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Age is reflected in the Fractal 
Dimensionality of MRI Diffusion 
Based Tractography
Gernot Reishofer1, Fritz Studencnik1, Karl Koschutnig2, Hannes Deutschmann1, Helmut 
Ahammer3 & Guilherme Wood2

Fractal analysis is a widely used tool to analyze the geometrical complexity of biological structures. 
The geometry of natural objects such as plants, clouds, cellular structures, blood vessel, and many 
others cannot be described sufficiently with Euclidian geometric properties, but can be represented by 
a parameter called the fractal dimension. Here we show that a specific estimate of fractal dimension, 
the correlation dimension, is able to describe changes in the structural complexity of the human 
brain, based on data from magnetic resonance diffusion imaging. White matter nerve fiber bundles, 
represented by tractograms, were analyzed with regards to geometrical complexity, using fractal 
geometry. The well-known age-related change of white matter tissue was used to verify changes 
by means of fractal dimension. Structural changes in the brain were successfully be observed and 
quantified by fractal dimension and compared with changes in fractional anisotropy.

In the late sixties Benoit Mandelbrot developed a mathematical concept to describe geometrical structures, 
denoted as fractals, whose measured metric properties (length, area or volume) depend on the scale of measure-
ment. A fractal can be defined as a set, whose fractal dimension (FD) is a non-integer value between the topo-
logical dimension, which is zero for a point, one for a curve and two for a plane, and its embedding dimension. 
With this, FD can describe geometrical features such as self-similarity or space-filling properties of textures or 
structures that are obtained by stochastic processes. In his pioneering work “How long is the coast of Britain1?” 
Mandelbrot paved the way for the field of fractal analysis, a mathematical framework describing geometrical 
structures that cannot be characterized sufficiently with Euclidian geometry. For a natural structure or an image, 
the fractal dimension cannot be calculated exactly, but is usually approximated as the ratio of change in detail 
with change in scale, plotted in a double logarithmic plot where the slope provides an estimate of FD.

In the last two decades, a huge variety of applications utilizing fractal analysis have been published on different 
biomedical fields from the analysis of DNA base sequences2 and the classification of biological structures3 to the 
description of microvascularity in gliomas4,5. The complex structures of the brain have been extensively investi-
gated using fractal methods focusing on the brain’s surface6, the geometrical complexity of white matter7, changes 
in the structure of the cerebrovascular system8 due to pathologies and for analyzing the complex structure of 
neural networks9,10. Fractal analysis of the brain’s geometrical structure was correlated with pathologies such as 
Multiple Scleroses11,12 or Alzheimer’s disease13, suggesting that structural alterations, specifically in white matter 
structure, can be captured by changes in FD. Considering these studies, FD seems to be a sensitive biomarker for 
changes in the geometrical complexity of the brain.

