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Abstract: Nobiletin is a polymethoxylated flavonoid isolated from citrus fruits with wide biological
effects, including inhibition of reactive oxygen species (ROS) production and cell cycle regulation,
important factors for oocyte in vitro maturation (IVM). Therefore, the objective of the present study
was to evaluate the antioxidant activity of nobiletin during IVM on matured bovine oocyte quality
(nuclear and cytoplasmic maturation; oocyte mitochondrial activity; intracellular ROS and glutathione
(GSH) levels) and their developmental competence, steroidogenesis of granulosa cells after maturation,
as well as quantitative changes of gene expression in matured oocytes, their cumulus cells, and
resulting blastocysts. Bovine cumulus-oocyte complexes were in vitro matured in TCM-199 +10%
fetal calf serum (FCS) and 10 ng/mL epidermal growth factor (EGF) (Control) supplemented with 10,
25, 50, or 100 µM of nobiletin (Nob10, Nob25, Nob50, and Nob100, respectively) or 0.1% dimethyl
sulfoxide (CDMSO: vehicle for nobiletin dilution). A significantly higher percentage of matured
oocytes in metaphase II was observed in Nob25 and Nob50 compared to other groups. Similarly,
cleavage rate and cumulative blastocyst yield on Days 7 and 8 were significantly higher for Nob25
and Nob50 groups. Oocytes matured with 25 and 50 µM nobiletin showed a higher rate of migration
of cortical granules and mitochondrial activity and a reduction in the ROS and GSH content in
comparison with all other groups. This was linked to a modulation in the expression of genes
related to metabolism (CYP51A1), communication (GJA1), apoptosis (BCL2), maturation (BMP15 and
MAPK1), and oxidative stress (SOD2 and CLIC1). In conclusion, nobiletin offers a novel alternative
for counteracting the effects of the increase in the production of ROS during IVM, improves oocyte
nuclear and cytoplasmic maturation, and subsequent embryo development and quality in cattle.
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1. Introduction

In vitro maturation (IVM) of bovine oocytes is one of the most important processes for the
development of other assisted reproductive techniques, such as in vitro production of embryos (IVP).
The accomplishment of this technique requires successful IVM that involves nuclear, cytoplasmic, and
molecular maturation, necessary for subsequent embryonic development [1]. Nevertheless, IVP of
cattle embryos still has limitations, considering that not all the oocytes have the ability to develop into
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a viable embryo after IVM [2], as the culture systems decrease the quality of these gametes [3]. One of
the causes is the increase in the production of reactive oxygen species (ROS) caused by the oxygen
tension at which IVM is performed [4]. Under normal conditions, the cell produces a ROS level that
acts beneficially for tissue regeneration, intracellular redox regulation, and embryogenesis, but an
excess of ROS can oxidize cellular molecules, such as lipids, carbohydrates, amino acids, and nucleic
acids, modifying their functions and compromising cellular viability by producing lipid peroxidation,
mitochondrial damage, and apoptosis [4]. The strategy to avoid the harmful effects caused by an
excess of ROS is the use of a wide variety of antioxidants during IVM, such as Vitamin C that protects
cells against ROS and acts as an inhibitor of lipid peroxidation [5], cysteamine, which increases
intracellular glutathione (GSH) content that protects cells from the deleterious effects of oxidative
stress [6] and catalase, which reduces the intracellular concentrations of ROS during IVM and the
percentage of apoptotic cells [3]. Moreover, exogenous antioxidants can also act as signaling molecules
in steroidogenesis and intracellular redox regulation during IVM [6–8]. In recent years, there have been
promising results with compounds of natural origin, such as resveratrol [8] or quercetin [6]. However,
it is not yet clear which antioxidant is the most efficient to support the development, production,
and quality of bovine embryos.

Nobiletin, a class of polymethoxylated flavone identified from the citrus peel (chemically known
as 5,6,7,8,3′,4′ hexamethoxyflavone), has drawn increasing attention since it is easily absorbed across
the cytoplasmic membranes due to its structure and lipophilic nature [9,10]. Nobiletin interacts with
several signaling pathways (ERK, PI3K/AKT, CREB) to promote survival in various cell lines [10,11].
Moreover, nobiletin has a broad range of biological effects, including cell cycle regulation [10], reduction
of apoptosis [11,12] and antioxidation [13], important also for the success of oocyte IVM.

Thus, in this study, we aimed to evaluate the antioxidant activity of nobiletin during IVM on
matured bovine oocyte quality and their developmental competence. The parameters evaluated were,
(i) nuclear (meiotic progression to metaphase II (M-II)) and cytoplasmic maturation (cortical granules
(CG) and mitochondrial distribution pattern), (ii) oocyte mitochondrial activity, and intracellular ROS
and GSH levels (iii), steroidogenesis of granulosa cells (iv), oocyte developmental competence to
blastocyst stage, and (v) quantitative changes of gene expression in matured oocytes, their cumulus
cells (CCs) and produced blastocysts.

2. Results

2.1. Nobiletin Enhances Oocyte In Vitro Maturation and Reduces Oxidative Stress

When evaluating the effect of nobiletin on nuclear maturation, we observed that a concentration
of 25 (87.0 ± 0.6%) and 50 µM (89.3 ± 0.4%) increased (p < 0.05) the percentage of oocytes reaching
M-II compared to all other groups (Nob10: 72.9 ± 0.4%; Nob100: 71.5 ± 0.8%; Control: 71.7 ± 0.8%;
and CDMSO: 70.5 ± 0.5%) (Table 1).

The migration of CG to the cortical region of the oocyte, as well as mitochondrial distribution
and their activity, were used as indicators to analyze cytoplasmic maturation. In the assessment of
the cortical granule distribution patterns oocytes matured in the presence of Nob25 (85.7 ± 0.3%)
and Nob50 (89.9 ± 2.2%) displayed a higher incidence of migrated CG than oocytes in the Control
(69.1 ± 1.1%), CDMSO (69.6 ± 0.9%), Nob10 (72.1 ± 1.0%) and Nob100 (71.2 ± 0.7%) groups (p < 0.05).
The presence of oocytes with a partially migrated pattern was lower (p < 0.05) in Nob25 and Nob50
than all other groups. Similarly, the non-migrated pattern distribution of CG was lower (p < 0.05) for
nobiletin groups compared to the Control group, while for CDMSO, Nob10 and Nob100 no differences
were observed (Table 1). Representative images of CG distribution in matured oocytes are presented in
Figure 1.
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Table 1. In vitro maturation of bovine oocytes in the presence of the nobiletin.

