.I(s',s7 a) + V(s)] (7)

where k is a reparametrised information scaling parameter, and I(s', s, a) is an information value
bonus quantified as the difference in entropy of beliefs following a state transition, as follows:

I(s',s,a) = H(s') — H(s). (8)

Notwithstanding the above, all model fits and reported parameter values in the present
study are calculated using the uncertainty-aversion parametrisation of the UP model (Eq 6),
not the information-bonus parametrisation (Eq 7).

Model fitting procedure. Given that the two models described above share a common
MDP structure, it is possible to specify an overall choice rule and likelihood estimation proce-
dure that is independent of how each individual model calculates action values. For every cost
condition ¢, each of the models supplies a state-action value for observing the informative sig-
nal, Q(I), and a state-action value for observing the non-informative signal, Q.(N). A mapping
from these model-derived action values to informative signal choice probability can be accom-
plished separately for each cost condition using a “softmax” or Luce choice rule:

)
P(I) = P+ ghaN) )

In this equation, 8 is an inverse temperature parameter, § > 0, governing the determinism of
choices, and is constant across different cost conditions. As the value of f increases, agents deter-
ministically choose the action with the higher action value; for 8 = 0, choices are unrelated to
action values, and all actions are equally likely to be selected. Applying Eq 9 with the action value
of the non-informative signal in the numerator, it is also possible to show that P.(N) = 1 -P.(I).

All models used in the present study also included an additional parameter representing the
probability of making an incorrect button press. The rationale for including this additional
parameter was that during post-task debriefing, some participants who otherwise behaved in a
relatively deterministic fashion reported making one or more mistaken button press because of
the task’s randomised response mapping. While one practice is to account for errors of this
kind by the softmax equation’s § parameter, when responses are otherwise strongly determin-
istic, a single mistaken button press can substantially affect model likelihood (for instance,
when a participant mistakenly selects the informative signal in a condition where the model’s
predicted probability of this action would otherwise have been at or near zero). To overcome
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Fig 8. Latent mixture model of choice probability. In the present study, choice probabilities were assumed
to be a latent mixture of erroneous button presses (with probability €) and accurate button presses (with
probability 1-¢). Since erroneous button presses are by definition undirected, these choices are therefore
equally likely to result in the selection of the informative signal or the non-informative signal. This has the
effect of placing a floor of ¢/, and a ceiling of 1-¢/, on choice probabilities for each option.

doi:10.1371/journal.pcbi.1005020.g008

this issue, choice probabilities in the models presented above were represented by a latent mix-
ture model (Fig 8). In this latent mixture model it was assumed that on any given trial there
was a small but non-zero probability € that a participant would make a mistaken button press.
The parameter £ was fit as a free parameter across participants. However, in order to ensure
that our results were not compromised by this assumption, we also performed a control analy-
sis assessing model fits for € = 0, corresponding to the assumption that participants made no
erroneous button presses (see S2 Text).

Therefore, Pr(a =1 | c), the overall choice probability for observing the informative set in the
cost condition ¢, is given by simple probability calculus (note that Pr(a =1 | ¢) = P(I) for £ = 0):

Pr(a=1c) =05+ P (I)(1 —¢) (10)
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Since there were only two actions available to participants on each trial, the probability
Pr(a =1) can be interpreted as a binomial rate parameter. Each model’s overall likelihood can
therefore be calculated as a product of binomial likelihoods across the four cost conditions in
the set C:

4 ni mj ni—m;
t=1[., . Pr(a=1|C)" (1 — Pr(a =1|C,) (11)

i

Where n; represents the number of trials in cost condition C; and m; represents the number
of times the informative signal was observed in cost condition C; Trials in which participants
did not record a response were excluded.

All models were fit with maximum-likelihood estimation, using the interior point algorithm
as implemented in MATLAB R2015b (The Mathworks, Natick, MA).
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