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s of hydrogen energy: an overview
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Jun Natsukicd and Toshiaki Natsuki*cd

Hydrogen is the most environmentally friendly and cleanest fuel that has the potential to supply most of the

world's energy in the future, replacing the present fossil fuel-based energy infrastructure. Hydrogen is

expected to solve the problem of energy shortages in the near future, especially in complex

geographical areas (hills, arid plateaus, etc.) and harsh climates (desert, ice, etc.). Thus, in this report, we

present a current status of achievable hydrogen fuel based on various scopes, including production

methods, storage and transportation techniques, the global market, and the future outlook. Its objectives

include analyzing the effectiveness of various hydrogen generation processes and their effects on the

economy, society, and environment. These techniques are contrasted in terms of their effects on the

environment, manufacturing costs, energy use, and energy efficiency. In addition, hydrogen energy

market trends over the next decade are also discussed. According to numerous encouraging recent

advancements in the field, this review offers an overview of hydrogen as the ideal renewable energy for

the future society, its production methods, the most recent storage technologies, and transportation

strategies, which suggest a potential breakthrough towards a hydrogen economy. All these changes

show that this is really a profound revolution in the development process of human society and has

been assessed as having the same significance as the previous industrial revolution.
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1 Introduction

Over the past ten years, there has been a noticeable and
signicant shi in the global fuel supply. Traditional fossil fuels
like coal, gas, and oil will progressively be phased out; this is
also an unavoidable tendency of civilization, with negative
implications and effects on the climate, water resources, land
resources, and people. Renewable energy sources, including the
sun, wind, ocean waves, hydrogen, and others, have emerged as
the most promising and likely prospects for the future of energy
supply.1,2 In which hydrogen energy is anticipated to become
widely used in the future, exerting signicant inuence on
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a variety of societal developments. Hydrogen energy could be
created on an industrial scale without relying on the environ-
ment, in contrast to renewable energy sources like sun, wind,
and tide energy that are dependent on weather conditions.3,4

This is another key benet of this fuel type. Moreover, hydrogen
fuel can be produced using various techniques based on the
specic industrial infrastructure conditions of each country,
making it a very exible energy fuel type.

There is a trend for the usage of fossil fuels to progressively
decline dramatically as the adoption of new, more ecologically
friendly energy solutions and renewable energy sources rises. A
big role is anticipated for hydrogen-based energy processes in
our upcoming generations as they appear to be one of the best
ways to create improved environmental and sustainability
circumstances.5,6 In an ever-increasing number of studies,
hydrogen is being viewed as a critical component of a global
sustainable energy plan that signicantly lessens the menace of
climate change, air pollution, and global warming.7–9 As an
inevitable development trend of human civilization, the world
has started to convert energy from one to one another. Here, the
prediction of transition from solids to liquids and gas fuels has
been illustrated in Fig. 1.
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It is possible to manufacture hydrogen fuel from environ-
mentally benign sources (solar, wind, tide, etc.), which is
regarded as a renewable energy fuel. However, most of the
hydrogen is being produced from fossil fuels, and the actual
output of hydrogen being created using water electrolysis and
renewable resources like biomass, sewage sludge is still too
small due to the limitations of technology and the high cost in
comparison with the other traditional fossil precursors.10–15

Almost all of the hydrogen utilized today is generated from
fossil fuels, with a few rare exceptions. Fig. 2a clearly shows that
the majority of the hydrogen generated worldwide (about 48%)
comes from natural gas, 18% of hydrogen is produced from
coal, and 30% of dedicated hydrogen is produced from oil.
Electrolysis of water and electricity is used to create the
remaining 4%.16

Fig. 2b shows hydrogen production efficiency from various
different processes, with electrolysis demonstrating the highest
efficiency at around 80%, but this technology is still expensive
and difficult to use on a large scale.17 Currently, the steam
reforming is the most popular strategy to produce hydrogen.

In the long run, hydrogen fuel will replace hydrocarbon fuels
because of its benets and adaptability. In recent years, the
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Fig. 1 The energy form transitioned from solid to liquid from 1850 to 2150.7 Reproduced from ref. 7 with permission from [Scientific Research],
copyright [2019].
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water splitting method has been heavily researched to produce
clean hydrogen gas, which means that no harmful gases (CO,
and CO2) are generated during the production process. Thus,
water is only produced as a byproduct of the creation of
hydrogen fuel if we use the electrocatalyst method, which is
thought to be the most effective and clean energy source.18–20

The use of hydrogen fuel as an independent, clean energy
source with a higher energy content than fossil fuels is
acknowledged on a global scale. A great choice as an energy
source for heat and power, among many other uses, hydrogen
Fig. 2 (a) Global hydrogen production,16 reproduced from ref. 16 with p
efficiency from various different process.17 Reproduced from ref. 17 with

28264 | RSC Adv., 2023, 13, 28262–28287
has many benecial characteristics, including a large storage
capacity, renewability, purity, massive transportation, high
transformation, low emission sources, versatility, and rapid
recovery.21–23 It is therefore recognized as the most promising
and ecologically benecial energy source of the twenty-rst
century. Hydrogen fuel will soon play a key role in industrial
applications, spurring the growth of business, electronic tech-
nology, transportation, and air technology (Fig. 3).

Over the next decade, the race to produce green hydrogen in
Asia will intensify as many of the world's leading energy
ermission from [MDPI], copyright [2022] and (b) hydrogen production
permission from [Royal Society of Chemistry], copyright [2023].

© 2023 The Author(s). Published by the Royal Society of Chemistry



Fig. 3 The relationship between supply and demand of hydrogen fuel.
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companies join hands with regional partners to implement
a range of energy projects. Green hydrogen is created by sepa-
rating water into hydrogen and oxygen using renewable energy
from sources like solar and wind power. This hydrogen fuel can
be used for heavy industries such as steel production, concrete,
and the transportation industry. Demand for green hydrogen is
growing strongly globally, especially in Europe, which is accel-
erating the development of renewable energy to reduce depen-
dence on fossil energy supplies, especially in the winter season.
However, this investment trend is forecast to explode in Asia in
the near future. Moreover, hydrogen storage and transportation
techniques also require stronger research and investment
resources in the context of increasing demand. This has led to
Fig. 4 The hydrogen color is based on various production techniques.3

[2022].

