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Abstract In humans, thirst tends to be alleviated before

complete rehydration is achieved. When sweating rates are

high and ad libitum fluid consumption is not sufficient to

replace sweat losses, a cumulative loss in body water

results. Body mass losses of 2% or greater take time to

accumulate. Dehydration of C 2% body mass is associated

with impaired thermoregulatory function, elevated cardio-

vascular strain and, in many conditions (e.g., warmer,

longer, more intense), impaired aerobic exercise perfor-

mance. Circumstances where planned drinking is optimal

include longer duration activities of[ 90 min, particularly

in the heat; higher-intensity exercise with high sweat rates;

exercise where performance is a concern; and when car-

bohydrate intake of 1 g/min is desired. Individuals with

high sweat rates and/or those concerned with exercise

performance should determine sweat rates under conditions

(exercise intensity, pace) and environments similar to that

anticipated when competing and tailor drinking to prevent

body mass losses[ 2%. Circumstances where drinking to

thirst may be sufficient include short duration exercise of

\ 1 h to 90 min; exercise in cooler conditions; and lower-

intensity exercise. It is recommended to never drink so

much that weight is gained.

1 Introduction

The two most common schools of thought regarding the

best fluid intake practices during exercise are programmed

drinking versus drinking to thirst or ad libitum drinking

[1, 2]. These fluid consumption practices have been a topic

of recent debate in the literature [3, 4]. Consensus state-

ments and sports medicine society position stands either

focus on maintaining performance and reducing cardio-

vascular and thermoregulatory strain, in the case of the

American College of Sports Medicine guidelines [5], or

preventing hyponatremia, in the case of the Statement of

the Third International Exercise-Associated Hyponatremia

Consensus Development Conference [6]. Differences in

emphasis have resulted in recommendations for fluid intake

strategies that may appear to be at odds, with one position

stand recommending programmed drinking [5] while a

consensus statement [6] recommends an ad libitum/drink to

thirst strategy. Despite apparent differences, both strategies

seek to prevent over/under hydration and preserve perfor-

mance. However, the success of either strategy will depend

on the context of the event (duration, intensity, and envi-

ronment), the characteristics of the individual (fitness,

acclimatization status, etc.), and the goals of the individual

exercising, training, or competing.

2 Definitions and Objectives of ‘Programmed
Drinking’ and ‘Drink to Thirst’

Defining the terminology of each fluid intake strategy is

important to avoid confusion and so that specific differ-

ences between the two strategies can be fully understood.

For the purposes of this review, the operational definitions

provided in Sects. 2.1 and 2.2 are used.
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2.1 Programmed Drinking: The Use of a Pre-

Established Drinking Plan

While drinking to thirst could be included in the definition

of programmed drinking, typically this term refers to

drinking predetermined amounts of fluid with the purpose

of minimizing fluid losses. This fluid intake strategy is

based on the fact that there is considerable variability in

sweating rates and sweat electrolyte concentrations

between individuals, thus requiring a customized fluid

replacement program. The objective of programmed

drinking is to prevent dehydration and over-drinking

(± 2% body mass) by drinking to approximate sweat

losses, with the goal of attenuating potential exercise per-

formance impairment, reducing cardiovascular and ther-

moregulatory strain associated with dehydration,

decreasing the risk of heat illness (heat exhaustion, heat

stroke), and preventing hyponatremia [5]. Determination of

sweat rate can be accomplished by measuring acute chan-

ges in body weight before and immediately after exercise.

In the absence of drinking, change in body weight can be

used as an approximation of the volume of sweat lost (e.g.,

1 kg = 1 L); however, there may be some small sources of

error in this assumption.

2.2 Drinking to Thirst: The Use of the Sensation

of Thirst as the Only Stimulus to Drink

For the most part, ‘drink to thirst’ has been used inter-

changeably with ‘ad libitum drinking’ [7]. ‘Ad libitum

drinking’ is defined as the consumption of fluid whenever,

and in whatever volume, desired [8, 9]. A recent study

investigating the differences between ‘drinking to thirst’

and ‘ad libitum’ drinking reported that when volunteers

were instructed to use either strategy, the physiologic and

perceptual outcomes were similar [10]. For the purposes of

this review, the use of ‘ad libitum’ drinking in the literature

is taken to mean ‘drinking to thirst’ and these terms are

used synonymously. The objective of ‘drinking to thirst’ is

to use the innate thirst mechanism to guide fluid con-

sumption with the goal of preventing the development of

exercise-associated hyponatremia (EAH) and excessive

dehydration [6].