Structural changes of the brain, that concern all of us, are due to a normal aging process and effects the brain 
on many levels including vascularization14, atrophy15, changes in cortical and subcortical regions16,17 and changes 
in myelination. Cerebral white matter is subject to structural changes during the entire life-span, which has been 
shown in several MRI studies18,19. Diffusion tensor imaging revealed that the fractional anisotropy (FA), a meas-
ure for the anisotropy of the diffusion process, increases in the first three decades and decreases in the following 
decades19–22. However, age-related changes of the brain structure are closely linked to mental fitness and cognitive 
performance23. Hence, a quantification of structural changes is of highest interest.
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When analyzing changes in FD of white matter structure, two strategies are mainly used. Firstly, fractal analy-
sis of the entire binary WM mask24, which is directly obtained from a T1-weighted structural Magnetic Resonance 
Imaging (MRI) scan. Secondly, the fractal dimension is obtained from a skeletonized version of a T1-weighted 
white matter mask25. However, due to limitations in spatial resolution, caused by MRI basic conditions such 
as signal strength and scan time, both methods are only rough approximations to investigate the underlying 
complex structure of nerve fiber bundles. The most accurate macroscopic geometrical representation of the neu-
ral structure of the brain, by means of MRI, is provided by diffusion tensor imaging (DTI) based fiber track-
ing26 and its further developments. These methods allow for the visualization of neural fiber tracts based on a 
direction-sensitive MR measurement of the diffusion of free water. The sum of all fiber tracts represented by lines 
in a three dimensional space and color-coded according to their orientation is usually referred to as tractogram. 
Fractal properties of MR tractograms have been firstly investigated by Katsaloulis et al.27,28. However, studies 
including large cohorts of subjects or patients with neurological pathologies are missing. One reason might be 
that the diffusion tensor model, which is widely used for tractography, is not able to resolve complex fiber con-
figurations such as crossing or kissing fibers. Then, fractal analysis describes space-filling properties without 
capturing the full geometrical complexity and group differences may remain unrevealed. New developments 
in diffusion data analysis account for complex fiber orientations and provide tractograms with higher accuracy, 
more suitable for fractal analysis (Fig. 1). Methods like q-ball imaging29, diffusion spectrum imaging30, or con-
strained spherical deconvolution (CSD)31 have been developed for this purpose but require a large number of 
diffusion sensitizing gradient directions (60 and more) making the MR measurement challenging with respect to 
scan time and signal-to-noise ratio. However, analyzing tractograms inherit a profound advantage over analyzing 
image data. While images are limited in resolution due to the sampled imaging matrix, tractograms are defined 
by points in space, referred to as fulcrums, that allows for a discretization with arbitrary resolution. Given that, 
for reliable estimates of FD, a structure to be analyzed with fractal analysis should obey scaling rules over several 
scales32, tractograms might be ideal candidates for fractal analysis of cerebral white matter.

There are several ways to calculate FD for a natural structure or for an image. All of these are approximations 
of the Hausdorff Dimension33, a single value, characterizing the geometrical complexity of a structure. The most 
prominent method that is often used due to its simplicity and computational efficiency is called the Box-counting 
method34 providing a value of FD called the Box-counting dimension35. However, fractal systems in nature are 
often insufficiently described by such a single value because self-similarity only exists in a limited number of mag-
nitudes. Hence, a continuous spectrum of fractal dimensions instead of a single fractal dimension may provide 
a better geometrical description of natural complex structures such as tractograms. This characteristic, usually 
denoted as multifractality36, is considered when evaluating generalized fractal dimensions or Renyi dimensions.

In this proof of concept, we investigated, if FD captures age-related structural changes in white matter by 
analyzing tractograms obtained from CSD. Changes of FD values, obtained by multifractal analysis (MFA), are 
compared to changes of FA values and their age dependence is discussed. We demonstrate that fractal dimension 
is able to capture age related changes in white matter structure by analyzing 85 healthy subjects between eight-
een and eighty-one years. We hypothesized that age dependent changes are more accurately modeled using the 
FD approach analyzing tractograms obtained from CSD compared to FA analysis based on the diffusion tensor 
model.

Results
Evaluation of the multifractal spectrum. The generalized fractal dimensions Dq were evaluated as the 
slopes in the double-logarithmic plots µ− − ∑q B1/(1 )log ( )i i

q against εlog( ) for q = [0…10] (q = 0 … 5 shown in 

Figure 1. Comparison of fiber tracts based on DTI (left) and based on CSD (right). The images demonstrate 
the more realistic presentation of white matter tracts when crossing fiber configurations are taken into account. 
Tensor based tractography my lead to an unnatural fiber density (marked with white arrows). The more natural 
representation of cerebral white matter, obtained with CSD, served as input for fractal analysis.
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Fig. 2). The quality of the fit was indicated by the root mean square error (RMSE). RMSE felled from D0 (mean 
RMSE: 0.14 ± 0.02) until D2 (mean RMSE: 0.054 ± 0.006) and rose with increasing q, given the highest RMSE at 
D10 (mean RMSE: 0.7 ± 0.1) (Fig. 3). For all subjects, D2 showed the best linear relation, indicated by the mini-
mum RMSE, and was therefore the preferred fractal estimator. Values of the generalized fractal dimensions Dq 
showed their highest values for D2 (mean D2: 2.811 ± 0.009). D0 and D1 were lower than D2 and for q > 2 the 
fractal dimension decreased monotonically. This is not in agreement with Eq. [4] because multifractal properties 
of the fractal spectrum are only given for generalized fractal dimensions Dq with q > 2. This observation was 
consistent for all subjects (Fig. 4).