© 2023 The Author(s). Published by the Royal Society of Chemistry
a strong investment in research into new materials for liquid
hydrogen containers and gaseous hydrogen storage. In
summary, the hydrogen industry will lead the rapid develop-
ment of various supporting industries that help to raise the
economy and provide a great opportunity for a future society
based on clean renewable energy.

There have been numerous reviews about hydrogen fuel,
production methods, storage and transport facilities, and
economic value. Each review brings certain knowledge and
perspectives to this future fuel. This review is presented with
the ambition of being able to synthesize, distill key points,
and timely update important information about hydrogen
energy.
0 Reproduced from ref. 30 with permission from [Springer], copyright

RSC Adv., 2023, 13, 28262–28287 | 28265



Fig. 5 Commonly hydrogen production strategies.
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2 Hydrogen productions

Hydrogen fuels current can be generally categorized by various
types based on the color, such as green type can be produced
from renewable sources, blue type can be made from fossil
sources with CO and CO2 capture, grey type can be created from
fossil sources without harmful gases capture, red type can be
produced from nuclear energy (Fig. 4).24–26 Even though most
hydrogen fuels now are of the blue and grey types, which can be
generated via the steam hydrocarbon reforming technique with
CO and CO2 release, green hydrogenmay also be produced from
renewable energy sources. A common technique is electrolysis,
which splits water into oxygen and hydrogen under applied
electrical current and produces green hydrogen with no outright
emissions of carbon dioxide. The required electricity might be
generated using renewable energy sources. Fig. 5 shows the
various methods to produce hydrogen fuels including three
types of blue, red, and green from two main sources: (i) fossil
fuels, and (ii) renewable resources.27–30 Each of these methods
has advantages and disadvantages, which will be discussed
below.
2.1 Hydrogen from fossil sources

At present, global hydrogen production is mainly produced
from fossil fuel inputs by two main methods: reforming and
pyrolysis on an industrial scale. Up until now, hydrogen fuel
circulating on the market has been blue and grey, with the
advantages of low cost, being able to be supplied in large
quantities, and being produced in many different countries
spanning four continents.

2.1.1 Steam reforming. The majority of the hydrogen used
in the worldwide market is produced by reforming hydrocarbon
fuels. The creation of hydrogen is thought to mostly be
produced by the steam reforming of hydrocarbons, particularly
in reneries. In the steam reforming reaction, a combination of
steam and hydrocarbons reacts at a high temperature to create
carbon dioxide and hydrogen (Fig. 6). Natural gas such as
28266 | RSC Adv., 2023, 13, 28262–28287
liqueed petroleum gas and naphtha are both used in the steam
reforming process to obtain hydrogen. Here, steam methane
reforming from natural gas or light hydrocarbons is the
hydrocarbon reformation technique that is most frequently
utilized. The general process of methane steam reforming can
be described by following equations:31–33

- Steam reforming reaction:

CH4 + H2O (heat) / CO + 3H2 (1)

- Water gas shi:

CO + H2O / CO2 + H2 (2)

- CO2 reforming:

CH4 + CO2 / 2CO + H2O (3)

- Higher hydrocarbons steam reforming:

CmHn + mH2O (g) / mCO + (m + 0.5n) H2 (4)

For example, methanol and oxygenated hydrocarbons need
to be heated to 180 °C, but most traditional hydrocarbons need
to be heated to more than 500 °C in order to undergo steam
reforming.34–37 Additionally, the use of catalyst reforming tech-
niques with extra metal has been researched to overcome the
restrictions of mass and heat transfer to permit the kinetics of
steam reforming.38,39 Both nonprecious metals, like nickel, and
precious metals from group VIII elements, such platinum or
rhodium, are utilized as catalysts.40–43 Conventional steam
reformers are constrained by the efficacy factor of pelletized
catalysts due to signicant mass and heat transmission
restrictions.44 Therefore, with traditional steam reformer reac-
tors, kinetics is seldom the limiting factor, and as a result, less
costly nickel catalysts are utilized in industry.45,46 In general,
steam reforming will continue to be the dominant source of
hydrogen fuel in the coming decade because it has an estab-
lished industrial production system, an assured supply of input
© 2023 The Author(s). Published by the Royal Society of Chemistry



Fig. 6 Diagram of steam methane reforming for industrial hydrogen production.31 Reproduced from ref. 31 with permission from [MDPI],
copyright [2021].

Fig. 7 (a) Traditional partial oxidation reactor, and (b) catalytic partial oxidation reactor.
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fuel, and an optimized manufacturing method that yields the
highest quality product. Of course, the hydrogen fuel industry's
long-term objective is to substitute other, more environmentally
friendly production techniques for the steam reforming process
that uses natural gas fuel sources and emits CO or CO2 during
operation.

2.1.2 Partial oxidation. An alternate strategy to steam
reforming processes is partial oxidation which focus on
methane, heavy fuel oil, coal, and other feed stocks might all be
used in this process.47,48 The best method for producing
hydrogen from coal and heavy fuel oil is partial oxidation.48,49

Hydrocarbon fuels are transformed into a mixture of hydrogen,
CO, CO2, and other partially oxidized compounds by the
exothermic process of partial oxidation. One benet of this
© 2023 The Author(s). Published by the Royal Society of Chemistry
method is the strong exothermic nature of oxygen processes,
which negates the need for an external energy source.
Frequently, heavy oil fractions and low-grade coal, which are
challenging to further process and use, are gasied source
materials.50 Biogas and methane are also possibilities.51,52 In
a non-catalytic process called partial oxidation, the rawmaterial
is gasied in the presence of oxygen and possibly steam at
pressures between 3 and 8 MPa and temperatures between 1300
and 1500 °C, which generate more CO than steam reforming, so
the partial oxidation process needs to be completed by the
steam-based conversion of CO into H2 and CO2. The partial
oxidation process is an exothermic reaction, and the equation
for the reaction is given by the following equation:51,52
RSC Adv., 2023, 13, 28262–28287 | 28267



