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Lipids participate in all cellular processes. Diverse methods have been developed to
investigate lipid composition and distribution in biological samples to understand the effect
of lipids across an organism’s lifespan. Here, we summarize the advanced techniques for
studying lipids, including mass spectrometry-based lipidomics, lipid imaging, chemical-
based lipid analysis and lipid engineering and their advantages. We further discuss the
limitation of the current methods to gain an in-depth knowledge of the role of lipids in aging,
and the possibility of lipid-based therapy in aging-related diseases.
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INTRODUCTION

Aging is a complex, multifactorial process that is characterized by a gradual decline in many
physiological functions at the cellular and organismal levels. These nonmonotonic changes
occur at varying rates across different species, spatially—among tissues within an individual,
and temporally—at different timepoints in an organism’s lifespan. Epigenetic, transcriptomic
and proteomic studies have shown clear evidence for spatial heterogeneity of aging rates among
tissues (Liu et al., 2010; Simon et al., 2013; Consortium, 2020; Moaddel et al., 2021). However,
there is a considerable gap in comparable efforts to resolve the aging lipidome, or lipid profile,
at cellular, tissue, or organismal levels. Changes in the lipidome during lifespan have been
measured across several tissues, which points to opportunity for exploration of this
understudied class of biomolecules (Almeida et al., 2021). Many recent efforts have focused
on the aging lipidome of the central nervous system (CNS), the second-most lipid-rich
structure (after adipose tissue), due to its unique lipid composition (Jové et al., 2021). For
example, approximately 700 lipid species were quantified and evaluated from mouse brains
during aging and pathological conditions to identify cell-type and region-specific lipid profiles
(Fitzner et al., 2020). Similarly, the lipid composition of the eye, another part of the CNS,
undergoes changes related to age and disease state (Liu et al., 2010; Gorusupudi et al., 2016;
Chen et al., 2020a; Lewandowski et al., 2021a).

Lipids play a key role in many biological processes, such as cellular structure, energy storage, and
cell signaling, and are essential for the maintenance of cellular homeostasis. Their dysregulation is
associated with a variety of health conditions, including diseases and aging. Altered lipid metabolism
results in changes in the membrane lipid environment, such as an age-related increased
polyunsaturated fatty acid (PUFA) to monounsaturated fatty acid (MUFA) ratio, increased
ceramide levels and decreased cholesterol levels (Skowronska-Krawczyk and Budin, 2020;
Lewandowski et al., 2021b; Mutlu et al., 2021). While harmful lipid accumulation and
peroxidation have been correlated with aging, emerging studies have only begun to explore the
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mechanistic link between lipid metabolism and pro-longevity
signaling pathways (Han et al., 2017; Qi et al., 2017).

Multiple epidemiological and genetic studies show
unequivocally that lipidomics has great potential in revealing
new biology not captured by traditional lipids and lipoprotein
measurements. Lipid species measurements, like other
intermediate phenotypes, increases statistical power to detect
genetic associations and hence provide opportunity to discover
new lipid loci. When combined with genome-wide association
studies (GWAS), human lipidome profiles have unparalleled
potential to discover genetic variants linked to traditional
blood lipids—low-density lipoprotein cholesterol (LDL-C),
high-density lipoprotein cholesterol (HDL-C), and
triglycerides—and established functional links between lipid
levels and disease (Ference et al., 2017). Genetic discovery on
more than 1.65 million individuals from five ancestry groups
improved fine-mapping functional variants that contribute to
lipid-level variations and polygenic prediction scores for

increased LDL-C levels and cardiovascular conditions
(Graham et al., 2021). Recently, these GWAS studies have
been expanded to include a greater set of lipid species
(Tabassum et al., 2019; Tabassum and Ripatti, 2021), covering
the major glycerophospholipid, sphingolipid, glycerolipid, sterol
and fatty acyl classes in serum and plasma samples (Cadby et al.,
2020). Integration of lipidome, genome and phenome already
revealed genetic regulation of lipidome and identified novel risk
loci of cardiovascular disease (CVD) beyond standard lipid
profiling of traditional lipids (Tabassum et al., 2019). The
findings from these studies hold great potential for the future
of preventive and precision medicine.