Age dependence of fractal dimension. A correlation analysis between the generalized fractal dimen-
sions (Dq: q = [0…10] with age identified the highest correlation for D2, the correlation dimension (Table 1). The 
box-counting dimension did not correlate with age (p < 0.71). Both parameters, FD (D2) and FA, were reduced 
with increasing age (Fig. 5). Since the existence of non-linear age-related effects is well documented21,37,38, linear 
regression and additional polynomial regression was employed to describe the effect of age on FA and FD. In 

Figure 2. The absolute value of the slope in the double-logarithmic plot provides the fractal dimensions for 
the generalized dimensions or Renyi dimensions in the range q = [0 … 5]. The highest R2 was found for q = 2, 
indicating that the correlation dimension D2 is the best fractal estimator (highlighted by the green frame). Data 
are shown for one arbitrary chosen subject.
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Figure 3. RMSE of the linear fit in the double-logarithmic plot. A minimum for RMSE was detected at q = 2 
for all subjects. This demonstrates the stability of D2 as the superior FD estimator for all subjects. The red line 
indicates the mean value.

Figure 4. Generalized fractal dimensions in the range q = [0 … 10]. The fractal dimension shows a maximum 
for D2 with a monotonic decrease for Dq with q > 2. Please note that for ideal or geometric fractals Dq decreases 
for q ≥ 0. The red line indicates the mean value.

D
Residual Sum 
of Squares Adj. R-Square

ANOVA

Sum of Squares F Value Prob > F

D0 0.00823 −0.016 6.90595E-5 0.34 0.71

D1 0.00231 0.518 0.00261 46.19 3.66E-14

D2 0.00313 0.576 0.00442 57.98 2.22E-16

D3 0.00365 0.541 0.00451 50.59 4.88E-15

D4 0.00402 0.482 0.00393 40.11 7.12E-13

D5 0.00433 0.417 0.00328 31.08 8.96E-11

D6 0.00462 0.355 0.00272 24.12 5.78E-9

D7 0.00490 0.298 0.00226 18.87 1.81E-7

D8 0.00519 0.249 0.00189 14.93 2.95E-6

D9 0.00547 0.207 0.0016 11.98 2.73E-5

D10 0.00576 0.172 0.00137 9.76 1.573E-4

Table 1. Correlation between age and the generalized fractal dimensions (Dq: q = [0…10]). Regression 
parameters and ANOVA results are presented for the polynomial fit of 2nd order. n=85, p < 0.05. The correlation 
dimension D2 shows the best correlation with age.
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both cases, R2 was higher for FD than for FA (linear fit FD: R2 = 0.520, linear fit FA: R2 = 0.214; polynomial fit FD: 
R2 = 0.576, polynomial fit FA: R2 = 0.210). The Akaike Information Criterion (AIC) identified the polynomial 
fit as the preferred model for FD and the linear model for FA. The Akaike weights (AW) can be interpreted as 
the probability for a specific model fit and was evaluated as follows: FD: linear fit AW = 0.00908, polynomial fit 
AW = 0.99092; FA: linear fit AW = 0.69194, polynomial fit AW = 0.30806. This means that for FD the polynomial 
fit was about 109 times more likely to be correct than the linear fit and for FA the linear model was about 2 times 
more likely to be correct than the polynomial fit.

Influence of sex, brain volume and mean fiber length. Both, FD (D2) and FA did not significantly 
differ between male and female subjects (D2: p < 0.84, FA: p < 0.19). To ensure that the age dependence of fractal 
dimension was not biased by brain volume changes due to normal aging processes, a regression analysis was per-
formed. Given that female and male white matter volume significantly (p < 4.3·10-8) differed in volume (female: 
501.9 ml ± 45.1 ml, male: 563.2 ml ± 47.2 ml), the regression analysis was performed separately for female and for 
male subjects. At the p = 0.05 level, the slopes were not significantly different from zero for both, female subjects 
(p < 0.98) and male subjects (p < 0.66) indicating that no correlation between white matter volume and age was 
observed in our data. Furthermore, we investigated if there was an age dependent change in mean fiber length 
that might influence the age dependence of the fractal dimensions. Female and male subjects were significantly 
different in mean fiber length at the p = 0.05 level (female: 66.8 mm ± 3.1 mm, male: 68.2 mm ± 2.9 mm) hence 
regression analysis was performed separately for female and male subjects. At the p = 0.05 level, the slopes were 
not significantly different from zero for female subjects (p < 0.1) and for male subjects (p < 0.65) supporting the 
view that no correlation between mean fiber length and age was observed in our data.