3 Fluid Balance and Thirst

Net body water balance (loss = gain) is regulated

remarkably well day-to-day as a result of thirst and hunger

drives coupled with ad libitum access to food and bever-

ages to off-set water losses [11]. However, when there is a

mismatch where fluid intake is less than fluid loss, dehy-

dration results. Dehydration is defined as a body water

deficit greater than normal daily fluctuation [12] or when

body water deficits exceed 2 standard deviations in normal

body mass variability (C 2% of body mass) [13, 14].

When at rest, this level of dehydration also represents an

approximate threshold where compensatory fluid regula-

tory actions and stimulus for fluid acquisition occur (C 2%

body mass) [15, 16]. These compensatory actions are

triggered principally by an elevation in plasma osmolality

(Posm) and, to lesser degree, a reduction in plasma volume

[12, 17]. During exercise, particularly in the heat, plasma

volume decreases because it provides the fluid for sweat,

and as a result, Posm increases because sweat is hypotonic

(sodium poor) relative to plasma. An * 2% increase in

Posm (* 6 mmol/kg) is commonly referenced as an

osmotic threshold for compensatory renal water conserva-

tion and water acquisition (thirst), which is approximately

the equivalent of C 2% loss of body mass (1.4 L at 70 kg;

Fig. 1) [12]. The sensitivity of osmoreceptors in regulating

anti-diuretic hormone release and stimulating thirst is

enhanced by relatively small losses of volume. However,

volume-mediated thirst requires a much larger loss

(* 10% blood volume) and plasma volume losses are

only * 0.14 L with a loss of * 2% body mass [18].

TBW deficit

Threshold

Response

Physiologic 
compensation

>2% Δ Posm

Renal water 
 retention

-1.4 L

AVP

≥ 2% Body mass

Thirst

Water
acquisition

Fig. 1 Regulation of body water balance in response to body water

deficit typical of exercise/fluid restriction for a 70 kg individual.

Schematic includes the estimated magnitude of dehydration (2% body

mass loss) required to stimulate the osmotic-dependent response for

compensatory water conservation and acquisition (thirst). A change in

total body water is equated with a change in body mass (1 L = 1 kg),

whereby dehydration is then expressed as a percentage of body mass

in accordance with: (D body mass/initial body mass) 9 100 or, for

this example, (1.4 kg/70 kg) 9 100 = 2%. AVP arginine vaso-

pressin, Posm plasma osmolality, TBW total body water
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While sensation of thirst works well at rest [19], it is less

sensitive during exercise. Observations of the lack of sen-

sitivity of thirst in the maintenance of total body water

during exercise have been reported in the literature over

many years. Dill et al. [20] observed that when a man and a

dog walked 32 km in a hot environment, the dog main-

tained its weight balance while the man lost about 3 kg of

his body mass despite the fact that water was available

ad libitum to both. Dill et al. [20] concluded that during

exercise, man undergoes a decrease in body mass when

water is drunk ad libitum. During periods of high sweat

rates ([ 1.0 L/h) humans practicing ad libitum drinking

have been reported to markedly under-consume fluid

[13, 18, 21–23]. Greenleaf et al. [19] reported that when

drinking ad libitum, subjects consumed approximately half

of the fluids lost during exercise in cool and hot environ-

ments (Fig. 2). Even when drinking ad libitum, subjects

performing a half-marathon reported feeling more thirsty

than subjects adhering to programmed drinking in trials

[24]. Thirst is also alleviated before complete rehydration

is achieved [25] as oropharyngeal cues trigger thirst sati-

ation before volume is fully restored [26–31]. Greenleaf

et al. [19] further reported that following experimental

trials, subjects reported feeling fully recovered and were

not thirsty despite having a water deficit of 4–5 L (Fig. 2).

In a further example, Cheuvront et al. [32] examined group

means from 14 marathon studies conducted in a range of

environments (10–28 �C) with runners of wide ranging

abilities (2 h 10 min to 4 h; Fig. 3) and concluded that

ad libitum drinking commonly led to excessive dehydration

([ 2% body mass loss).

It should also be appreciated that the mechanisms that

stimulate the sensation of thirst are subject to numerous

influences [33] and sensitivity to these signals during

exercise is likely different given the physiological state

during exercise (elevated heart rate and respiration;

decrease in renal blood flow and plasma volume; elevation

in anti-diuretic and other fluid regulatory hormones, etc.)

compared to rest. Further, it should be recognized that

when dealing with exercising children or elderly individ-

uals, the sensation of thirst has been reported to be less

sensitive for both populations [34].