Recent advances in technologies that can be used to analyze
lipid composition, structure and localization have been
instrumental in understanding the role of these important
molecules in aging processes (Figure 1). For example, in a
recent study, ultra-performance liquid chromatography to
quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-

FIGURE 1 | Radar plot depicting the relative advantages of different techniques (targeted lipidomics, untargeted lipidomics and lipid imaging) to study lipids.
Comparison criteria include ability to quantify lipids (sensitivity), identify different lipid species (resolution), discern molecular structure, and measure spatial distribution
across tissues.
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MS) based lipidomic analyses revealed the role of fatty acid
binding protein 3 (FABP3) in altering membrane lipid
composition and inducing ER stress in aged muscle (Lee et al.,
2020). Also, altered membrane lipid composition, and more
specifically, decreased membrane fluidity, have been implicated
in aging. For instance, in rat primary cortical neurons treated with
hydroxyurea to provoke senescent-like alterations, changes in
membrane lipid composition led to decreased membrane fluidity
(Yu and Cheng, 2021). In another study, using both ensemble and
single-molecule fluorescence imaging techniques, decreased
membrane fluidity and increased membrane hydrophobicity
were measured in senescent cells (Wi et al., 2021).
Interestingly, through metabolic engineering of unsaturated
lipid biosynthesis, the physiological effects of increased
membrane viscosity on fundamental eukaryotic processes such
as respiratory metabolism were investigated (Budin et al., 2018).
In a study from our laboratory, CRISPR-Cas9 based genome
editing technology was used to generate mutant mice containing a
point mutation in Elovl2 (Elongation of Very Long Chain Fatty
Acids-Like 2), whose promoter region is increasingly methylated
with age. This mutation caused changes in the lipid composition
across several tissues, including the liver and retina, and resulted
in an accelerated aging phenotype and premature visual
impairment (Chen et al., 2020b). Despite these advances in
knowledge, the field of lipid research faces several challenges
including detection sensitivity, resolution, and identification.

Another challenge to studying lipids is the shortage of imaging
techniques that do not require cells to be fixed and processed.
Fluorescent dyes, such as Nile Red, BODIPY, Oil Red O and
Sudan III, have been used to visualize intracellular neutral lipids,
but possess several drawbacks including limited photostability
and small Stokes shift, causing cross-talk between the excitation
source and the fluorescence emission (Fam et al., 2018). Recently,
solvatochromic coumarin derivatives were synthesized for
selective live-cell imaging of intracellular lipid droplets (Jana
et al., 2020), which have been shown to accumulate in the
aging brain (Marschallinger et al., 2020).

Although they are a major class of biological molecules, lipids
have not been studied as well as proteins, partly due to
technological limitations. Recent eruption of novel or
improved tools has allowed the field to formulate new
hypotheses and provide more detailed answers. Targeted/
untargeted lipidomics, mass spectrometry/spectra-based lipid
imaging, lipids-functionalized reporters are accelerating the
rate of discoveries in lipid biology. Here, we will review
available techniques to studying lipids in aging and highlight
several of the recent technological advances in lipid biology that
have allowed us to better visualize and analyze lipids in vivo.
Finally, we will discuss the current challenges in analyzing role of
lipids in aging.