Fig. 8 Schematic of an autothermic reactor.
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CmHn + 0.5mO2 / mCO + 0.5nH2 (5)

Moreover, in order to increase the hydrogen conversion rates
and decrease the reaction temperature compared to non-
catalyzed partial oxidation techniques, hydrogen generation
from the partial oxidation of hydrocarbons employing catalysts
has been used in commercial settings (Fig. 7).53–55

2.1.3 Autothermal reforming. The method for producing
hydrogen by combining the catalytic partial oxidation process is
known as autothermal reforming. Steam reforming (endo-
thermic) and partial oxidation (exothermic) processes are both
components of autothermal reforming.56,57 Compared to steam
reforming of methane, autothermal reforming has the advan-
tages of not requiring external heat and being easier and low-
cost. In short, the reformer is lled with both steam and
oxygen, which causes the reforming and oxidation events to
occur concurrently and produce a thermodynamically neutral
reaction.58 Compared to the partial oxidation reforming
method, the autothermal reforming technique can be carried
Fig. 9 General schematic for hydrogen production from: (a) traditional
gasification with CO2 capture.

28268 | RSC Adv., 2023, 13, 28262–28287
out at low pressure. Fig. 8 shows the general autothermal
reforming reactor following chemical equations:

- Combustion zone:

CmHn + 0.5mO2 / mCO + 0.5nH2 (6)

H2 + 0.5O2 / H2O (7)

CO + 0.5O2 / CO2 (8)

- In thermal and catalyst zone:

CmHn + mH2O (g) / mCO + (m + 0.5n) H2 (9)

CO + H2O / CO2 + H2 (10)

The choice of catalyst, much like in partial oxidation or
steam reforming, is critical to the outcome, with the most
widely used catalysts being nickel-based because of their effi-
ciency and affordability. Due to this method's exceptional
thermal efficiency, less energy is used compared to partial
oxidation or steam reforming.59 Moreover, an important benet
of the auto-thermal reaction method over partial oxidation is
that it may create a lot of hydrogen gas while beginning and
ending quickly. The steam to carbon ratio and the oxygen to fuel
ratio were both thought to be essential for controlling the
temperature and avoiding coke formation during the auto-
thermal reaction process.60–62

2.1.4 Pyrolysis. Pyrolysis is a thermal decomposition tech-
nique happening in non-oxygen or anaerobic condition in order
to covert different light liquid hydrocarbons into hydrogen and
other carbon element.63 The degradation of hydrocarbons by
heat is referred to as pyrolysis, which depends on the charac-
teristics of the coal, and these decomposition processes have
been conducted at 300 to 400 °C.64,65 The thermal breakdown of
other hydrocarbons has been place at high temperatures; for
example, methane requires a high temperature of 1400 °C to
thermally decompose.66 In addition, the use of a transition
metal catalyst like Ni, Fe, or Co can lower the temperature of the
pyrolysis procedure.68,69 The pyrolysis of hydrocarbon can be
described by following equations:64–69
process of coal gasification, (b) modified process of coal membrane

© 2023 The Author(s). Published by the Royal Society of Chemistry
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CmHn / mC + 0.5nH2 (11)

CmHn + (2m − 0.5n) H2 / mCH4 (12)

CH4 / C + 2H2 (13)

When heavy residual fractions with a boiling point greater
than 300 °C are the source of thermal breakdown, it makes
sense to produce hydrogen using a two-step process that
includes (i) hydrogasication (eqn (12)) and (ii) methane
cracking gasication (eqn (13)). Despite producing less
hydrogen than the other methods, this method enables the
simultaneous creation of useful byproducts, such as carbon
nanotubes, carbon nanobers and carbon spheres.70–72

2.1.5 Fossil gasication. The fossil gasication technique
is described as a series of thermochemical reactions between
the gasifying agent, such as oxygen, steam, air, or carbon
dioxide, and the fossil fuel, such as coal, that occur at high
temperatures.73,74 For instance, the thermochemical conversion
process known as coal gasication transforms coal into gaseous
Fig. 11 Schematic flow diagram of pyrolysis-reforming biomass to prod

Fig. 10 Pyrolysis and gasification technologies for hydrogen production
from [MDPI], copyright [2020].

© 2023 The Author(s). Published by the Royal Society of Chemistry
products like hydrogen and carbon monoxide (Fig. 9).75,76 This
procedure tries to substitute coal burning in order to lessen
hazardous emissions and boost the fuel's energy density. The
key benet of this strategy is the cheaper fuel than natural gas
reforming. However, given the high carbon content, the major
issue with producing hydrogen via coal gasication as opposed
to alternative methods that employ various feedstocks is con-
nected to greater CO2 emissions.77 Due to these benets, coal
gasication and carbon capture-based technologies are being
combined.78 The gasication of coal is the earliest way of
producing hydrogen, which is created in outdated gas plants
and comprises a signicant quantity of CO and approximately
60% hydrogen.79 Coal, for example, has pyrolysis process
following equations:75–79

3C (coal, patch, etc.) + O2 + H2O / H2 + 3CO (14)

CO + H2O / CO2 + H2 (15)
uce hydrogen.

using biomass resources.83 Reproduced from ref. 83 with permission

RSC Adv., 2023, 13, 28262–28287 | 28269
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2.2 Hydrogen from renewable sources

2.2.1 Hydrogen production from biomass resources.
Biomass is considered a great energy resource for hydrogen
production due to its abundant sources and environmental
friendliness, which aim to replace fossil fuels.80 Currently, there
are several techniques to produce energy from biomass,
including physical, thermal, chemical, and biological conver-
sion.81 Biomass might be transformed into heat, power, solid
fuels (coal), liquid fuels (bio-oil, methanol, etc.), and gas fuels
(hydrogen, syngas, etc.) via the gasication and pyrolysis
processes, water splitting, respectively.82