Parameters Evaluated Control CDMSO Nob10 Nob25 Nob50 Nob100

Nuclear maturation n 117 122 133 146 149 144

Matured (M-II) n (%) 84
(71.7 ± 0.8)b

86
(70.5 ± 0.5)b

97
(72.9 ± 0.4)b

127
(87.0 ± 0.6)a

133
(89.3 ± 0.4)a

103
(71.5 ± 0.8)b

Immature n
(%)

33
(28.2 ± 0.7)a

36
(29.5 ± 0.5)a

36
(27.1 ± 0.4)a

19
(12.9 ± 0.6)b

16
(10.7 ± 0.4)b

41
(28.4 ± 0.8)a

Cytoplasmic Maturation
Cortical Granules Distribution

n 58 66 72 70 78 70
Migrated n

(%)
40

(69.1 ± 1.1)b
46

(69.6 ± 0.9)b
52

(72.1 ± 1.0)b
60

(85.7 ± 0.3)a
70

(89.9 ± 2.2)a
50

(71.2 ± 0.7)b

Partially migrated n (%) 10
(17.2 ± 2.6)a

12
(18.2 ± 1.7)a

15
(20.9 ± 0.7)a

7
(9.9 ± 1.6)b

7
(8.8 ± 1.3)b

15
(21.5 ± 0.6)a

Non-migrated n
(%)

8
(13.7 ± 1.9)a

8
(12.2 ± 2.0)ac

5
(6.9 ± 0.2)bc

3
(4.4 ± 1.8)b

1
(1.2 ± 1.2)b

5
(7.3 ± 0.2)bc

Mitochondrial Distribution
n 59 56 61 76 71 74

Migrated n
(%)

42
(71.3 ± 1.5)b

39
(69.7 ± 1.0)b

45
(73.7 ± 1.0)b

66
(86.7 ± 0.6)a

63
(88.9 ± 1.2)a

53
(71.6 ± 0.5)b

Partially migrated n (%) 10
(17.0 ± 0.5)a

11
(19.6 ± 1.1)a

11
(17.9 ± 1.0)a

5
(6.7 ± 0.3)b

7
(9.8 ± 1.5) b

13
(17.5 ± 1.5)a

Non-migrated n
(%)

7
(11.7 ± 1.8)a

6
(10.8 ± 1.5)a

5
(8.3 ± 0.4)a

5
(6.6 ± 0.3)ab

1
(1.3 ± 1.3)b

8
(10.8 ± 1.7)a

n: number of oocytes assigned per group. Control: oocytes cultured in the presence of synthetic oviductal fluid
(SOF) and 5% fetal calf serum (FCS); CDMSO: oocytes cultured in the presence of SOF + 5% FCS supplemented with
0.01% DMSO; Nob10, Nob25, Nob50, Nob100 oocytes cultured in presence of SOF + 5% FCS supplemented with 10,
25, 50, and 100 µM nobiletin, respectively. Data are the mean ± SEM. Within lanes, values with different superscript
letters differ significantly (p < 0.05).

Int. J. Mol. Sci. 2020, 21, 5340 3 of 18 

 

Table 1. In vitro maturation of bovine oocytes in the presence of the nobiletin. 

Parameters Evaluated Control CDMSO Nob10 Nob25 Nob50 Nob100 
Nuclear maturation n 117 122 133 146 149 144 

Matured (M-II) n (%) 
84  

(71.7 ± 0.8)b 
86  

(70.5 ± 0.5)b 
97  

(72.9 ± 0.4)b 
127  

(87.0 ± 0.6)a 
133  

(89.3 ± 0.4)a 
103  

(71.5 ± 0.8)b 
Immature n  

(%) 
33  

(28.2 ± 0.7)a 
36  

(29.5 ± 0.5)a 
36  

(27.1 ± 0.4)a  
19  

(12.9 ± 0.6)b 
16  

(10.7 ± 0.4)b 
41  

(28.4 ± 0.8)a 
Cytoplasmic Maturation 

Cortical Granules Distribution  
n 58 66 72 70 78 70 

Migrated n  
(%) 

40  
(69.1 ± 1.1)b 

46  
(69.6 ± 0.9)b 

52  
(72.1 ± 1.0)b 

60  
(85.7 ± 0.3)a 

70  
(89.9 ± 2.2)a 

50  
(71.2 ± 0.7)b 

Partially migrated n (%) 
10  

(17.2 ± 2.6)a 
12  

(18.2 ± 1.7)a 
15  

(20.9 ± 0.7)a  
7  

(9.9 ± 1.6)b 
7  

(8.8 ± 1.3)b 
15 

(21.5 ± 0.6)a 
Non-migrated n  

(%) 
8  

(13.7 ± 1.9)a 
8  

(12.2 ± 2.0)ac 
5  

(6.9 ± 0.2)bc 
3  

(4.4 ± 1.8)b 
1  

(1.2 ± 1.2)b 
5 

(7.3 ± 0.2)bc 
Mitochondrial Distribution  

n 59 56 61 76 71 74 
Migrated n  

(%) 
42  

(71.3 ± 1.5)b 
39  

(69.7 ± 1.0)b 
45  

(73.7 ± 1.0)b 
66 

(86.7 ± 0.6)a 
63  

(88.9 ± 1.2)a 
53  

(71.6 ± 0.5)b 

Partially migrated n (%) 
10 

(17.0 ± 0.5)a 
11  

(19.6 ± 1.1)a  
11 

(17.9 ± 1.0)a 
5  

(6.7 ± 0.3)b 
7  

(9.8 ± 1.5) b 
13  

(17.5 ± 1.5)a 
Non-migrated n 

(%) 
7  

(11.7 ± 1.8)a 
6  

(10.8 ± 1.5)a  
5  

(8.3 ± 0.4)a 
5  

(6.6 ± 0.3)ab 
1  

(1.3 ± 1.3)b 
8  

(10.8 ± 1.7)a 

n: number of oocytes assigned per group. Control: oocytes cultured in the presence of synthetic 
oviductal fluid (SOF) and 5% fetal calf serum (FCS); CDMSO: oocytes cultured in the presence of SOF 
+ 5% FCS supplemented with 0.01% DMSO; Nob10, Nob25, Nob50, Nob100 oocytes cultured in 
presence of SOF + 5% FCS supplemented with 10, 25, 50, and 100 μM nobiletin, respectively. Data are 
the mean ± SEM. Within lanes, values with different superscript letters differ significantly (p < 0.05). 
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only for Nob50 group (Table 1). Representative images of mitochondrial distribution in matured 
oocytes are presented in Figure 2. Quantification of mitochondrial activity in oocytes was measured 
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Figure 1. Representative fluorescent images of cortical granules (CG) distribution patterns in bovine
oocytes after in vitro maturation in the presence of nobiletin. Scale bar 50 µm.

