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Abstract.	 Optimal glycemic control remains challenging and elusive for many people with diabetes. With the 
comprehensive clinical evidence on safety and efficiency in large populations, and with broader reimbursement, the 
adoption of continuous glucose monitoring (CGM) is rapidly increasing. Standardized visual reporting and interpretation 
of CGM data and clear and understandable clinical targets will help professionals and individuals with diabetes use 
diabetes technology more efficiently, and finally improve long-term outcomes with less everyday disease burden. For 
the majority of people with type 1 or type 2 diabetes, time in range (between 70 and 180 mg/dL, or 3.9 and 10 mmol/L) 
target of more than 70% is recommended, with each incremental increase of 5% towards this target being clinically 
meaningful. At the same time, the goal is to minimize glycemic excursions: a recommended target for a time below 
range (< 70 mg/dL or < 3.9 mmol/L) is less than 4%, and time above range (> 180 mg/dL or 10 mmol/L) less than 25%, 
with less stringent goals for older individuals or those at increased risk. These targets should be individualized: the 
personal use of CGM with the standardized data presentation provides all necessary means to accurately tailor diabetes 
management to the needs of each individual with diabetes.
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Introduction

Diabetes has an increasing worldwide prevalence 
over the past decades from 151 million in 2000 to 
estimated 463 million (9.3% of all adults aged 20–79 
yr) in 2020, and an additional 1.1 million children and 
adolescents with type 1 diabetes (1). Living with diabetes 
is challenging for individuals with this chronic condition 
as well as for those taking care of them. The lifelong goal 
of diabetes care is maintaining glucose levels as close to 
normal as possible and as early as possible in the course 
of the disease, thus delaying or possibly preventing 
devastating long-term diabetes complications (2–5).

Optimal diabetes management should be 
multidisciplinary and tailored for each person with 
diabetes (PWD), and is dependent on regular glucose 
monitoring, precise insulin dosing, and rational decision-
making support. However, everyday diabetes care is 
complicated by the variability in insulin requirements 
for each PWD as insulin dose needed to maintain 
normoglycemia fluctuates from one day (or night) 
to another, and might be, especially in children and 

adolescents, challenging to achieve with conventional 
treatment modalities (6, 7).

In the past decades, glucose management was 
primarily assessed with the glycated hemoglobin A1c 
(HbA1c), an evidence-based and broadly-accepted 
surrogate outcome measure for evaluating the efficacy 
of diabetes care in routine clinical practice and in 
numerous clinical trials (including Diabetes Control and 
Complications Trial (DCCT) and the Epidemiology of 
Diabetes Interventions and Complications (EDIC) follow-
up study of the DCCT cohort), and was recognized as a 
reliable and indirect biomarker that reflects long-term 
average glucose control (2–5, 8). Current international 
guidelines recommend that HbA1c for the majority of 
children and nonpregnant adults should be below 53 
mmol/mol (7%) or even below 47.5 mmol/mol (6.5%) if 
this can be achieved safely (9, 10).

While HbA1c realistically captures the average 
glycemic control in the retrospect, it is limited in 
assessing short-term outcomes and day-to-day glucose 
fluctuations (11, 12). There is substantial evidence 
that these glucose excursions »beyond HbA1c« are 
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associated with the damage to susceptible organs or/and 
chromosomes, likely through oxidative stress (13–15), 
and were highlighted as significant risk factors for 
cognitive function and evolving brain structures early 
in the disease course, especially in young children 
with type 1 diabetes (16–18). Additionally, HbA1c 
lacks the information about acute complications, such 
as severe hypoglycemia or diabetic ketoacidosis that 
are, together with the fear of hypoglycemia, important 
barriers towards diabetes care optimization. Moreover, 
acute complications cause stress and anxiety, increase 
treatment costs, and decrease the quality of life (QoL) 
and psychological well-being of the youth with diabetes 
and their families (12, 19, 20).

Continuous glucose monitoring (CGM), either 
real-time (rtCGM) or intermittently scanned (isCGM), 
effectively addresses these barriers: data derived from 
CGM present a more comprehensive glucose control 
picture than HbA1c alone (21). CGM devices provide 
a broad spectrum of additional glucose management 
metrics, including proportions of time in range (TIR), 
time below range (TBR), time above range (TAR), and 
glucose variability (GV), that are at hand to PWDs and 
their health-care providers (HCPs) for individualizing 
the diabetes management and for making real-time 
treatment modifications.