LIPIDOMICS

Lipidomics is a discipline that studies cellular lipids on a large
scale based on analytical chemistry principles and technological
tools, particularly mass spectrometry (MS). Due to the

compatibility with multiple common separation methods,
including liquid chromatogram (LC), gas chromatogram (GC),
capillary electrochromatography (CE) and emerging supercritical
fluid chromatography (SFC), availability of different ionization
methods and mass analyzer types, MS-based approaches offer
high sensitivity and high resolution on a broad application range
(Figure 1). The two main lipidomic approaches include targeted
and untargeted lipidomics. Targeted lipidomics mainly depends
on high-sensitivity MS, such as triple quadrupole mass
spectrometer (Takeda et al., 2018), while untargeted lipidomics
relies on high-resolution MS, such as Q-TOF(Yan et al., 2021),
orbitrap mass spectrometer (Taguchi and Ishikawa, 2010) and
Fourier transform ion cyclotron resonance (FT-ICR) (Haler et al.,
2019). Electrospray ionization (ESI) is the most used ionization
approach for lipidomics. Depending on charge states and
fragmentation, different lipid classes need to be scanned in
different modes. For phospholipids, data are collected in ESI
positive (+) and negative (−) ionization modes in separate runs.
Free fatty acids are usually detected in negative mode, and
positive mode is usually better for cholesterol, CERs,
sphingomyelin (SM) (Cífková et al., 2015), glycerolipids (GL),
glycerophospholipids (GP), and sphingolipids (SP) (Shaner et al.,
2009; Della Corte et al., 2015). Most neutral lipids, such as CEs,
TAGs, wax esters (WEs) (Iven et al., 2013), can be detected in
positive mode. An alternative way to ionize neutral lipids is
atmospheric pressure chemical ionization (APCI), which is
suitable for nonpolar and low-polar compounds. APCI-MS has
been used for identification and quantification of TAGs (Lísa
et al., 2009), WEs (Vrkoslav et al., 2011), and fatty acid methyl
esters (Vrkoslav et al., 2020). In addition, matrix-assisted laser
desorption/ionization time of flight mass spectrometry (MALDI-
TOF MS) can also be used to characterize WEs (Vrkoslav et al.,
2009) and TAGs (Pannkuk et al., 2012).

The purpose of untargeted lipidomics is to identify and
quantify as many molecular species of lipids as possible from
biological samples. Precursor ions and fragment ions produced by
high-energy collision-induced dissociation (HCD) are utilized to
examine the lipid compositions. For example, cholesterol
generates an intense fragment ion peak at m/z 369 ([M +
H–H2O]

+) (Liebisch et al., 2006). Precursor ion scans of m/z
184 commonly employed for the identification of choline
containing species, including phosphatidylcholine (PC) and
SM (Taguchi et al., 2005). Different neutral losses have been
identified for different phospholipids. Neutral loss occurs in MS
when all charge is retained on one of the precursor fragments,
resulting in a neutral product (Martin et al., 2005). For example,
neutral loss of 141, 185, 189 and 277 Da (Dalton) were observed
for phosphatidylethanolamine (PE), phosphatidylserine (PS),
phosphatidylinositol (PI) and phosphatidylglycerol (PG),
respectively (Taguchi et al., 2005; Schwudke et al., 2006).
Product ions arising by neutral loss of 44 Da were observed
with FA (Kerwin et al., 1996). Neutral losses of 78, 98, and
136 Da were observed for long-chain polyunsaturated fatty acids
with five or more double bonds (Thomas et al., 2012).

In untargeted lipidomics, the samples are delivered to MS
through direct infusion mode (shotgun lipidomics) or after
chromatography separation. Both methods have their own
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advantages and disadvantages. Shotgun lipidomics is a rapid way
for lipid analysis, and it ensures that thematrix is consistent for all
lipids (Wang and Han, 2019). LC-MS-based untargeted
lipidomics provides a way to avoid ion suppression, and
therefore, potentially has higher sensitivity (Lísa and
Holcõapek, 2015). Data-dependent acquisition (DDA) is a
more common fragmentation method in LC-MS-based
untargeted lipidomics (compared to Data-independent
acquisition, DIA). Only precursor ions that have relatively
high abundance (above ion intensity threshold) are applied by
different collision energies (Monnin et al., 2018). Contrary to the
“absolute” quantification in targeted lipidomics, which relied on
internal or external standards for quantification, untargeted
lipidomics provides quantitation by statistical analysis using
either raw or normalized peak intensities and compared across
groups of samples (Cajka et al., 2017).