Regarding the mitochondrial distribution patterns, we found higher migration (p < 0.05) in
oocytes matured with Nob25 (86.7 ± 0.6%) and Nob50 (88.9 ± 1.2%) compared to Control (71.3 ± 1.5%),
CDMSO (69.7 ± 1.0%); Nob10 (73.7 ± 1.0%) and Nob100 (71.6 ± 0.5%) groups. The partially migrated
mitochondrial pattern was lower (p < 0.05) in the oocytes matured with Nob25 and Nob50 compared
to all other groups, while the incidence of non-migrated mitochondria pattern was lower (p < 0.05)
only for Nob50 group (Table 1). Representative images of mitochondrial distribution in matured
oocytes are presented in Figure 2. Quantification of mitochondrial activity in oocytes was measured by
fluorescence intensity and a significant increase in intensity was observed in oocytes maturated with
Nob25 and Nob50 compared to all other groups (p < 0.05; Supplementary Figure S1).

When evaluating the effect of nobiletin on oxidative stress, through a relative of ROS and GSH
fluorescence intensity in maturated oocytes, we observed that the intensity in both parameters was
lower (p < 0.05) in Nob25 and Nob50 groups compared with oocytes matured with Nob10 and Nob100
and control groups (Figure 3).
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Figure 2. Representative fluorescent images of mitochondria migration pattern in bovine oocytes after
in vitro maturation in the presence of nobiletin. Control: oocytes cultured in the presence of synthetic
oviductal fluid (SOF) and 5% fetal calf serum (FCS); CDMSO: oocytes cultured in the presence of SOF +

5% FCS supplemented with 0.01% DMSO; Nob10, Nob25, Nob50, Nob100 oocytes cultured in presence
of SOF + 5% FCS supplemented with 10, 25, 50 and 100 µM nobiletin, respectively. Scale bar 50 µm.
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Figure 3. Reactive oxygen species (ROS) and glutathione (GSH) fluorescence intensity in bovine oocytes
after in vitro maturation in the presence of nobiletin (A) Representative fluorescent images of ROS
and GSH fluorescence intensity in bovine oocytes after in vitro maturation in the presence of nobiletin.
Control (n = 54); CDMSO (n = 48); Nob10 (n = 50); Nob25 (n = 47); Nob50 (n = 53); Nob100 (n = 49).
(B) Quantification of relative fluorescent intensity of ROS and GSH in bovine oocytes after in vitro
maturation in the presence of nobiletin. Data are the mean ± SEM. Values with different superscript
letters differ significantly (p < 0.05). Scale bar 50 µm.
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Based on these results and to verify the effects of nobiletin on in vitro maturation and oxidative
stress we analyzed gene expression in oocytes and their CCs. Only the experimental groups that
showed better qualitative parameters in the previous experiments (Nob25and Nob50) were used
in comparison with both control groups (Control and CDMSO). Supplementation of IVM medium
with nobiletin, irrespective of the concentration, induced the upregulation of MAPK1 and BMP15
(developmental-related transcripts) and downregulation of SOD2 and CYP51A1 (oxidative stress
transcripts) in oocytes after IVM when compared with control groups (p < 0.05). No significant
differences were observed for the remaining transcripts studied (BCL2, GAPDH, GDF9) (Figure 4A).
In CCs, nobiletin produced changes in the expression levels of genes related to quality and development
(Figure 4B). BMP15 (development) and GJA1 (cell junctions) transcripts were upregulated (p < 0.05),
while the expression of the oxidative stress (SOD2, CYP51A1) and apoptosis (BCL2) genes were
downregulated in nobiletin groups compared to controls (p < 0.05). No significant differences were
observed for the remaining transcripts studied (ABCB1, CDH1, CLIC1, FOS, GAPDH, GDF9, IGF2R,
and MAPK1).
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Figure 4. Relative mRNA transcript abundance (normalized against that of the endogenous control
H2A histone family member Z (H2AFZ) gene and actin beta (ACTB)). (A) Bovine oocytes after in vitro
maturation in the presence of nobiletin. (B) Bovine cumulus cells (CCs) after in vitro maturation in the
presence of nobiletin. ATP-binding cassette subfamily B member 1 (ABCB1), BCL2- apoptosis regulator
(BCL2), Bone morphogenetic protein 15 (BMP15), Cadherin 1 (CDH1), Chloride intracellular channel 1
(CLIC1), Cytochrome P450, family 51, subfamily A, polypeptide 1 (CYP51A1), Fos Proto-oncogene, AP-1
transcription factor subunit (FOS), Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Growth
differentiation factor 9 (GDF9), Gap junction protein alpha 1 (GJA1), Insulin like growth factor 2 receptor
(IGF2R), Mitogen-activated protein kinase 1 (MAPK), Superoxide Dismutase 2, Mitochondrial (former
MnSOD) (SOD2). Data are the mean ± SEM. Different letters above columns indicate significant
differences in gene expression among the experimental groups (p < 0.05).

2.2. Nobiletin Increases Estradiol (E2) and Progesterone (P4) Production by Cumulus Cells

After IVM, a significant increase in E2 production by CCs was found in maturation medium
supplemented with Nob25 (368.6 ± 27.3 pg/mL) and Nob50 (421.0 ± 28.2 pg/mL) compared with the rest
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of the groups (Control: 233.2 ± 16.9 pg/mL; CDMSO: 212.4 ± 11.8 pg/mL; Nob10: 216.2 ± 20.0 pg/mL;
and Nob100: 250.2 ± 24.4 pg/mL (p < 0.05; Figure 5A). Likewise, a significant increase in P4

production by CCs in media after maturation was detected within Nob25 (19.7 ± 0.3 ng/mL) and Nob50
(20.2 ± 0.2 ng/mL) groups compared with the remaining groups (p < 0.05; Figure 5B).
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Table 2. Effect of nobiletin on in vitro maturation of bovine oocytes and subsequent embryonic 
development. 

Groups 
Total No. Presumptive 

Zygotes in Culture 
Cleavage Rate 

Blastocyst Yield 
Day 7 Day 8 

n (%) n (%) n (%) 
Control 359 267 (74.2 ± 0.4)b 76 (21.1 ± 0.4)b 92 (25.8 ± 0.5)b 
CDMSO 378 278 (73.6 ± 0.5)b 78 (20.9 ± 0.4)b 98 (26.1 ± 0.7)b 
Nob10 397 300 (75.6 ±0.3)b 75 (18.9 ± 0.4)b 90 (23.1 ± 0.7)b 
Nob25 372 335 (89.9 ± 0.4)a 90 (24.4 ± 0.5)a 119 (32.2 ± 0.8)a 
Nob50 336 307 (91.3 ± 0.3)a 86 (25.7 ± 0.6)a 117 (35.3 ± 0.8)a 
Nob100 414 306 (74.0 ± 0.6)b 76 (18.9 ± 0.9)b 100 (24.5 ± 1.0)b 
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Figure 5. Steroidogenic production of cumulus cells (CCs) after in vitro maturation using different
concentrations of nobiletin. (A) Steroidogenic production of Estradiol (E2). (B) Steroidogenic production
of Progesterone (P4). Bars represent mean concentrations produced by CCs under each different
experimental condition. Data are the mean ± SEM. Values with different superscript letters differ
significantly (p < 0.05).