From Intermittent to Continuous Glucose 
Monitoring

Regular glucose monitoring allows PWDs to guide 
their insulin therapy and assess whether their glucose 
targets are safely achieved. Frequent self-monitoring 
of blood glucose (SMBG) from capillary blood has 
considerably improved glycemic control by giving 
users the capacity to self-manage and individually 
tailor insulin dosing, and is considered a fundamental 
component of effective diabetes treatment and daily 
management of PWDs on insulin therapy (22).

SMBG has several limitations as blood is sampled 
intermittently, pinpointing only fragments of real glucose 
fluctuations, thus failing to reveal ongoing glucose 
excursions even if performed frequently. Episodes of 
asymptomatic hypoglycemia and also hyperglycemia 
could therefore be overlooked and not incorporated 
into decision-making. Additionally, a recent study 
demonstrated that many glucometers for personal use 
previously cleared by authorities in real life do not meet 
the level of accuracy currently required for regulatory 
clearance (23).

SMBG is throughout the world being replaced with 
CGM as the glucose monitoring of choice for insulin 
dosing; this replacement is based on a considerable body 
of evidence generated over the past 15 years. Contrary 
to SMBG, CGM provides an almost continuous string 
of glucose concentration measurements (every 1–5 
min). CGM devices generally consist of a disposable 
on-body sensor that measures glucose concentration in 
the interstitial fluid, and a transmitter that broadcasts 

the sensor values (usually in 5–15 min intervals) to a 
dedicated receiver and/or other portable devices (e.g. 
smartphone, smart-watch, tablet). Data can be seen 
in real-time (rtCGM), stored in the cloud and shared 
with other family members. The CGM sensor values 
usually closely correlate with blood glucose concentration 
when glucose is stable, with a mean time lag of 5 min 
or less; during episodes of rapid glucose changes like 
post-simple-carbohydrate meal or exercise, however, 
the time lag can exceed 10 minutes (24). isCGM is a 
variety of CGM that presents glucose concentration only 
on demand (25, 26) but with recently enabled alarms it 
is coming closer to rtCGMs.

The only currently approved implantable CGM 
system has a sensor that is fully implanted under the 
skin by a healthcare provider, and functions for 90–180 
days with data visualization through an on-body device 
(27).

Following the first major randomized controlled trial 
(RCT) with CGM use funded by JDRF (28), numerous 
RCTs confirmed efficacy and safety of CGM devices in 
both people affected with type 1 and type 2 diabetes 
(29–35), including individuals with severe hypoglycemia 
and/or hypoglycemia unawareness (36–39), on multiple 
daily injections (MDI) therapy (40), and particularly 
during pregnancy complicated by type 1 diabetes (41). 
Importantly, these positive outcomes were associated 
with a projected yearly reduction in diabetes-related 
cost worth several million USD (42). Additionally, user 
satisfaction and consequently mean sensor usage was 
significantly higher, including significant improvement 
of QoL measures (43).

The use of CGMs has been endorsed by the 
American Diabetes Association (ADA) in its 2020 
Standards of Medical Care in Diabetes (33) the American 
Association of Clinical Endocrinologists (AACE) (44, 45), 
the International Society for Pediatric and Adolescent 
Diabetes (ISPAD) (46), and the Endocrine Society (47). 
The use of CGM is globally increasing exponentially in all 
age groups. Recent data from the T1D Exchange Registry 
reported that about 30% of participants have been using 
CGM in the period from 2016 to 2018 compared to 7% 
in 2010 to 2012 (48). Similarly, the most recent DPV 
Registry reported extensive CGM use in the majority of 
children with type 1 diabetes aged below 10 yr and overall 
usage in 38% of individuals with type 1 diabetes (49). 
This significant increase is likely related to the approval 
of isCGM and rtCGM systems for non-adjunctive use, 
better accuracy and reliability of CGM devices, as well as 
broader reimbursement policy, some with demonstrated 
cost-effectiveness (50, 51).

Real-world efficacy data are in line with 
observations from RTCs: in a European registry, the 
CGM use was associated with better mean glucose and 
less hypoglycemia (52), in the T1D Exchange Registry, 
CGM usage was associated with lower HbA1c (48), and 
similarly in the DPV Registry CGM initiation lowered 
HbA1c and reduced risk for both SH and DKA (53). 
Recently, in the largest real-world data set including 
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more than 10.000 individuals with type 1 diabetes 
from the UK, isCGM use improved glycemic control, 
especially in those with a higher baseline HbA1c, 
improved hypoglycemic awareness, reduced diabetes-
related distress, and reduced hospital admissions 
(54). A recent had-to-had comparison between rtCGM 
and isCGM demonstrated potential advantages of the 
former, which may influence further development of 
CGM devices (55).