Depending on instrumentation, acquisition mode, mass
analysis routine, and data format, multiple software and
platforms were developed for lipidomics data analysis,
including LIPID MAPS (Fahy et al., 2007), LipidSearch
(Taguchi and Ishikawa, 2010), LipidView (Ejsing et al., 2006),
Lipidblast (Kind et al., 2013) and LipidXplorer (Herzog et al.,
2012), LipidFinder (O’Connor et al., 2017) and others. The choice
of the platform can be driven by the particular type of analysis as
well as by the simple accessibility. The number of available ways
to analyze data is overwhelming, and different methods have their
own pros and cons. Therefore it is of highest importance to use
themost suitable methods for data acquisition and normalization.
We are currently in the midst of standardizing the technical and
analytical approaches. In addition, concerted efforts of many
laboratories in finding common grounds related to the lipid
terminology (Liebisch et al., 2020) should help researchers to
understand their data in the context of data of other scientists.

The development of novel techniques and instruments have
made it possible to maximize the coverage of lipid species
detected and quantified in complex biological samples, such as
plasma and different tissues (Contrepois et al., 2018; Naoe et al.,
2019). For example, combined with droplet extraction technique
and a pulsed direct current electrospray ionization, MS has been
applied to detect metabolites from a single cell on QE-Orbitrap
mass spectrometer, identifying more than 300 phospholipids
(Zhang et al., 2018).

LIPID IMAGING

With the development of the high–resolution, high-sensitization
mass spectrometry, mass spectrometry-based imaging (MSI) has
been successfully used to map the distribution of various lipid
species from biological surfaces of different tissues and organs
and showed potential for diagnosis and prognosis of diseases
(Zhao et al., 2020; Patterson et al., 2016). Current MSI techniques
include secondary ion mass spectrometry (SIMS), matrix-assisted
laser desorption ionization (MALDI) and desorption electrospray
ionization (DESI) (Figure 1). Among them, MALDI-MSI is the
most developed technique and therefore, is currently the most
commonly used. It shows the potential to provide a vast amount

of information on the abundances of specific lipids, but also
provides direct detection and spatial distributions of molecules
within biological tissues. Several laboratories have used MALDI-
MSI to understand the lipid composition of the retina, most
notably in the photoreceptor OS of human retinas (Zemski Berry
et al., 2014; Anderson et al., 2020). Changes in lipid composition
upon disease or mutations have also been recently studied
(Kautzmann et al., 2020). However, MS-based imaging
methods cannot determine either the exact location of lipid in
certain cellular organelles in situ, or image lipids on single cells
due to the low spatial resolution (10–100 μm) and insufficient
imaging depth (section thickness). However, powerful imaging
and statistical software have increased the performance of MSI.
For example, SpaceM, a method for detection of metabolites at
the single-cell level in situ by using MALDI-MSI integrated with
light microscopy and digital image processing, allows
achievement of subcellular precision, high throughput
metabolomics imaging (Rappez et al., 2021). A dedicated
program was written to allow the conversion of the mass
spectra into a format compatible with the Biomap software
and to help DESI imaging of direct analysis of brain tumors
(Eberlin et al., 2012).