2.3. Nobiletin Increases Embryo Development and Quality

Embryonic development was assessed after IVM in the presence of nobiletin (Table 2). Cleavage
rate and cumulative blastocyst yield at Day 7 and 8 were higher (p < 0.05) for Nob25 and Nob50
compared to all other groups. Based on these results, and for blastocysts quality evaluation only
the Nob25 and Nob50 groups with both control groups (Control and CDMSO) were used for gene
expression analysis.

Table 2. Effect of nobiletin on in vitro maturation of bovine oocytes and subsequent
embryonic development.

Groups Total No. Presumptive
Zygotes in Culture

Cleavage Rate
Blastocyst Yield

Day 7 Day 8
n (%) n (%) n (%)

Control 359 267 (74.2 ± 0.4)b 76 (21.1 ± 0.4)b 92 (25.8 ± 0.5)b

CDMSO 378 278 (73.6 ± 0.5)b 78 (20.9 ± 0.4)b 98 (26.1 ± 0.7)b

Nob10 397 300 (75.6 ±0.3)b 75 (18.9 ± 0.4)b 90 (23.1 ± 0.7)b

Nob25 372 335 (89.9 ± 0.4)a 90 (24.4 ± 0.5)a 119 (32.2 ± 0.8)a

Nob50 336 307 (91.3 ± 0.3)a 86 (25.7 ± 0.6)a 117 (35.3 ± 0.8)a

Nob100 414 306 (74.0 ± 0.6)b 76 (18.9 ± 0.9)b 100 (24.5 ± 1.0)b

n: number of oocytes assigned per group. Control: blastocysts cultured in the presence of SOF and 5% FCS;
CDMSO: blastocysts cultured in the presence of SOF + 5% FCS supplemented with 0.01% DMSO; Nob10, Nob25,
Nob50, Nob100 oocytes cultured in presence of SOF + 5% FCS supplemented with 10, 25, 50 and 100 µM nobiletin,
respectively. Data are the mean ± SEM. Within columns, values with different superscript letters differ significantly
(p < 0.05).

The expression of MAPK1 was upregulated, while CLIC1 was downregulated in blastocysts
produced after oocyte maturation with nobiletin supplementation, irrespective of the concentration,
compared with blastocysts from control groups (p < 0.05). The expression of CYP51A1 was upregulated
in blastocysts from the Nob50 group compared to blastocysts from control groups (p < 0.05).
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No significant differences were observed for the remaining transcripts studied (ABCB1, BCL2, BMP7,
GAPDH, GDF9, IGF2R, and SOD2) (Figure 6).
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3. Discussion

Nobiletin, a class of polymethoxylated flavone, has a broad range of biological effects including
cell cycle regulation, reduction of apoptosis and antioxidation. To our knowledge, the present study is
the first to investigate the effects of nobiletin supplementation in IVM on bovine oocyte quality and
their developmental competence. We found that nobiletin while increases steroidogenesis of CCs,
it also improves oocyte nuclear and cytoplasmic maturation (mitochondrial activity and CG migration)
and decreases oocyte intracellular ROS and GSH levels, reflected to differentially expressed genes
related to maturation, metabolism, cell communication, apoptosis and oxidative stress. Furthermore,
nobiletin in IVM improves oocyte developmental competence and the quality of produced blastocyst
in terms of the expression of genes linked to metabolism, development and oxidative stress.

Cumulus cells play an important role during oocyte growth and maturation, among them supply
nutrients [14] and to mediate the effects of hormones during oocyte maturation [15]. Mingoti et al. [16]
demonstrated that CCs of bovine COCs can secrete E2 and P4 in maturation media, and Endo et al. [17]
and Sakaguchi et al. [18], demonstrated that exogenous and endogenous E2 by granulosa cells directly
supports the in vitro development of bovine COCs. In the present study, supplementation with 25 and
50 µM nobiletin in maturation medium increase in E2 and P4 production by CCs. This is in line with
a study by Horigame et al. [19] that demonstrated that nobiletin enhanced testosterone production
in cultures of Leydig cells via cAMP/CREB signaling. Therefore, our results indicated that nobiletin
might act directly or synergistically with other hormones during oocyte maturation to alter the CCs
steroidogenesis in vitro and that the increase of P4 and E2 production, without any steroid hormone
supplementation, plays a positive role in oocyte nuclear and cytoplasmic maturation.

Nuclear maturation was improved by nobiletin supplementation to the IVM medium. This is
in line with other studies using different antioxidants, such as resveratrol, astaxanthin or melatonin
supplementation in bovine oocyte maturation in vitro [8,20]. However other studies in farm animals
using a broad spectrum of antioxidants did not show an effect on the nuclear maturation rate, such
as in pigs [5] and cattle [6]. These results suggest that different effects of antioxidants on nuclear
maturation could be related to their capacity to activate the mitogen-activated protein kinase 1 (MAPK)
pathway since in mammals, MAPK is responsible for meiotic progression [21], and in bovine oocytes,
the two main isoforms (ERK1/2) of MAPK are activated near the time of germinal vesicle breakdown
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(GVBD) [22]. One of the biological effects of nobiletin is the activation of MAPK activity shown in
different cell types [10]. Hence, a more plausible explanation for an increase in M-II following nobiletin
supplementation could be through P4 and stimulation of MAPK1/ERK2, which plays a fundamental
role in the regulation of microtubule organization, spindle assembly, chromosome distribution and
meiosis resumption [23]. A similar function was demonstrated for resveratrol with improved meiosis
resumption by enhancing the expression of Mos/MEK1/p42 MAPK cascade genes [8]. Based on
the above, it could be hypothesized that nobiletin regulates the secretion of androgens in the CCs,
and improved meiosis resumption by activation of MAPK; however, more experiments are necessary
to corroborate this hypothesis.

Next, we observed that supplementation of nobiletin during in vitro maturation improved
also cytoplasmic maturation. The migration of CG to the cortical region of the oocyte, as well
as mitochondrial distribution and their activity, are suitable indicators to analyze cytoplasmic
maturation [24,25]. Hosoe and Shioya [26] and Hoodbhoy et al. [27] demonstrated that proteins
released by the CG are also necessary for preimplantation embryo development. We demonstrated that
the addition of 25 or 50 µM nobiletin to IVM medium significantly increased peripheral distribution
of CG, suggesting that nobiletin at these concentrations could act promoting a better organization of
microfilaments and therefore, improving CG migration. A similar effect of CG migration was described
with sodium nitroprusside for bovine oocytes in vitro maturation [28].