Our main results can be summarized as follows. 

•	 The correlation dimension D2 is the preferred fractal dimension for analyzing tractograms.
•	 For the multifractal spectrum Dq, D2 correlates best with age.
•	 Box-counting dimension D0 does not correlate with age.
•	 A polynomial model of 2nd order describes better the correlation of D2 with age than a linear model.
•	 The correlation of D2 with age is better than the correlation of FA with age
•	 White matter brain volume and mean fiber length do not significantly correlate with age in our data.

Discussion
For the first time, fractal analysis of tractograms described structural changes in human cerebral white matter 
due to healthy aging. The observed correlation of FD, specifically the correlation dimension D2, with age was 
much stronger compared to the correlation of FA with age. This can be explained by the fact that our FD calcu-
lation relied on much richer information than FA calculation. Firstly, FA is evaluated from the eigenvalues of the 
diffusion tensor which neglect the fiber orientation and only account for restricted diffusion strength. Secondly, 
FA is based on a tensor model that does not consider complex fiber configurations such as crossing or kissing 
fibers. Given that most regions of the brain contain such complex structures39,40, higher angular resolution track-
ing methods such as CSD31,40 provide a more reliable representation of the fiber nerves and are therefore more 
suitable to investigate structural changes. Other studies that used fractal analysis to investigate age-related white 
matter changes relied on the analysis of white matter shape7,24,41. Based on T1-weighted MR images with a typical 
matrix size of 256 × 256, the white matter was segmented and analyzed utilizing the box-counting dimension. 
We learned from these studies, that the white matter shape tends to reduce its complexity with increasing age, 
indicated by a decrease of FD. However, the shape of a white matter mask provides limited information about 
the entire white matter because the inner structure remains hidden. A much more comprehensive representation 
was given by the tractograms that were used in our study. Another benefit of analyzing tractograms is that image 

Figure 5. Correlation between FA and FD with age. Both parameters FA and FD show a negative correlation 
with subject’s age. While Akaike information criterion suggests a linear model (green line) for FA-age 
correlation, for FD the polynomial fit of 2nd order (red line) is more probable. The negative correlation of D2 
with age is better compared to FA-age correlation.
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resolution is not a limiting factor for fractal analysis. It is well known that a fractal structure should obey scaling 
rules over several scales32. The assumption of this precondition is often violated due to small image matrixes. A 
tractogram consists of curves that are defined by fulcrums in a three dimensional space and with increasing num-
ber of curves the evaluated tractograms becomes denser. Such an object can be discretized with arbitrary high 
resolution and is independent of the matrix size of underlying DWI scan. With this, it was assured that image 
resolution was high enough for fractal analysis. In medical imaging, a similar technique is usually referred to as 
super-resolution track density imaging42–44.

Interestingly, the most frequently used measurement of FD, the box-counting dimension or capacity dimension 
D0 did not show any significant age dependence when applied on tractograms. The reason is that D0 is not sensitive 
to the density of points or more specifically to changes in density of points (see Eq. 3). The number of non-empty 
boxes is counted, regardless of the number of points within a box. If a structure is dense enough, even a small box 
may always contain a point and changes cannot be captured. Age dependence of FD was therefor only observable 
for Dq, with q > 0 where the point density was taken into account. The best correlation of FD with age was found for 
D2. This is interesting in the light that for D2, estimated through the double logarithmic plot for q = 2, RMSE was 
smallest. So, for all subjects D2 gave the best estimate for FD. The highest value of FD was consistently found for D2 
with absolute values close around 2.8 which is in line with previous obserevations27. This is not in line with observa-
tions for ideal or geometric fractals where the multifractal spectrum Dq versus q is a monotonic decreasing curve. 
However, in case of stochastic or finite fractals, anomalous multifractal spectra have been reported for aggregated 
particles45, for bit strings46, for boundaries of neuronal cells47 and for some mathematical fractals represented in 
digital images32. The origin of such curve shapes has not been investigated sufficiently and still is subject of scientific 
debate, but it is conceivable that scaling rules are only valid for specific ranges of the multifractal spectrum.