Different from MSI, spectral imaging, such as Stimulated
Raman Scattering (SRS), has a deeper imaging depth than
other methods (up to 1 mm) allowing for 3D volumetric
imaging (Figure 1) (Wei et al., 2019). SRS works by detecting
the vibration of chemical bonds in biological tissues, exploiting
the fact that different chemical bonds vibrate at distinct
frequencies (Downes, 2015). Each molecule understudy has its
own vibrational spectrum profile, allowing SRS imaging to be
chemically specific. Compared with spontaneous Raman
spectroscopy, SRS microscopy offers at least 1,000-fold faster
acquisition (Fung and Shi, 2020; Shi et al., 2021). Moreover, SRS
can be used for 3D optical sectioning even in living animals (Shi
et al., 2018). Finally, SRS signal intensity is linearly proportional
to the concentration of a chemical bond, which can thus allow
quantitative imaging (Li et al., 2018a). Shi et al. (Shi et al., 2018)
developed a platform that combined deuterium oxide (D2O)
probing with SRS (DO-SRS) microscopy to image in situ
metabolic dynamics of proteins, lipids, and DNA in a variety
of model organisms, including fibroblast-like COS7 cells, C.
elegans larva, zebrafish embryos, and mouse tissues, exhibiting
powerful ability to visualize lipogenesis and protein synthesis.

Rapid development of solvatochromic dyes in the last decade have
allowed us to better visualize plasma membranes (Danylchuk et al.,
2020) and intracellular organelle membranes (Niko et al., 2016) in
living cells. Solvatochromic dyes are fluorescent probes that can alter
their fluorescence wavelength in response to the polarity of their
environment, which is especially useful in studying the heterogeneity
of lipid biomembranes. Unlike “classical” dyes, such as rhodamine
and cyanines, the environment-sensitive solvatochromic dyes are
generally push-pull fluorophores that undergo intramolecular charge
transfer (ICT) upon photoexcitation (Kucherak et al., 2010). These
probes can also be derivatized to target specific organelles, which can
then be used to compare lipid profiles and changes in lipid order of
intracellular compartments in response to external stress (Danylchuk
et al., 2021).
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CHEMICAL-BASED LIPID ANALYSIS

Chemical approaches provide a sensitive and flexible way to
understand the roles of lipids in biology. Radioisotopes
labeled lipid precursors (e.g., 14C, 32P for polar lipids)
have been previously used to map the lipids synthesis
pathway (Moldoveanu and Kates, 1988). Now,
fluorescently-labeled lipids combined with super-resolution
microscopy enable high-resolution visualization of lipids.
Photoactivatable lipid probes are powerful tools for lipid
biology studies through light-controlled imaging at high
spatial and temporal resolution (Mentel et al., 2011;
Haberkant et al., 2013). So far, it has been used for
imaging of lipid droplets in live cells (Gao et al., 2017;
Kavunja et al., 2020), membrane interface-protein
interactions, and organelle-specific imaging (Li et al., 2018b).

To improve the sensitivity of MS-based lipids detection,
different derivatizations are needed for different lipid classes.
For example, the most common quantification of fatty acids
was performed by GC-MS after methyl ester derivatization.
Alternate ways have been developed to improve the
quantification of fatty acids by LC-MS, such as
derivatization by precharged quaternary ammonium salt of
the trimethylaminoethyl ester (TMAE) (Li and Franke, 2011).
Derivatizations also help to reveal the lipid structure when
targeted to different groups, such as carbon-carbon double
bond and carboxyl group (Wang et al., 2013; Unsihuay et al.,
2021). For example, photochemical derivatization has been
used to identify C=C location and relatively quantify sn-
position isomers within single-cell (Li et al., 2021).