Mitochondria play an important role since they are a key component of the metabolic machinery
responsible for the supply of energy that is consumed during the maturation process [29] and
are also the main generator of free radicals in mammals [30]. The movement of mitochondria to
areas of high energy consumption is crucial for the oocyte and the embryo during critical periods
of the cell cycle. For this reason, the mitochondrial cytoplasmic distribution pattern has been
associated with the quality and developmental capacity of mammalian oocytes and embryos [31,32].
We demonstrated that the addition of 25 or 50 µM nobiletin to IVM medium significantly increased
mitochondrial migration, giving rise to granular aggregations throughout the cytoplasm in the oocyte
after IVM. This pattern of distribution is similar to that described for bovine oocytes in other studies,
which demonstrated that mitochondrial reorganization is necessary for cytoplasmic maturation,
rearrangement of the cytoskeleton and developmental capacity after IVF [31,33,34]. Another important
function of mitochondria is to synthesize adenosine triphosphate (ATP) through β-oxidation and
this process involves the electron transport chain [4]. However, electrons may be lost during this
process and could be bond to O2, resulting in the production of ROS that decreases the developmental
competence of the oocyte [35]. Thus, our results of increased oocyte mitochondrial activity could be
related to the cytoprotective effects of nobiletin and its intrinsic ROS-scavenging property.

Under normal conditions, cells maintain their ROS levels in equilibrium [6], while during IVM,
the cells may suffer disturbances in redox equilibrium having deleterious effects on development [3,36].
However, studies demonstrated that the addition of antioxidants into the culture medium reduces
the harmful effects of ROS during IVM and offers a way of protecting the oocyte and subsequent
embryo [5,6]. In the oocyte, the main ROS scavenger system is GSH that uses a reducing power
provided by oxidative metabolism [3]. Our results show that 25 or 50 µM nobiletin supplementation
in IVM medium reduced the intracellular ROS levels, which is in agreement with the use of other
flavonoids such as resveratrol [8], quercetin and taxifolin [37] and other class of antioxidants like
vitamin C [6]. Regarding nobiletin, studies in cell cultures demonstrated its ability to significantly
decrease ROS generation [13] but to date, there are no studies available on its effects in oocytes and
embryos. Nobiletin has a beneficial effect on cell protection [10], and like other antioxidants, this effect
could be produced due to its hydrophobic nature, which allows it to incorporate into the membrane [37],
inhibiting ROS attack and decreasing lipid peroxidation. Therefore, the positive effect observed in
the present study could be attributed to this property; nonetheless, further studies are necessary to
understand the mechanism of its antioxidant effects in oocytes.
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In cytoplasmic maturation, GSH is considered a biochemical marker for oocyte quality, and plays
an important role in maintaining redox homeostasis, hence protecting the embryo from oxidative
damage before genomic activation [7]. Our results showed decreased levels of GSH in 25 or 50 µM
nobiletin supplemented groups, opposed to other studies reporting either a reduction in ROS levels
associated with an increase in GSH levels [6,8] or no increase in GSH levels in bovine oocytes [3].
A reasonable explanation for this could be due to the highest mitochondrial activity found in the
oocytes from Nob25 and Nob50 groups. It is widely known that increased mitochondrial activity leads
to an increase in the exchange of electrons in the inner mitochondrial membrane, which is considered
one of the main sources of ROS production [38]. Despite a high mitochondrial activity, the intracellular
ROS levels in the mature oocytes from the Nob25 and Nob50 groups were lower than those observed
in the oocytes from the control groups, suggesting that GSH was consumed to avoid the harmful
effects of the high levels of ROS. This explanation has been proposed before by Rocha-Frigoni et al. [3]
for cysteine and cysteamine antioxidant activity during bovine oocyte IVM and by Qu et al. [39] for
nobiletin reduction of ROS levels in response to cadmium-induced neuronal injury in rats.

Improvements in oocyte quality by 25 and 50 µM nobiletin supplementation during in vitro
maturation were reflected by increased blastocyst development rates on Day 7 and 8. These results are
in line with other studies which evaluated other flavonoids like resveratrol [8], or antioxidants such as
cysteamine [6], vitamin C [40], lycopene [41], and carnitine [42] in the IVM medium. Furthermore,
flavonoids or antioxidants in the IVM showed an interaction with the expression of certain qualitatively
related genes to the development of mature oocytes and/or the production of blastocysts.

To test if the effects of nobiletin during IVM were related to gene expression changes, we analyzed
the expression of candidate genes for oxidative stress, embryo development, and quality. Superoxide
dismutase 2 (SOD2), an indicator of oxidative stress [42] was downregulated in oocytes and CCs
obtained from Nob25 and Nob50 groups compared with controls, whereas in blastocysts it was not
altered. This is in accordance with the findings of Gülcin [43], who showed that superoxide plays an
important role in the neutralization of ROS, so a reduction in ROS formation requires less SOD2 to
neutralize free radicals. On the other hand, Chloride intracellular channel 1 (CLIC1) is considered as
a sensor of cell oxidation [44,45] and is involved in ROS production [45]. Our results showed that
CLIC1 was downregulated in blastocysts obtained from Nob25 and Nob50 groups compared with
the controls, both also with increased embryo yield, which agree with earlier studies showing that
CLIC1 expression accompanied by low accumulation of ROS improves embryo development [46].
These findings together with the low intracellular ROS and GSH levels in the oocytes matured with
nobiletin supplementation indicate an improvement of their antioxidant activity and consequently an
enhanced quality of the produced blastocysts.

Cytochrome P450 family 51 subfamily A polypeptide 1 (CYP51A1), Bone morphogenic protein 15
(BMP15), Mitogen-activated protein kinase 1 (MAPK1), Gap junction alpha-1 protein (GJA1) and BCL2-
apoptosis regulator (BCL2), are genes considered quality biomarkers of in vitro matured oocytes [47,48].
CYP51A1 participates in the regulation of cholesterol biosynthesis [49] and it has been demonstrated
that biosynthesis of cholesterol is one example of metabolic cooperation between granulosa cells
and oocytes [50]. Furthermore, the upregulation of the enzyme coded by CYP51A1 is a result of
negative feedback reflecting lowered cholesterol availability, which is implicated in the lower quality of
oocytes [49]. Therefore, downregulation of CYP51A1 mRNA expression observed in oocytes and their
CCs matured with nobiletin supplementation could be an indicator of good quality. In contrast, 50 µM
nobiletin supplementation in IVM upregulated the expression of CYP51A1 in blastocysts. This is in
line with the results of nobiletin supplementation in liver cell culture (HepG2), showing upregulation
of CYP1 (Cytochrome P450s family) and improved cholesterol synthesis due to full methoxylation in
the A-ring of nobiletin chemical structure [10,51]. Hence, nobiletin could act differently depending on
the cell type, probably due to the bioactivity or its chemical structure, which causes that CYP51A1
might be down or upregulated to control cholesterol availability, however, more in deep studies are
necessary to corroborate this information.
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In mammals, BMP15 is known to be involved in oocyte maturation and cholesterol biosynthesis,
being specifically expressed in oocytes and acting on CCs, improving oocyte competence, and early
embryo development in cattle [52,53]. Several studies reported an increase in BMP15 transcript during
maturation in buffalo [54] and dog [55] oocytes, which are consistent with our findings of an increase
in BMP15 expression in oocytes and their CCs matured with nobiletin supplementation in IVM, related
with their improved developmental competence.