The method proposed in this proof-of-concept describes the geometric complexity of neural fiber tracts with a 
single parameter. The observed trend of decreasing FD with age was also found for FA and is congruent with other 
studies16. Although it is fascinating that a single value is definitely linked with structural changes in the brain, a 
closer look on specific regions might be in the scientific focus. Spatially resolved FA maps revealed that structural 
changes due to normal aging are not uniformly distributed16,19. However, spatially resolved evaluation of FD is 
possible, following the idea described in48. The challenge of extending our approach from a single value to a three 
dimensional spatially resolved FD map is less a question of feasibility than a question of computational efficiency.

Conclusion
MRI based tractography of the brain is the most promising imaging technique for revealing cerebral white matter 
architecture. Changes in the structural complexity can reliably be measured with fractal analysis. Specifically the 
correlation dimension D2 is a reliable measurement to capture structural changes which was demonstrated for 
a large cohort of normal aging subjects. The sensitivity to structural changes due to aging is higher compared to 
changes in fractional anisotropy suggesting that fractal dimension might be a valuable biomarker for detecting 
structural changes in the brain. This is of exceptional interest for studying structural changes in healthy subjects 
as well as for pathologies provoking white matter changes.

Methods
Participants. All of the 85 participants (34 male between 21 and 74 years, 51 female between 18 and 81 
years) had no history of chronic psychiatric or neurological diseases, brain or heart surgery. The Mini-Mental 
State Examination49 and the General Depression-scale (in German)50 ensured that all participants over 60 years 
were free from dementia and depression. Participant’s written informed consent was obtained according to the 
Declaration of Helsinki and the study was approved by the ethics committee of the Medical University of Graz.

MRI data acquisition. Imaging data was acquired on a 3 T Siemens Skyra (Siemens Healtheneers, Erlangen, 
Germany) using a 32-channel head coil. Foam pads were used for the fixation of participants’ head during data 
acquisition. For diffusion weighted images, 50 transversal slices, oriented parallel to the AC-PC plane, were meas-
ured using a single-shot echo planar imaging sequence (TR = 6600 ms, TE = 95 ms, flip angle 90°, FoV = 240 mm, 
matrix size = 122 × 122 mm, 2 mm thickness, slice gap = 0.5 mm, GRAPPA acceleration factor = 2). One 
non-diffusion weighted image (b value = 0 s/mm²) and 64 diffusion sensitizing gradient directions were applied 
(b value = 1000 s/mm²). Additionally, structural images were obtained using a MPRAGE sequence (TR = 2530, 
TE = 2.07, TI = 900 ms, flip angle = 9°, Number of slices = 176, slice thickness = 1 mm, matrix = 256 × 256). Total 
scanning time was 13 minutes 33 seconds.

MRI data processing. Diffusion data were analyzed using the FSL Software Library (v. 5.0.1) from the 
Oxford Centre for Functional MRI of the Brain (FMRIB), in a standard multi-step procedure including: (a) cor-
rection for eddy-currents and head-motion artefacts (b) removal of non-brain tissue based on the b = 0 images 
for every participant, using the Brain Extraction Tool (BET) (c) voxel-wise fitting of diffusion tensors and com-
putation of fractional anisotropy (FA), using DTIfit. All of these steps are part of the FMRIB Diffusion Toolbox 
(FDT). For each subject, the T1-weighted image was registered to the b0-image using a rigid body transformation, 
implemented in SPM12 (vers. 6685). After binarization, the T1-image was segmented into gray matter, white mat-
ter and cerebrospinal fluid using SPM12 in native space (tissue types = 6, sampling distance = 3, segmented image 
voxel size = 1 × 1 × 1), resulting in individual white matter masks. These masks were applied to the FA-images in 
native space. The mean-FA value for the entire white matter was evaluated.