The oldest and most well-known method for utilizing
biomass as a source of hydrogen generation is gasication,
which employs a carefully regulated process involving heat,
steam, and oxygen to transform biomass into hydrogen and
other products without burning.83,84 Because carbon dioxide is
removed from the atmosphere during the development of
biomass, this method may have negligible net carbon emis-
sions, especially if carbon capture, use, and storage are
employed. The construction and operation of biofuel gasica-
tion facilities can provide high-quality hydrogen fuels at
a reasonable cost. Typically, in the process of gasication,
carbon monoxide, hydrogen, and carbon dioxide are produced
from organic or fossil-based carbonaceous materials at
temperatures above 500 °C without burning (Fig. 10). Aer that,
Fig. 12 Schematic of flow diagram of gasification process using mixe
Reproduced from ref. 94 with permission from [Royal Society of Chemi

28270 | RSC Adv., 2023, 13, 28262–28287
the carbon monoxide reacts with water in a water–gas shi
reaction to create carbon dioxide and more hydrogen. This gas
stream can have the hydrogen removed using adsorbers or
certain membranes. The biomass gasication process can be
described by following reactions:83,85,86

First simplied gasication

CxHyOzNmSl (biomass resources) + O2 + N2 + H2O /

CO + CO2 + H2 + other species (16)

Water–gas shi reaction

CO + H2O / CO2 + H2 (17)

One another strategy to produce hydrogen from biomass is
pyrolysis technology. In fact, pyrolysis is modied-gasication
technology in the absence of oxygen.87 Compared to coal,
biomass is more difficult to gasify, and when no oxygen is
utilized, it also creates additional hydrocarbon compounds in
the gas mixture that leaves the gasier. Consequently, a further
step is oen required to reform these hydrocarbons using
a catalyst to produce a clean syngas combination of hydrogen,
carbon monoxide, and carbon dioxide. The carbon monoxide is
then transformed into carbon dioxide using steam in a subse-
quent step known as a shi reaction, just like in the gasication
process used to create hydrogen (Fig. 11).88,89 The generated
d plastic waste precursor to produce hydrogen and other species.94

stry], copyright [2023].

© 2023 The Author(s). Published by the Royal Society of Chemistry
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hydrogen is then sorted and cleaned aer separation and
purication.

2.2.2 Hydrogen production from plastic wastes. Because
plastics are employed in so many different aspects of daily life,
their production, consumption, and resulting plastic waste have
all increased steadily since the industrialization of plastic
production.90,91 Signicant negative effects on the environment,
particularly for terrestrial andmarine ecosystems, are caused by
the proliferation and misuse of plastic packaging, improper
management of residues, unlawful dumping, and unregulated
landlling. Since plastic pollution has been documented for
a long time, it has raised economic and societal concerns. In
fact, plastics can break into micro- and nano-plastics through
erosion and degradation, which is an issue that is difficult to
manage due to its ability to contaminate water supplies, interact
with chemical species in the environment, and even enter
human bodies.92,93

The problem of recycling plastic waste has been proposed for
decades with many experimental technologies. One of the ideas
that is considered groundbreaking is to decompose plastic
waste as an input precursor to synthesize hydrogen through
several classic methods such as gasication, gasication–
pyrolysis, and electrolysis.94–96 Among them, hydrogen produc-
tion from plastic gasication is the most popular technology
with the most synchronized infrastructure and has been put
into production on an industrial scale. Hydrogen production by
gasication can at the same time obtain methane (CH4) as
a major product and segregated capture, as shown in Fig. 12.94

This technology has been themainmethod of making hydrogen
fuel from plastic waste with high efficiency, stability, and low
cost.

With the goal of increasing the efficiency of hydrogen gas
production, pyrolysis has been developed with the advantage of
being able to gasify large volumes of plastic waste such as tires,
plastic containers, etc. Plastic pyrolysis is a technology that
involves the rapid usage of trash and results in signicant
issues (Fig. 13). The quickest approach to prevent adding
signicant volumes of plastic waste such as plastic bag, plastic
Fig. 13 A scheme of pyrolysis process to produce hydrogen from was
[Elsevier], copyright [2023].

© 2023 The Author(s). Published by the Royal Society of Chemistry
container, tires to municipal solid waste is to use this
technique.97–99 Pyrolysis also has the advantage of blocking the
channel via which micro- and nano-polymers can exist in water
sources and enter the human body. However, the plastic
pyrolysis technology also has some limitations of carbon
dioxide and waste oil product during pyrolysis process.
Currently, to increase the hydrogen fuels, various modied-
techniques have been used such as pyrolysis-steam reform-
ing,100 pyrolysis-CO2 dry reforming,101 pyrolysis-plasma catalytic
processing.102,103

In addition to gasication and pyrolysis–gasication
methods that are widely used in industry, electrocatalyst
methods are also being developed. Electrocatalysis is an
appealing and sustainable method to produce clean H2 from
electrolyte containing organic materials at the cathode and
value-added oxygenates at the anode under moderate circum-
stances, which can be powered by renewable energy.104,105

Typically, there are two different ways to convert polymers
through electrocatalytic oxidation: direct oxidation and indirect
oxidation. Indirect oxidation employing potent oxidizing inter-
mediates predominates in the conversion of plastics, whereas
direct oxidation corresponds to the electrophilic assault on
a polymer by OH created by water discharge on the anode
surface.106 For example, Fig. 14a shows electrocatalyst reform-
ing process of for direct oxidation polyethylene terephthalate
(PET) by using palladium modied nickel foam (Pd/NF) anode
and pure NF cathode. Aer 20 h of electrolysis at 0.7 V vs. RHE at
a current density of 400 mA cm−2, the conversion efficiency of
PET increased up to 100%.107 Fig. 14(b)–(d) illustrates the elec-
trocatalyst reforming PET by KOH and the nal product
including potassium diformate, terephthalic acid electrolyte
and hydrogen fuel.108

In general, the purpose of recycling plastic waste still has
a long way to go. However, it must be affirmed that the advent of
disruptive methods such as gasication, pyrolysis, and elec-
trochemical reforming will give hope for a future where plastic
waste can be completely used as abundant input resource into
hydrogen fuel production.
te plastic resources.99 Reproduced from ref. 99 with permission from

RSC Adv., 2023, 13, 28262–28287 | 28271
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2.2.3 Hydrogen production from water splitting using
renewable energy. At the present time, the production of
hydrogen fuel by the water splitting method is a topic of great
interest for research and improving technology to reduce costs.
Why is water splitting so fascinating? Because the ultimate
objective of this technique is to develop an electrolytic system
that generates hydrogen and oxygen using seawater as an elec-
trolyte. One of the best advantages of this technique is that it
can obtain up to 95% purity hydrogen product. In general, water
splitting methods can be classied by three techniques: (i) low
temperature water electrolysis, (ii) high temperature water
electrolysis, and (iii) photonic.