4 Dehydration: Physiological Responses
and Exercise Performance

The majority of the dehydration/exercise performance lit-

erature suggests that during exercise, dehydration increases

physiological strain as measured by elevations in core

temperature, heart rate, and perceived exertion responses

[35]. Also, the greater the body water deficit, the greater

the increase in physiological strain [21, 36–38]. As dis-

cussed in Sect. 3, when dehydration occurs due to sweat

loss, a state of hyperosmotic hypovolemia results and

increases proportionally to the decrease in total body water

[11]. The resulting hyperosmolality can delay thermoreg-

ulatory cutaneous vasodilation and sweating, increasing

thresholds for both [39, 40]. As a result, dehydration

reduces the sweating rate for any given body core tem-

perature, decreases evaporative heat loss [38], and increa-

ses heat storage [39, 41]. Due to a reduction in circulating

plasma volume, heart rate increases secondary to a reduc-

tion in stroke volume [42, 43]. Heat stress in combination

with dehydration further exacerbates these cardiovascular

responses because it creates competition between the cen-

tral and peripheral circulation for limited blood volume

[44], which further magnifies the physiologic strain for a

given exercise task [36–38].
Fig. 2 Ad libitum fluid intake vs. sweat losses during treadmill

walking in cool (24 �C; filled circle) and hot (49 �C; open circle)

environments. Ad libitum fluid intake equals * 50% of fluid losses

(adapted from Greenleaf and Sargent [19] with permission)
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Fig. 3 Level of post-race dehydration vs. average running speed and

finishing time for 42 km when drinking ad libitum. Adapted from

Cheuvront et al. [32]
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In regards to exercise performance, there is an overall

consensus in the literature that dehydration of C 2% body

mass represents a threshold at which aerobic exercise

performance or endurance becomes impaired [3, 5, 12, 45].

We previously evaluated 34 endurance exercise/dehydra-

tion studies, which included 60 separate observations

(Fig. 4) [12]. A total of 41 of 60 observations (68%) were

significantly (p\0.05) impaired by dehydration C 2%

body mass. Independent of p value (p\0.05), the number

of studies reporting a reduction in performance for endur-

ance exercise of C 2% body mass loss was 53 of 60

negative observations or 88%. For more detail regarding

the impact of dehydration on physiological responses and

exercise performance, more comprehensive reviews are

recommended [11, 12, 46, 47].

Many of the studies reviewed were conducted in a lab-

oratory, which can be considered to be a limitation, as

laboratory conditions are less ecologically valid by design.

Valid criticisms include achievement of dehydration before

(rather than during) exercise and unrealistically low air

flow rates. However, a review of dehydration studies where

water loss occurred during exercise had similar conclusions

[46]. Furthermore, in one of the better examples of a field-

valid study of endurance sport, Casa et al. [48] examined

the impact of dehydration (* 2% body mass loss) on trail

running performance. Run times were * 5% slower when

completing the race while dehydrated.

It is important to note that when exercise commences in

a well-hydrated state, accumulated fluid loss and the sub-

sequent development of sensations of thirst can take time

and will be dependent on numerous factors (e.g., environ-

ment, exercise intensity and duration, sweat rate). To bol-

ster the point that dehydration requires time to accumulate,

we predicted sweat losses for two hypothetical runners of

small and larger body sizes over distances from 5 to 42 km

(marathon) in temperate (22 �C) and warm conditions

(30 �C) [49]. These predictions illustrated differences in

fluid needs for differing exercise durations, intensities,

environments, and body sizes. Fluid losses were expressed

as the percentage loss in body mass relative to a threshold

of 2% loss over the duration of each event (Fig. 5a, b).

What could be observed was that for finishing times typical

of the majority of runners, fluid losses are\ 2% of body

mass for distances up to 21 km and it is not until marathon

distance in hot conditions (30 �C) that larger individuals

(80 kg) lose[ 2% of body mass by the very end of the

event (Fig. 5a). For faster, more competitive runners

(Fig. 5b), fluid losses are greater for both smaller and lar-

ger runners and exceed 2% body mass loss in both warm

and hot conditions during the marathon but are below 2%

body mass loss for the other distances (5–21 km). These

modeled loss estimates are conservative, as the equations

used are not specifically designed for sport or sport cloth-

ing. However, they do illustrate that fluid replacement

becomes increasingly critical during higher-intensity and

longer-duration exercise, particularly when temperatures

are warmer.

The threshold of ± 2% body mass loss appears to be

significant in regards to a number of factors, including fluid

conservation, stimulation of thirst, and impairment of

thermoregulatory and cardiovascular function and exercise

performance. Thus, it stands to reason that during exercise,

a fluid replacement strategy that maintains hydration state

within ± 2% body mass would be successful in the

preservation of physiological and exercise performance. As

demonstrated by our fluid need predictions, fluid loss of 2%

body mass takes time to accumulate and will be dependent

on the environment, exercise intensity, and duration of the

event.