The MAPK family plays an important role in bovine oocyte maturation by inducing GVBD [56].
Likewise, MAPK1 mRNA plays a key role in oocyte maturation by acting on granulosa and CCs in
various species including cattle [22] and dogs [55]. Our results demonstrated that MAPK1 mRNA
expression in oocytes and embryos was upregulated, suggesting that nobiletin could act on cell cycle
regulation as reported by Yoshimizu et al. [57] and Morley et al. [58] in other types of cells. On the
other hand, GJA1, also known as connexin 43 (Cx43), is a component of gap junctions expressed in CCs
and a major mediator of cell-to-cell communication via gap junctions, and a proliferation regulator [59].
Recently, it was shown that CCs of bovine oocytes with higher developmental competence express
higher GJA1 [60]. These findings are in agreement with our results demonstrating higher GJA1
expression in the CCs from oocytes matured with nobiletin. Taken together, these results suggest that
nobiletin modifies the expression of key genes for oocyte cytoplasmic development and maturation,
improving their developmental competence and increasing embryo yield.

Moreover, we observed that during IVM, nobiletin decreased the expression of BCL2 in CCs.
The downregulation of BCL2 expression is associated with a protective effect and has been reported
to have a critical role in CCs by acting as a regulator of apoptosis [61]. Studies in cattle showed that
lycopene (antioxidant) supplementation during in vitro maturation, increases expression of BCL2
exerting a pro-apoptotic effect [41]. Studies that used nobiletin on human cancer cell lines (gastric,
hepatic, and breast) shown that nobiletin induced apoptotic cell death by reducing the expression of
BCL2 [10,12,58]. However, the molecular mechanisms whereby nobiletin induces apoptosis among
different carcinogenic cells remain poorly understood. Therefore, it is to be assumed that nobiletin has
different actions for healthy and unhealthy cells.

In conclusion, a concentration 25 or 50 µM nobiletin offers a novel alternative for counteracting the
effects of the increase in the production of ROS during IVM and subsequent embryo development in
cattle. In matured oocytes and their cumulus cells, nobiletin modifies the expression of genes involved
in maturation (BMP15 and MAPK1), metabolism (CYP51A1), communication (GJA1), apoptosis (BCL2)
and oxidative stress (SOD2 and CLIC1), which was reflected in the increased nuclear and cytoplasmic
maturation (mitochondrial activity and CG migration) and CCs steroidogenesis, decreased intracellular
ROS and GSH levels, as well as enhanced embryo development and quality. These benefits of nobiletin
can be attributed to its bioactivity, chemical structure, and antioxidant properties, and might be a tool
to overcome ROS disorders in bovine IVP embryos and to improve ART in mammals.

4. Materials and Methods

Unless stated otherwise, all chemicals were purchased from Sigma-Aldrich Corporation
(St Louis, MO, USA).

4.1. Oocyte Collection and In Vitro Maturation

Immature cumulus-oocyte complexes (COCs) were obtained by aspirating follicles (2–8 mm
diameter) from the ovaries of mature heifers (i.e., at least one corpus luteum or remained scars from
previous ovulations in one or both ovaries) collected at local slaughterhouses. A total of 3758 class 1
and 2 COCs (homogeneous cytoplasm and intact CCs) were matured in groups of 50 COCs per well
for 24 h, at 38.5 ◦C under an atmosphere of 5% CO2 in air, with maximum humidity [2] in 500 µL of
maturation medium, TCM-199 with 10% (v/v) fetal calf serum (FCS) and 10 ng/mL epidermal growth
factor (Control, n = 595); supplemented either with 10, 25, 50, and 100 µM nobiletin (MedChemExpress,
MCE, Sollentuna, Sweden); (Nob10, n = 645; Nob25, n = 630; Nob50, n = 603; and Nob100, n = 672,



Int. J. Mol. Sci. 2020, 21, 5340 11 of 18

respectively) or dimethyl sulfoxide (DMSO control (CDMSO), 0.01% DMSO vehicle for nobiletin
dilution, n = 613). The concentration of nobiletin was based on the findings of other studies in which
this polymethoxylated flavonoid was used in vivo in zebrafish and chick embryos and in vitro in
human umbilical vein endothelial cells, showing an anti-angiogenic activity at concentrations between
30 and 100 µM [10,39,62].

After 24 h of IVM, a representative number of matured COCs under different conditions were
employed to evaluate: nuclear maturation, cortical granules migration (CG), mitochondria (Mt)
distribution patterns and mitochondrial activity, levels of ROS and GSH and mRNA abundance of
selected genes (oocytes and their CCs). The remaining oocytes were processed for in vitro fertilization
and culture to assess their developmental competence. To analyze the mRNA abundance of selected
genes, four pools of 10 matured COCs were collected from each treatment, and CCs were physically
separated from oocytes by gentle pipetting in phosphate-buffered saline (PBS). Oocytes, in pools of
10 per treatment group, were washed in PBS, snap-frozen in liquid N2 (LN2), and stored at −80 ◦C
until mRNA extraction. Their corresponding CCs were also washed in PBS, centrifuged at 10,000 g,
and then snap-frozen in LN2 and stored at −80 ◦C until mRNA extraction.

To measure the steroidogenic production of COCs after IVM, media from all groups were collected
and stored at −20 ◦C until analysis.

4.2. Cortical Granules (CG) Distribution Patterns

Visualization of CG distribution was performed according to Arias-Álvarez et al. [63], with minor
modifications. Briefly, in vitro matured COCs from each treatment were first suspended in 100 µL of
PBS without calcium or magnesium supplemented with 0.1% polyvinylpyrrolidone (PVP) and their
CCs were removed by gentle pipetting. Next, oocytes were treated with 0.5% (w/v) pronase to digest
the zona pellucida. Zona-free oocytes were washed in PBS + 0.1% PVP three times and fixed in 4%
(w/v) buffered neutral paraformaldehyde (PF) solution (pH 7.2–7.4) for 30 min at room temperature
and then treated with permeabilization solution (0.02% v/v Triton X-100 in PBS + 1% Bovine Serum
Albumin (BSA) for 10 min). The oocytes were then treated for 30 min with blocking solution (7.5% w/v
BSA in PBS) and incubated in 100 µg/mL FITC-labeled Lens culinaris (LCA-FITC, Vector Laboratories,
Burlingame, CA, USA) for 30 min at room temperature in a dark chamber. Following, oocytes were
treated for 30 min with Hoechst 33342 (10 µg/mL) to evaluate nuclear maturation. After staining,
oocytes were washed in PBS + 0.1% PVP, mounted in 3.8 µL of mounting medium (50% v/v PBS, 50% v/v
glycerol, 0.5 µg/mL Hoechst) between a coverslip and a glass slide and sealed with nail polish. Slides
were examined using a laser-scanning confocal microscope (Leica TCS SP2; Leica Microsystems GmbH,
Wetzlar, Germany) equipped with an argon laser excited at 488 nm and whose detection spectrum is
515 nm.