Low temperature water electrolysis is the process by which
electrical energy is used to separate water into hydrogen and
oxygen at ambient temperature. With this method, the total
energy required for electrolyzing water slightly rises with
temperature. The water electrolysis process is described by the
generic equation below:109,110

H2O + electricity / H2 + 0.5O2 (18)

For acid electrolyte:

At anode: 2H2O / O2 + 4H+ + 4e−; E˚ = 0 V (19)

At cathode: 4H+ + 4e− / 2H2; E˚ = +1.23 V (20)

For base electrolyte:

At anode: 4OH− / O2 + 2H2O + 4e−; E˚ = +0.401 V (21)

At cathode: 4H2O + 4e− / 2H2 + 4OH−; E˚ = −0.828 V (22)
Fig. 14 (a) The electrocatalyst reforming process of PET into high va
permission from [Royal Society of Chemistry], copyright [2021], (b) conv
commodity chemicals and H2 fuel, (d) technoeconomic analysis (TEA) o
permission from [Springer], copyright [2021].
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For neutral electrolyte:

At anode: 2H2O / O2 + 4H+ + 4e−; E˚ = +0.817 V (23)

At cathode: 4H2O + 4e− / 2H2 + 4OH−; E˚ = +0.413 V (24)

Here, the process of breaking the hydrogen and oxygen bonds
within water depends on the passage of a current of electricity
through an anode and cathode placed in the electrolyte.
Although the principle is the same, several electrolysis tech-
niques, such as alkaline-, anion exchange-, solid oxide-, and
proton exchange membrane-electrolysers, can be used to
produce hydrogen [Fig. 15(a)–(c)].111–113 Fig. 15a shows the
general working principle of one water splitting system while
Fig. 15b and c are the developed system of anion exchange
membrane (AEM) electrolysis and proton exchange membrane
(PEM) electrolysis, respectively. These approaches differ mostly
in terms of the electrolyte type used or the ion transport tech-
nique used. Currently, water electrolysis can obtain a high
transition efficiency of up to 80%, which is higher than gasi-
cation and pyrolysis, but this technique needs to be evaluated
for its price to be viable for large-scale production in industry.

A microbial electrolysis cell (MEC) is a bioelectrochemical
hydrogen generation method that is ecologically benign.
Fig. 15d shows the construction of one standard MEC system
based on three main parts: (i) cathode, (ii) membrane, and (iii)
anode, where anodic bio-catalytic oxidation and cathodic
reduction processes are used in the technique.114 An external
renewable energy source, such as solar or wind energy, can serve
as a power source for a MEC system and become a promising
strategy to produce hydrogen. Currently, MEC is focused on
wastewater treatment and also bioenergy hydrogen production
lue-added chemicals and H2 fuel,107 reproduced from ref. 107 with
entional route for PET recycling, (c) electrocatalytic PET upcycling to
f route I at different current density.108 Reproduced from ref. 108 with
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Fig. 15 Scheme of low temperature water electrolysis: (a) alkaline electrolyzers, (b) anion exchange electrolyzers, and (c) proton exchange
membrane electrolysers113 Fig. 15(a)–(c) reproduced from ref. 113 with permission from [MDPI], copyright [2023] and (d) microbial electrolysis cell
system.
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because the hydrogen production efficiency of the MEC system
provides greater yields than water electrolysis. However, the
MEC system still has some disadvantages that need improve-
ment, such as the instability of the bioanode at high tempera-
tures, the high substrate concentration, the fact that bioanodes
are quite sensitive to high acid concentrations, and the fact that
the bioanode can assume hydrogen. Additionally, MEC is an
interesting technique that was developed based on microbial
fuel cells (MFC). MFC has a long history, beginning with
a simple half-fuel cell in 1931 by Barnett Cohen and progressing
through various completed systems to the present. In general,
MFCs are electrochemical devices that can produce electricity
by converting chemical energy into electrical energy from the
biochemical reactions of bacteria.

High-temperature electrolysis is the process of dissociating
H2O into H2 and O2 under steam conditions at very high
temperatures from 500 to 1000 °C, and system efficiencies rise
with rising operating temperatures (Fig. 16). In the high
temperature water electrolysis system, the needed power supply
© 2023 The Author(s). Published by the Royal Society of Chemistry
is lower than low temperature water electrolysis because the
required power supply decreases with the increasing tempera-
ture. It is recognized that high-temperature electrolysis is more
effective than standard electrolysis that takes place at normal
temperature and provides higher efficiency. Therefore, the
high-temperature electrolysis process is being completed and
will be applied on an industrial scale in the near future.
Currently, the solid oxide electrolyser is preferred for use in
high-temperature systems due to its chemical stability at high
temperatures and cost-effectiveness. Since non-rare-earth
elements are more oen utilized as catalysts, solid oxide elec-
trolysis is a growing technique that gains from its high effi-
ciency. The most popular electrode material is a composite of
yttria-stabilized zirconia or Ni-based ceramics, with ceramics
serving as the electrolyte in most cases.115

In summary, low-temperature and high-temperature water
electrolysis are promising technologies for addressing the
global energy crisis. In the hydrogen economy, they also play
a signicant role in manufacturing the hydrogen gas that
RSC Adv., 2023, 13, 28262–28287 | 28273



Fig. 16 A comparison between solid oxide fuel cell (SOFC) and solid oxide electrolysis cell (SOEC).115 Reproduced from ref. 115 with permission
from [Wiley], copyright [2020].
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powers the industrial and transportation sectors. A wide range
of research interests have been expanded to include additional
industrial uses as well as the development of high-performing
materials in order to optimize their potential usage. These
research interests go beyond just electrolyzing water to produce
hydrogen.