5 Ad Libitum Drinking and Exercise Performance

Ad libitum or drink to thirst studies involving endurance

running [50] and half marathon [24] and marathon [51]

events have reported greater cardiovascular and ther-

moregulatory strain [24] but no differences in plasma

volume or osmolality [49], and no differences in running

performance [24, 50, 51]. Ad libitum cycling studies have

reported that cardiovascular responses [52], thermoregu-

lation [52, 53], and performance [52, 53] are not different

from programmed drinking. In contrast, Bardis et al. [54]

recently compared ad libitum with prescribed drinking

during a 30 km cycling performance in the heat and con-

cluded that matching fluid intake with sweat losses pro-

vided a performance advantage due to lower

thermoregulatory strain and greater sweating responses.

Ultra-running studies examining ad libitum drinking have
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Fig. 4 Review of dehydration effects on performance in 34

endurance exercise/dehydration studies. Fractions above bars repre-

sent the number of statistically significant (p\0.05) observations

(numerator) of total observations (denominator) at the specified level

of dehydration. 41 of 60 total observations (68%) were significantly

(p\0.05) impaired by dehydration C 2% body mass. Adapted from

Cheuvront and Kenefick [12])
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concluded that this strategy led to no incidences of

hyponatremia [55] and did not impact performance despite

body mass losses[ 3% [56, 57] and conclude that drink-

ing beyond thirst is not required to maintain hydration

during ultra-endurance events. Where ultra-endurance

exercise (activity consisting of many hours/days) is con-

cerned, it is important to mention that these activities can

result in significant non-fluid mass losses and non-water

fluxes that make determination of body mass changes, and

thus fluid losses, difficult to determine and interpret.

Overall, the findings of the ad libitum/drink to thirst

literature support the idea that maintaining fluid balance

within ± 2% body mass is dependent on the environment,

exercise intensity, and duration of the event. Ad libi-

tum/drink to thirst studies have been conducted in low

ambient temperatures [50, 55], during events of 2 h or less

[24, 50, 52, 53], and in ultra-events that are longer in

duration and tend to have lower exercise intensities

[55–57], they tend to have lower exercise intensities. Many

of the ad libitum/drink to thirst studies have been per-

formed in field settings or during competition (vs. labora-

tory) where there is greater air flow, greater convective

heat loss and, as a result, reduced cardiovascular and

thermoregulatory strain. Also, in the majority of field

studies or competitions, volunteers started exercise in a

euhydrated state and progressively dehydrated during the

event or trial. Thus, C 2% body mass loss may not be

achieved until the end of the event, or not at all in the case

of shorter events/trials.

6 Conclusions

Given predicted fluid requirements for differing exercise

durations, intensities, environments, and body sizes, it

would appear that conditions exist where ad libitum/drink

to thirst fluid intake will be sufficient to meet needs, i.e.,

maintenance of fluid balance within ± 2% body mass. For

individuals who are less concerned with performance or

performing activities at lower intensities, particularly in

cooler weather, a fluid replacement plan may not be as

important because fluid losses may not approach 2% body

mass loss. These conditions include activities or competi-

tion of \1–2 h of duration, that are of lower exercise

intensity, and that take place in cool or temperate

environments.

However, there are also conditions where programmed

drinking is necessary to meet requirements and a tailored

programed drinking strategy will need to be employed to

avoid potential thermoregulatory, cardiovascular, and

exercise performance impairment (2% body mass loss).

These conditions include activities or competition that are

longer in duration ([90 min to 2 h), are of higher exercise

intensity, take place in warm or hot environments, or for

which fuel intake at a particular rate is desired (e.g. 1 g

carbohydrate/min). Thus, a programmed drinking strategy

should be tailored to prevent body mass losses or gains of

± 2% body mass during these activities [5].

As the practice of ad libitum/drink to thirst fluid intake

appears to result in fluid replacement of about half of fluid
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Fig. 5 Percentage loss in body

mass predicted from sweat rate
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average ability a during 5 km

(25 min), 10 km (60 min),
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Cheuvront [49]
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losses [18], this strategy would appear to be successful in

the prevention of hyponatremia. However, humans con-

sume fluids for reasons outside of thirst/fluid replacement

and, while rare, cases have been documented where indi-

viduals have consumed fluids ‘according to thirst’ but over-

drank and became hyponatremic [6]. When consuming

fluid ad libitum/to thirst, or if consuming fluid according to

a predetermined program, it is important to never consume

so much fluid that weight is gained.
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