Tractography was performed using CSD, implemented in the MRTRIX 3.0 software package. The CSD 
method allows for estimating the fiber orientation distribution function (fODF) directly from the diffusion sig-
nal. We estimated the fODF based on an eighth-order harmonic function. A total number of 105 tracks were 
kept constant for all data. The tracks, given though fulcrums in a three dimensional space, were discretized on a 
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1024 × 1024 × 1024 grid and displayed as binary image (Fig. 6). This approach is comparable to a binary version 
of super-resolution track-density mapping42,43.

Fractal Analysis. The fractal dimension (FD) is often introduced by the Hausdorff dimension, a mathe-
matical definition of fractals that cannot be directly solved. An approximation is possible, using the concept of 
self-similarity. An object with (N) segments scales with a length (r) thereby formulating a power law:

= −N r (1)FD

hence,

= −FD N
r

log
log

,
(2)

where FD is the dimension of the scaling law. For non-fractal objects, FD equals the Euclidean dimension (D = 1, 
2, 3, … n) that is one for a line, two for an area, and three for a volume. Fractal objects obey a metric scaling rela-
tion, where the exponent (the fractal dimension, FD) is not equal to the Euclidean dimension and is usually not 
an integer. In nature, a single exponent is often not enough to describe a complex structure and a spectrum of 
exponents is needed. The generalized dimensions or Rényi-dimensions Dq are defined according to:

µ
ε

ε

ε
= − ∑

−
= −

ε→
D

B
q

I
lim

log ( )
(1 )log( )

( )
log( ) (3)q

i i
q

q

0

where µ is the probability density of elements in the ith box Bi, with a side length of ε. For q = 0, D0 is usually 
referred to as the capacity dimension that equals the box-counting dimension in that µ is the probability that the 
ith Box Bi is populated. For q = 1, D1 is called the information dimension where the number of elements is counted 
for every Box Bi. For q = 2, D2 is called the correlation dimension. These dimensions are theoretically related by 
the inequality

≥ = −∞ ∞+D D for q [ , ] (4)q q 1

Figure 6. Tractography discretized on a 1024 × 1024 × 1024 grid. Rendered visualization in coronal (a), 
sagittal (b), and transversal (c) view. 104 fibertracts were used for better visualization. Please note that 105 
fibertracts were used for FD calculation. Image d shows one central transversal slice with magnified view. 
Images are inverted for better visualization.
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For an exact monofractal, the evaluated dimensions with varying q should be equal. In contrast, multifractals 
show a monotonic decreasing behavior in their spectrum of dimensions Dq according to Eq. [4]. All calculations of 
the fractal dimension were done in a three dimensional space by covering the high-resolution tractograms with 
cubes. The multifractal spectrum was carried out within the range q = [0, 10] using cube side lengths ε in the range 
of n = [2, 8] given ε = 2n (Fig. 7) This range, that was determined by simulations (data not presented here), has shown 
the best linear fit in the double logarithmic plot µ− ∑q B1/(1 )log ( )i i

q versus εlog( ) for all q. RMSE was evaluated 
for every q to reveal q showing the highest linearity. The highest linearity in the double logarithmic plot means that 
the data are closest to the power law (see Eq. 1) and hence, providing the best fractal description of the structure. 
Multifractal Analysis was implemented with MATLAB software (V 2015b, The MathWorks, Inc., MA, USA).

Statistical Analysis. Linear models and polynomial models of 2nd order were used to test for correlation 
between FD (D2) and FA with age. This allows a direct comparison of age-dependent changes of both, FD and 
FA. The Akaike Information Criterion was applied to select the most probable model. Evaluated Akaike Weights 
within the range [0, 1] provide the probability of the model. Gender differences were statistically tested with 
regards to the parameters age, FD (D2), FA, white matter brain volume, mean fiber length using an unpaired, 
two-tailed t-test. All statistical analyses were carried out using Origin Pro 9.0 (Northhampton, MA, USA)

Data availability. All data are available from the corresponding author upon reasonable request.

Ethical statement. All methods and experiments were performed in accordance with relevant national 
and international guidelines and regulations and were approved by the local ethics committee. All subjects gave 
written informed consent to participate in this study.
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