Hydrogen from photocatalyst technique is the water splitting
separates into hydrogen and oxygen via photocatalysis. Since
Fig. 17 Photocatalyst water splitting of (a) main process, (b) working pr
structure of semiconductors and redox potentials of water splitting.11

Chemistry], copyright [2009].
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this is what normally occurs in the creation of photosynthetic
oxygen, light energy (photons), water, and catalyst materials are
required. Currently, semiconductors and their composites are
commonly used as photocatalysts. The working principle of
water splitting can be described in Fig. 17, when absorbing
photons from light with energy equal to or higher than the band
gap energy of the catalyst materials, it will promote electrons in
the valence band (VB) to the conduction band (CB), leaving
inciple when using semiconductor as catalyst materials, and (c) band
6 Reproduced from ref. 116 with permission from [Royal Society of
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holes in the valence band and creating electron and hole pairs.
Here, electrons and holes will cause a redox reaction similar to
electrolysis to produce hydrogen and oxygen (Fig. 17a and
b).116,117 For the water reduction process, the valence band must
be at a potential higher than 1.23 V and the conduction band
lower than 0 V compared to a typical hydrogen electrode (NHE)
(H+/H2).118 Currently, there are various type of materials have
been studying for photocatalyst hydrogen production including
metal oxide (TiO2, ZnO, SnO2, Cu2O, Fe2O3),119 metal chalco-
genide (MoS2, WS2, NiS2),120 carbon-based materials (carbon
dots, carbon nanotube, graphene),121 metal–organic framework
(MOF-5, UiO-66, MIL-125, MIL-101),122 etc. However, there are
still limits due to the low photocatalytic effectiveness and
unstable catalyst materials, which can be overcome by pre-
venting photoelectron-hole recombination, reducing secondary
pollution from byproducts, and preventing toxic deactivation.
Fig. 18 Hydrogen storage methods.

Fig. 19 Diagrammatic representation of the many processes involved in
caverns or geological formations, its use in themanufacturing of ammoni
with permission from [Springer], copyright [2022].

© 2023 The Author(s). Published by the Royal Society of Chemistry
3 Hydrogen storage and
transportation techniques

Hydrogen storage is just as important as hydrogen production.
Aer being synthesized and prepared by various methods,
hydrogen is stored in two main forms: gas and liquid.123 In
addition, depending on the infrastructure and equipment of
each area, hydrogen storage can be divided into two types:
stationary storage and mobile storage.124,125 The major applica-
tions of stationary storage techniques are stationary energy
generation and on-site storage at the place of production or
usage. Applications for mobile devices are either used to move
hydrogen that has been stored to a location for usage or storage,
or to utilise hydrogen in a vehicle. This article categorizes
hydrogen storage into two primary categories based on actual
the generation of hydrogen by electrolysis, its seasonal storage in salt
a, and its re-electrification through fuel cells.30 Reproduced from ref. 30
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needs: physical storage and material-based storage
(Fig. 18).126–128
3.1 Compressed gaseous hydrogen storage

At present, hydrogen fuel is stored as gas in many different
techniques. For transportation purposes, compressed gas is
used in special tanks. Steel with a carbon cover or lightweight
composites might be used to create the storage tank. The most
popular technique of storing hydrogen involves compressing it
to pressures more than 300 bars. Cryo compressed gas is an
alternative to compressed gas technology, utilizing both
temperature and pressure to increase the volumetric energy
density in a storage system. Moreover, with the great develop-
ment of technology, hydrogen gas is also stored underground in
deep geological formations, including salt mines, caves of solid
rock, and even depleted oil and gas elds (Fig. 19).30,129 The
advantage of this technology is that it preserves the equilibrium
of the hydrogen source despite weather changes and climatic
uctuations, which is crucial for storing large quantities of
hydrogen fuel.130,131 The predicted demand for hydrogen in the
future will exceed the storage capacity of the currently installed
surface infrastructure, such as pipelines or tanks. Hydrogen
may be produced outside of times of peak demand and safely
stored underground until needed, ensuring long-term energy
security and supply stability.
3.2 Liqueed hydrogen storage

Hydrogen gas can be liqueed at extremely low temperatures
(−253 °C at 1 bar) so that it can be stored in special containers
for transportation purposes over long distances, such as from
one continent to another.132 However, the liquefaction of
hydrogen gas requires a large amount of energy for liquefaction
at temperatures below −253 °C and pre-cooling in the
Fig. 20 Schematic of a cryogenic hydrogen tank.133 Reproduced from r
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liquefaction process. Therefore, liquid hydrogen tanks are also
specially designed with complex systems for the storage and
transport of liquid hydrogen (Fig. 20).133

The liquid hydrogen storage also faces a big problem of
liquid evaporation due to the increase in temperature in the
tank following the outside temperature. This evaporation
phenomenon is addressed as the hydrogen lost per day, also
known as the boil rate.134 To reduce the thermal impact of the
external environment, liquid hydrogen xed storage facilities
prefer to use spherical tanks with very large volumes, up to
thousands of cubic meters. When transporting liquid hydrogen
by road, horizontal tubular tanks are used to balance the
displacement of liquid inside, while spherical tanks will be
prioritized for water transportation on giant ships carrying
liqueed petroleum gas. Fig. 20 depicts a conventional liquid
hydrogen storage tank, together with all its numerous parts,
including vacuum super insulation. Tanks for storing hydrogen
have two walls, with insulation between them. Due to the
signicant temperature difference between outside ambient
temperature and liquid hydrogen, the inner vessel is insulated
with multilayer insulation, also referred to as vacuum super
insulation. This insulation is made of alternating layers of
metal foil and padding material. In summary, due to the power
required for liquefaction, liquid hydrogen has a high opera-
tional cost, but depending on the volume of hydrogen and the
delivery distance, it also has cheaper capital expenses.
3.3 Hydrogen transportation

Hydrogen may be transferred from the production site to the
nal customer in a variety of methods, depending on hydrogen
amounts, transportation distances, and terrain. Based on
currently in use and developed gas transportation methods,
there are now three primary categories: shipping, pipeline
transportation, and road transportation.135 The easiest method
ef. 133 with permission from [MDPI], copyright [2020].
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for solving a small hydrogen need is to transport pressure tanks
by trucks that are lled with compressed hydrogen. This is the
optimal transportation solution over short distances, especially
within one territory. However, the low volume density of
hydrogen gas makes large-scale transportation of hydrogen
a technological problem. This suggests that when being
changed into a higher-density form, hydrogen is carried oversea
distances more effectively.136 Transporting hydrogen fuel in
liquid form is considered an excellent solution to the problems
of geographical distance and large volume.