LIPID ENGINEERING

Over the past several decades, complementary synthetic
biology and metabolic engineering techniques have been
applied to functional studies of lipids (Moore et al., 2021).
Nano-injection of lipids has been successful in directly
delivering different phospholipids, including PE, PC, and
LPC, into intracellular membranes (Aref et al., 2020).
Powerful genetic tools, such as CRISPR-Cas9 mediated
knockouts, have created programmable, robust and
versatile methods for genome editing across several
organisms (Chen et al., 2020b; Dasyani et al., 2020).
However, classical approaches offer only binary or on/off
control of gene expression. In contrast to proteins and
nucleic acids, lipids are not direct gene products; rather,
they are synthesized via many complex metabolic
pathways. Therefore, precise manipulation of genes
involved in lipid metabolic pathways is necessary to control
lipid stoichiometry in living cells. Titratable expression
platforms, such as the Tet repressor or pBAD promotor,
allow for such fine-tuning of gene expression. Using this
approach, cellular respiration in E. coli was measured as a
function of unsaturated fatty acid (UFA) levels in the inner
membrane (Budin et al., 2018). Bidirectional titration of gene
expression in a metabolism-wide manner has also been

achieved by integrating plasmid-based single-guide RNA
(sgRNA) library methodology with a CRISPR-dCas9 system
(Bowman et al., 2020).

FUTURE DIRECTIONS

Although mass spectrometry is extremely powerful for analysis of
different lipid species, there are still challenges to identify all the
lipids. Some lipids with multi-phosphate groups, such as
phosphoinositide, need to be derivatized to improve the
sensitivity of detection due to their low ionization efficiency.
Lipids containing super-long-fatty-acid are difficult to ionize or
vaporize; therefore, it is challenging to analyze them. The
discrimination of isomers of lipids and the localization of the
double bonds in lipids are other challenges for most mass
spectrometry.

There is no doubt that the lipid composition of membranes
directly and indirectly influences the activity of receptors,
channels, and other transmembrane and membrane-
associated proteins. However, the molecular role of
membrane lipids is still not fully determined. Due to the
limited detection sensitivity and insufficient depth of MS-
based imaging techniques, detailed mapping of region-specific
lipid profiles in tissues, such as the heterogeneous distribution
of cholesterol in rod outer segments, is also daring. To
understand the interaction between lipids and associated
proteins, methods for isolating lipid-protein complexes,
detecting lipid-protein interactions and combining muti-
omics data need to be developed. A series of
interdisciplinary studies involving biophysics of
membranes, biochemistry, and molecular biology will be
required to understand the regulation of protein activity by
membrane lipids and how to modulate them. One challenge is
the ability to purify membrane proteins in their native lipid
environment to analyze protein-lipid functional and
biophysical interactions. The conventional method of using
detergents to isolate membrane proteins does not accurately
preserve the surrounding membrane bilayer, which may
influence both protein structure and function. The
emergence of styrene maleic-acid lipid particles (SMALPs)
has been developed to extract the membrane bilayer
containing proteins into discrete nanodiscs, which can then
be subjected to purification methods such as immunoaffinity
chromatography. Using this technology, major differences in
lipid composition between the central and rim regions of rod
outer segment discs were described (Sander et al., 2021). The
same methods can be used in vitro to study the impact of
changes in lipid bilayer composition on receptor activity
(Grime et al., 2021; Szundi et al., 2021).

With our current knowledge in hand, it has been possible to
use analog control of lipid biosynthesis using highly titratable
expression platforms (Budin et al., 2018). However, further
development of techniques is required to significantly
improve the understanding of the role of lipids in biology
and aging. Future directions include novel methods of
ionization, super-resolution imaging, better understanding
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of lipid metabolism, and modifying the lipid composition of
specific organelle membranes.

While advances in lipidomics, one of the younger members of the
“omics family”, havemade it possible tomeasure changes in the aging
lipidome, mechanistic understanding of these changes remains a
challenge. Recent advances in genome mapping and molecular
biology have begun to connect the genes involved in lipid
biosynthesis and their functions. Together with emerging genomics
tools, lipidomics has the potential to identify lipid-modulating genetic
variants in aging and various diseases, providing us with many new
opportunities to develop better predictive and personalized medicine.
Looking forward, interdisciplinary approaches and multilaboratory
collaborations will shed light on the functions of this dynamic class of
biomolecules and reveal the potential for lipid-based therapies in age-
related diseases.
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