As a measure of cytoplasmic maturation, CG distribution was analyzed (Control: n = 58; CDMSO:
n = 66; Nob10: n = 72; Nob25: n = 70; Nob50: n = 78; Nob100: n = 70) and classified as: non-migrated
(CGs distributed throughout the cytoplasm); partially migrated (CGs dispersed and partly clustered
throughout the cortical area); and migrated (small CG arranged at the periphery or adjacent to the
plasma membrane) [26,29]. Simultaneously, oocytes were evaluated for nuclear maturation.

4.3. Mitochondrial Distribution Patterns and Quantification of Mitochondrial Activity

Briefly, in vitro matured COCs from each treatment were first suspended in 100 µL PBS + 0.1%
PVP and their CCs were removed by gentle pipetting. Next, oocytes were equilibrated for 15 min
in maturation medium and then placed in four-well culture plates containing 500 µL of 400 nM
MitoTracker DeepRed (Molecular Probes Inc., Eugene, OR, USA) per well. The plates were incubated
at 38.5 ◦C, 5% CO2 in the dark, and humidified atmosphere for 30 min. The stained oocytes were
washed twice in PBS + 0.1% PVP and fixed in 4% PF for 30 min at room temperature. Following,
oocytes were treated for 30 min with Hoechst 33342 (10 µg/mL) for evaluating nuclear maturation.
After that, oocytes were washed in PBS + 0.1% PVP, mounted in 3.8 µL of mounting medium between
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a coverslip and a glass slide and sealed with nail polish. Slides were examined using a laser-scanning
confocal microscope (Leica TCS SP2) equipped with an argon laser excited at 644 nm with a detection
spectrum of 625–665 nm. The format, laser, gain, and offset were kept constant for every sample. Serial
sections of 5 µm were made for each oocyte and a maximum projection was accomplished for each.

Mitochondrial patterns and mitochondrial activity were analyzed in matured oocytes from Control:
n = 59; CDMSO: n = 56; Nob10: n = 61; Nob25: n = 76; Nob50: n = 71; Nob100: n = 74. The distribution
was classified as: non-migrated (when mitochondria were homogeneously distributed throughout
the cytoplasm); partially migrated (mitochondria were heterogeneously distributed throughout the
cytoplasm) and migrated (mitochondria were distributed with granular aggregations) [1,29,33,38].
For the assessment of mitochondrial activity, the fluorescence signal intensity (pixels) was quantified.
Images obtained were evaluated using the ImageJ program (NIH, ImageJ version 1.52k software
(http://rsbweb.nih.gov/ij/), using the freehand selection tool. Fluorescence intensity in each oocyte was
determined using the following formula: Relative fluorescence = integrated density (IntDen) − (area
of selected oocyte x mean fluorescence of background readings). Fluorescence intensities are expressed
in arbitrary units (a.u.) [3,46]. Simultaneously, these oocytes were evaluated for nuclear maturation.

4.4. Assessment of Oocyte Nuclear Maturation

Matured oocytes from all treatments stained for CG distribution and mitochondrial distribution
and activity were also stained with Hoechst 33342 solution (10 µg/mL of PBS) for nuclear chromosomal
and polar body evaluation (Control: n = 117; CDMSO: n = 122; Nob10: n = 133; Nob25: n = 146; Nob50:
n = 149; Nob100: n = 144). Oocytes were classified as follows: immature oocytes comprising the stages
of germinal vesicle (GV, nucleus well defined), germinal vesicle breakdown (GVBD, chromosome
condensation), metaphase I (MI, first metaphasic plate visible); and matured oocytes comprising the
stage of metaphase-II (M-II, represented by the presence of the first polar body and/or the second
metaphasic plate). Nuclear maturation was assessed under an epifluorescence microscope (Nikon
141731, Tokyo, Japan) equipped with a fluorescent lamp (Nikon HB-10104AF) and UV-1 filter. Oocytes
in M-II were considered as matured.

4.5. Levels of Reactive Oxygen Species (ROS) and Glutathione (GSH)

For evaluation of ROS and GSH, in vitro matured COCs from each treatment (Control: n = 54;
CDMSO: n = 48; Nob10: n = 50; Nob25: n = 47; Nob50: n = 53; Nob100: n = 49), were first suspended in
100µL PBS + 0.1% PVP and their CCs were removed by gentle pipetting, then were incubated in four-well
plates containing 500 µL of 10 µM of CellROX Deep Red Reagent (Invitrogen, Eugene, OR, USA) for
ROS and 20 µM of CellTracker Fluorescent (Molecular Probes, Eugene, OR, USA) for GSH per well,
at 38.5 ◦C, 5% CO2 in a dark and humidified atmosphere for 30 min. After staining, oocytes were
washed twice with PBS+ 0.1% PVP, mounted in 3.8 µL of mounting medium between a coverslip
and a glass slide, sealed with nail polish, and were imaged immediately using an epifluorescence
microscope (Nikon 141731). Fluorescence emitted from the oocytes was captured using B-2E/C (ROS)
and UV-2A (GSH) filters for ten seconds after exposure to UV light. The digital images were processed
and analyzed using ImageJ. The relative ROS and GSH fluorescence intensity in each oocyte were
assessed as described for the mitochondrial activity (Section 4.3.).

4.6. Steroidogenic Production of Estradiol and Progesterone by CCs

Progesterone (P4) concentration was measured in spent maturation media by solid-phase
radioimmunoassay method (RIA) using the methods as described by Santiago-Moreno et al. [64].
Aliquots of 100 µl were used in duplicate, then each of the samples was measured in the
liquid Scintillation Counter (Tri-Carb®2100TR) including the measurement of the standard curve.
The intra-assay coefficient of variation was 11% and assay sensitivity was 0.4 ng/mL. Estradiol
(E2) concentrations in spent maturation media were measured by a solid phase enzyme-linked
immunosorbent assay (ELISA), based on the principle of competitive binding specific kit (DEH3355

http://rsbweb.nih.gov/ij/
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DEMEDITEC Diagnostics GmbH, Kiel, Germany) according to the manufacturer´s instructions.
Intra-assay coefficients of variation were 6%. Results are expressed as average E2 (pg/mL) and
P4 (ng/mL) concentrations produced by 50 COCs after the IVM period using 3 replicates.