Liquid hydrogen, liquid organic hydrogen carriers, and
ammonia are the most common forms of hydrogen export that
are thought to be practical. These hydrogen storage strategies
use a variety of energy-intensive conversion processes, such as
cooling, pressure, chemical conversion, and release. The
transportation of hydrogen fuel in large volumes and over long
distances can only be done by sea. Fig. 21 depicts the process of
transporting hydrogen fuel by various strategies, where
hydrogen fuel is compressed gas being transported by heavy
trucks, and large-tonnage ships within the country or to
neighboring countries.135 For long-term and intercontinental
transportation requirements, hydrogen is usually converted to
liquid form in three main ways: liquid hydrogen, ammonia, and
liquid-organic hydrogen carriers. The transportation of liquid
hydrogen fuel is difficult due to the boiling and evaporation of
liquid hydrogen when the temperature in the container
Fig. 21 A schematic of the hydrogen delivery pathways.135 Reproduce
copyright [2022].
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increases and the complex control system to keep the liqueed
temperature during transportation. Therefore, other more
controllable and cheaper methods in use today are ammonia
and liquid hydrogen carriers.

Ammonia offers several benets over alternative hydrogen
storage materials, including a high hydrogen density, well-
developed manufacturing and distribution technologies, and
simple catalytic breakdown.137 Currently, the Haber–Bosch
method is commonly used to produce ammonia on an indus-
trial scale:

3H2 (g) + N2 (g) 4 2NH3 (g), DH˚ = 92 kJ mol−1 (25)

It has the benet that there is no CO2 emission at the end
user in comparison to hydrocarbons and alcohols. The advan-
tages of using hydrogen carriers like ammonia (NH3) in liquid
form at comparatively low pressures are that they have a higher
energy density than 1.5 times liqueed hydrogen and 3 times
compressed hydrogen. However, the disadvantages mostly
relate to the toxicity of liquid ammonia and issues with minute
quantities of ammonia remaining in the hydrogen aer break-
down.137,138 Currently, various countries world-wide have been
developing green ammonia synthesis aiming to replace fossil
fuels and provides alternative strategy for hydrogen production.
Fig. 22a shows the green ammonia can be produced from
renewable sources (solar, wind, hydroelectricity power, etc.) for
d from ref. 135 with permission from [Royal Society of Chemistry],
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various use targets.139,140 The goal is to provide green ammonia
on a worldwide scale and have it break down into hydrogen at
the point of use to provide hydrogen refueling stations. Direct
ammonia fuel cells and other complementary technologies to
extract the energy contained in green ammonia are required by
the growing green ammonia sector. In order to build green
hydrogen as an energy source and a sustainable hydrogen
economy, green ammonia is progressively assuming a crucial
role.

Liquid-organic hydrogen carrier is another alternative tech-
nology of hydrogen transportation which focuses on using
unsaturated liquid organics such as naphthalene, toluene,
decalin, methylcyclohexane, etc.140 In this method, unsaturated
liquid organics that may collect and release hydrogen through
chemical reactions are known as liquid organic hydrogen
carriers. In theory, Fig. 22b shows the hydrogenation process,
which may add hydrogen to any organic unsaturated molecule,
and then, following endothermal dehydrogenation, hydrogen is
puried before being transported to end customers.141 Systems
Fig. 22 Process to synthesize and distribute hydrogen carrier for (a) amm
of Chemistry], copyright [2021] and (b) liquid-organic hydrogen carries.1

[2023].
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for carrying liquid organic hydrogen outperform traditional
energy systems in terms of sustainability, recycling, and emis-
sions. Additionally, it may be used in xed and mobile appli-
cations globally and is safer and simpler to handle than other
hydrogen-based systems.141 Hydrogen fuel will undoubtedly be
employed in the near future and be present in various indus-
tries, from heavy industrial to transportation vehicles like fuel
automobiles and ships.142 This is due to the current rising
energy need. With the movement of fuel across continents, the
logistics industry for hydrogen transportation is certain to see
a huge acceleration. There is no doubt that in the upcoming
decades, methods for storing and moving hydrogen fuel in both
gaseous and liquid forms will advance signicantly.

4 Global markets and future
prospects for hydrogen-based energy

Energy consumers will become more and more numerous as
global population growth and urbanization trends continue,
onia,140 reproduced from ref. 140 with permission from [Royal Society
41 Reproduced from ref. 141 with permission from [Elsevier], copyright
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Fig. 23 Emissions of CO2 from the chemical industry and methods for reducing them using electrolysis technologies: (a) schema of a typical
chemical production facility, where energy and raw materials are provided by petrochemical feedstocks, (b) the idea of a decarbonized
manufacturing process using electrolysis; hydrogen is produced fromwater electrolysis as an energy source, and CO2 is electrolyzed to produce
feedstocks for chemical conversion processes, and (c) a description of the present plans for the implementation of water electrolysis for the
generation of hydrogen throughout the European Union.143 Reproduced from ref. 143 with permission from [Royal Society of Chemistry],
copyright [2023].
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and it is anticipated that by 2030, when the world population is
expected to quadruple, there will be a signicant rise in global
energy demand. Research and development have heavily
concentrated on developing new alternative sources and
researching the effective use of the present fossil fuels due to
the limited availability and depletion of fossil fuels.