4.7. Sperm Preparation and In Vitro Fertilization (IVF)

IVF was performed as described previously [65]. Briefly frozen semen straws (0.25 mL) from an
Asturian Valley bull previously tested for IVF were thawed at 37 ◦C in a water bath for 1 min and
centrifuged for 10 min at 280 g through a gradient of 1 mL of 40% and 1 mL of 80% Bovipure (Nidacon
Laboratories AB, Göthenborg, Sweden), according to the manufacturer´s instructions. The sperm pellet
was isolated and washed in 3 mL of Boviwash (Nidacon Laboratories AB, Göthenborg, Sweden) by
centrifugation at 280 g for 5 min. The pellet was re-suspended in the remaining 300 µL of Boviwash.
The final concentration of spermatozoa was adjusted to 1 × 106 spermatozoa/mL. Gametes were
co-incubated for 18–22 h in 500 µL fertilization media (Tyrode’s medium) with 25 mM bicarbonate,
22 mM sodium lactate, 1 mM sodium pyruvate, and 6 mg/mL fatty acid-free bovine serum albumin
(BSA) supplemented with 10 mg/mL heparin sodium salt (Calbiochem) in four-well cell culture plates
in groups of 50 COCs per well under an atmosphere of 5% CO2 in the air, with maximum humidity at
38.5 ◦C.

4.8. In Vitro Culture of Presumptive Zygotes

At 18–22 h post-insemination (hpi), presumptive zygotes from each experimental group (Control:
n = 359; CDMSO: n = 378; Nob10: n = 397; Nob25: n = 372; Nob50: n = 336; Nob100: n = 414)
were denuded of CCs by vortexing for 3 min and then cultured in groups of 25 in 25 µL droplets of
culture medium (synthetic oviductal fluid (SOF) [66]); with 4.2 mM sodium lactate, 0.73 mM sodium
pyruvate, 30 µL/mL BME amino acids, 10 µL/mL minimum essential medium (MEM) amino acids and
1 µg/mL phenol red supplemented with 5% FCS under mineral oil at 38.5 ◦C under an atmosphere of
5% CO2, 5% O2 and 90% N2 with maximum humidity. Cleavage rate was recorded at day 2 (48 hpi)
and cumulative blastocyst yield was determined on Days 7 and 8 pi. Pools of ten Day 7 expanding
blastocysts from each treatment group were washed in PBS, snap-frozen in LN2, and stored at −80 ◦C
until mRNA extraction.

4.9. Gene Expression Analysis

Gene expression analysis was performed using four pools of 10 oocytes, and their corresponding
CCs and four pools of 10 Day 7 expanded blastocysts per treatment group. All samples were washed
in PBS, snap-frozen in LN2, and stored at −80 ◦C until mRNA extraction analyses.

Poly(A) RNA was extracted using the Dynabeads mRNA Direct Extraction Kit (Ambion; Thermo
Fisher Scientific Inc., Oslo, Norway) with minor modifications [67]. Immediately after poly(A) RNA
extraction, reverse transcription (RT) was performed using an Moloney murine leukemia virus (MMLV)
Reverse Transcriptase 1st-Strand cDNA Synthesis Kit according to the manufacturer’s instructions
(Epicentre Technologies Corp., Madison, WI, USA). Tubes were heated to 70 ◦C for 5 min to denature
the secondary RNA structure, allowing Poly(T) random primers and Oligo dT annealing, and the
RT mix was then completed by adding 0.375 mM dNTPs (Biotools, Madrid, Spain), 6.25 U RNAsin
RNAse inhibitor (Promega, Madison, WI, USA), MMLV HP RT 10x reaction buffer, 5 mM DTT and
5 U MMLV high-performance reverse transcriptase. Samples were incubated at 25 ◦C for 10 min,
and then at 37 ◦C for 60 min, to allow the RT of RNA, and finally at 85 ◦C for 5 min to denature
the enzyme. All mRNA transcripts were quantified in duplicate using a Rotorgene 6000 Real-Time
Cycler (Corbett Research, Sydney, Australia). RT–quantitative polymerase chain reaction (qPCR) was
performed by adding a 2 µL aliquot of each cDNA sample (~60 ng µL−1) to the PCR mix (GoTaq
qPCR Master Mix, Promega, Madrid, Spain) containing specific primers to amplify the genes of
interest. Primer sequences are provided in Supplementary Table S1. The selection of genes to be
evaluated in oocytes, CCs and blastocysts was carried out considering that they are representative of
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key processes, i.e., communication (GJA1), oxidative stress (SOD2, GAPDH), metabolism (CYP51A1),
quality (BCL2, GDF9, IGF2R) and development (BMP15, CLIC1, ABCB1, BMP7, MAPK1, CDH1) as
previously described by [40,46]. All primers were designed using Primer-BLAST software (http://www.
ncbi.nlm.nih.gov/tools/primer-blast/) to span exon-exon boundaries when possible. For quantification,
RT-qPCR was performed as described previously [68]. The PCR conditions were tested to achieve
efficiencies close to 1. Relative expression levels were quantified by the comparative cycle threshold
(CT) method [69]. Values were normalized using two housekeeping (HK) genes: H2AFZ and ACTB.
Fluorescence was acquired in each cycle to determine the threshold cycle or the cycle during the
log-linear phase of the reaction at which fluorescence increased above background for each sample.
Within this region of the amplification curve, a difference of one cycle is equivalent to a doubling of the
amplified PCR product. According to the comparative CT method, the ∆CT value was determined
by subtracting the mean CT value of the two housekeeping genes from the CT value of the gene of
interest in the same sample. The calculation of ∆∆CT involved using the highest treatment ∆CT value
(i.e., the treatment with the lowest target expression) as an arbitrary constant to subtract from all other
∆CT sample values. Fold-changes in the relative gene expression of the target were determined using
the formula 2−∆∆CT.

4.10. Statistical Analysis

All statistical tests were performed using the software package SigmaStat (Systat Software Inc.,
San Jose, CA, USA). Nuclear maturation, CG and mitochondrial distribution patterns, mitochondrial
activity, ROS, and GSH measurements, steroidogenic production of estradiol and progesterone, cleavage
and blastocysts rates and relative mRNA abundance were normally distributed with homogeneous
variance, so one-way analysis of variance (ANOVA), followed by Tukey´s test, was performed to
evaluate the significance of differences between groups. Values were considered significantly different
at p < 0.05. Unless otherwise indicated, data are presented as the mean ± SEM.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/15/5340/
s1. Figure S1: Quantification of mitochondria activity in bovine oocytes after in vitro maturation in the presence
of nobiletin. Control (n = 59): oocytes cultured in the presence of SOF and 5% FCS; CDMSO (n = 56): oocytes
cultured in the presence of SOF + 5% FCS supplemented with 0.01% DMSO; Nob10 (n = 61), Nob25 (n = 76),
Nob50 (n = 71), Nob100 (n = 74) oocytes cultured in presence of SOF + 5% FCS supplemented with 10, 25, 50 and
100 µM nobiletin, respectively, Table S1: Summary of primer sequences used for RT-qPCR in oocytes, CCs and
blastocysts after in vitro maturation in the presence of nobiletin.
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