A hydrogen economy will arise, forcing the infrastructure of
the fossil economy and human activities to undergo signicant
transformation, just like an oil–gas economy did. It will be
necessary to design and construct new infrastructure for the
way of storing, transporting, and providing hydrogen for
consumption demands since the new energy source production
mode is no longer search, exploration, and exploitation. Natu-
rally, it will be different from gasoline and diesel engines since
the engine will be constructed using a novel concept appro-
priate for hydrogen energy. It will be necessary to rebuild
technical standards, safety norms, and legal requirements while
employing new energy sources. In contrast to the existing fossil
economy, education, training, and scientic research for the
hydrogen economy will need new facilities and new content. In
a brief period of time, signicant adjustments must be made in
order to reach carbon neutrality. Chemical industry must be
decarbonized in order to reach Net Zero by 2050 since it
accounts for more than 15% of all industrial CO2 emissions
(Fig. 23).143 All these developments demonstrate that this revo-
lution is as profound and signicant as past industrial revolu-
tions in the history of human society. For example, Fig. 23b
shows the future potential electrolyzer systems must be pow-
ered by low-carbon electricity in order to decrease life-cycle CO2

emissions. Performance benchmarks are concentrated on the
Fig. 24 Future overview of hydrogen fuel and usage pathways. Hydrog
useful for giving energy systems flexibility and sector coupling.144 Reprod
copyright [2020].
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most researched, scalable low-temperature electrolysis systems
based on PEM electrolyzers for hydrogen generation and gas
diffusion electrode assemblies for CO2 electrolysis.

It can be seen that hydrogen fuel sources are and will be used
widely in industries, especially heavy industries such as metal-
lurgy and machine manufacturing. These industries require
huge amounts of hydrogen fuel and a continuous, uninter-
rupted supply. This puts great pressure on the hydrogen fuel
production industry and requires the complete development of
infrastructure for a new type of fuel that is completely different
from traditional fossil fuels. In addition, light industries such
as food and medicine also need a clean supply of hydrogen fuel
for storage, preservation, and manufacturing applications. In
order to create a chemical reaction involving organic molecules,
hydrogen is added during the hydrogenation process. In the
food industry, for instance, H2 molecules are incorporated into
unsaturated vegetable oils and fats. Moreover, hydrogen pres-
ents a fascinating option for producing fertilizers that are more
durable. Hydrogen is also used a lot in medicine, with typical
applications such as using clean, high-purity hydrogen to treat
diseases. H2 gas inhalation using a ventilator circuit, facemask,
or nasal cannula is an easy therapeutic approach. Inhalation is
thought to be the most effective way to treat stress since inhaled
H2 gas defuses quickly and is absorbed into the entire body. The
application of hydrogen in medicine is very widespread and
truly necessary. Therefore, in this medical eld, a clean, high-
purity, and stable source of hydrogen gas is required.

Most of the commercial hydrogen currently generated comes
from fossil fuels, such as gasication of coal or reforming of
natural gas. Hydrogen may be produced from biomass
en has a wide range of uses and production choices, which makes it
uced from ref. 144 with permission from [Royal Society of Chemistry],
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feedstocks using similar procedures. For a few decades, certain
industrial applications have employed water electrolysis to
make hydrogen, but in recent years, interest in this process has
grown as a result of rapidly developing technology and the
accessibility of inexpensive power.143–145 Many predictions for
the future of hydrogen generation rely heavily on electrolysis,
but other developing technologies, such thermolysis and
photolysis, may allow for a more effective use of thermal or solar
energy.

The future trend is to produce green hydrogen from the
water electrolysis by environmentally friendly renewable energy
(Fig. 24). This production method is forecasted to be cheaper
than industrial production because the main input cost is
electricity from renewable energy (solar, wind, hydroelectric,
tidal). The technology of hydrogen production from biomass,
algae and biotransformation processes is still in the process of
research and testing of the national hydrogen strategy and
budget for implementation.

With greenhouse gas emissions rising and the frequency of
extreme weather events increasing, it is not difficult to see why
countries are looking towards a future where energy plays
a central role clean quantity. However, current efforts to move
beyond fossil fuels are extremely difficult. Moreover, the
geopolitical inuence of oil and gas is present and dwarfs all
other fuel sources. The world is facing a comprehensive energy
crisis that directly affects the economy and stock market. The
ambition to transition from an oil economy to a renewable
energy economy is great and worth pursuing, but there are still
too many economic and geopolitical hurdles that need to be
overcome. The transition to renewable energy takes time
because the world will inevitably face severe shocks due to the
need to redistribute the entire energy system that powers the
world economy and is the foundation of the geopolitical order.

5 Conclusions

Hydrogen fuel, which is created from renewable energy, is still
in its infancy but has great potential for development. Many
countries have announced green hydrogen strategies with huge
investments. Green hydrogen production from renewable
sources is competitive these days, especially as the price of solar
has plummeted in recent years. Currently, electrolysis tech-
nology is improving, allowing the development of large-scale
production factories. On the other hand, the decreasing cost
of electricity production from renewable energy sources, espe-
cially wind and solar power, is also an important factor
promoting the development of the green hydrogen industry.
Moreover, climate change pressures fuel the need to phase out
fossil fuels, fueling green hydrogen strategies. Governments,
energy corporations, and car companies promote the use of
clean fuels, and hydrogen plays a key role in helping to reduce
greenhouse gas emissions enough to prevent the consequences
of climate change. That prospect has sparked a global race to
gain share in a market worth hundreds of billions of dollars.

Due to the signicance of green hydrogen toward achieving
a net-zero emission economy, it is considered essential that
global hydrogen strategies and decadal plans be created based
© 2023 The Author(s). Published by the Royal Society of Chemistry
on the results of exhaustive research studies that present the key
ndings and provide guidelines for future policy implications. A
viable route for meeting the world's large-scale hydrogen
requirement is the transportation of liquid hydrogen. However,
there is still a need for technological solutions to reduce ship-
ping costs, protect hydrogen in liquid form during trans-
portation, and keep the boil-off efficiency at an acceptable level.
The necessity to construct home, industrial, and transportation
infrastructure that is compatible with hydrogen fuel sources is
another crucial issue. Converting our present fossil fuel infra-
structure to alternative fuels will undoubtedly take some time.
Additionally, this presents enormous difficulties for all nations
in the world. In conclusion, hydrogen is now undergoing
extensive study in an effort to create a high-tech, ecologically
friendly, and secure society. Hydrogen will undoubtedly be
a main energy source in the future.
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