Standardized Data Reporting Interpretation

CGM data can be accessed in real-time on personal 
devices and curated personal data can be viewed using 
software packages. The data analysis tools offer PWDs 
and HCPs a wide range of metrics of glucose control 
quality, including proportion of sensor use, mean 
glucose, glucose management indicator (GMI; previously 
“estimated HbA1c”), glycemic variability (coefficient of 
variation – CV) and time in ranges – TIR, TBR and TAR 
(21, 56). Some of these metrics are useful research tools 
and others have been welcomed by patient-groups for 
providing insights into the quality of glucose control. 
However, until recently, these metrics were reported 
in various ways and ranges were defined diversely, 
therefore, it was almost impossible to compare results 
from one report to another.

In 2017, an international consensus recommended 
standardized CGM reporting and defined outcomes 
definitions with a core set of ten CGM metrics for reports 
(21). Definitions of the minimum requirements for 
CGM performance, such as meeting ISO (International 
Organization for Standardization) standards, the 
relationship of dependence of CGM calibration with 
glucometers (non-adjunctive us), and an acceptable 
CGM accuracy, defined as an absolute relative difference 
(MARD), were agreed upon. For reliable data assessment, 
studies have demonstrated that 10–14 d of CGM data 
generally provide a good approximation of 3 months of 
glucose data (57).

It is imperative that all CGM users should be 
trained in how to access, interpret, and answer questions 
regarding their glycemic control with accessible devices 
and tools.

Decision Making and Time in Range 
Targets

To make CGM data clinically meaningful for 
routine day-to-day diabetes management, clear guidance 
on CGM-derived glycemic targets should be provided to 
both PWDs and HCPs.

Recently, several major international societies 
formally endorsed an international consensus report on 
clinical targets for CGM data (58); notably, the consensus 
participants included also individuals with diabetes 
outside the medical profession.

The consensus suggested easy to understand TIR 
targets, along with TBR and TAR targets for routine 

management of type 1 and type 2 diabetes (Table 1). The 
reporting, presentation and visualization of CGM data 
should smoothen the communication between PWDs 
and HCPs, particularly when a standardized report 
(eg. Ambulatory Glucose Profile - AGP (59)) displays 
the key CGM metrics, including proportions of glucose 
values in different ranges over a specified time period, 
the recommended target for each CGM data range, and 
a visual demonstration of the CGM values distribution 
according to the time of day.

The principal goal for all children and adults with 
type 1 diabetes and type 2 diabetes is to maintain:
-	 At least 70% ((16 h and 48 min per d) of TIR (70–180 

mg/dL / 3.9–10 mmol/L), 
while at the same time minimizing both TBR and TAR:
-	 less than 4% (1 h per d) of TBR (< 70 mg/dL / 3.9 

mmol/L) and
-	 less than 25% (6 h per d) of TAR (> 180 mg/dL / 10 

mmol/L).
Targets should be individualized and in line with 

personal needs and circumstances. Each incremental 
5% improvement in TIR is associated with clinically 
significant benefit.

While for pregnancy complicated with diabetes 
recommended targets remain the same, TIR is 
defined tighter (63–140 mg/dL) as glucose levels are 
physiologically lower during pregnancy (60).

A relevant improvement in diabetes care with the 
use of the new metrics is only possible through its broad 
understanding and adoption by PWDs and HCPs. It is 
therefore important to demonstrate that TIR metrics 
relate to and predict clinical outcomes so that we can 
together finally improve long-term diabetes outcomes 
with less day-to-day disease burden.

Because TIR can be evaluated on a near-hourly 
basis, it provides an important advantage over HbA1c: 
interpreting glycemic control in terms of TIR offers a 
more nuanced, cause-and-effect related understanding 
of glucose fluctuations. One can recognize behaviours 
and decisions that drive glucose levels out-of-range and 
prospectively find where/when changes can be made. 
From PWDs perspective, TIR is more accessible and 
at the same time more intuitive. For example, in one 
survey of 3461 PWDs, TIR emerged as the top outcome 
measure considered to have a ‘big impact’ on daily life 
with diabetes that both reflects PWDs’ priorities and can 
be used to quantitatively evaluate treatment efficacy (12).

To show the correlation between HbA1c and TIR, 
Vigersky and McMahon analyzed data from 18 studies 
including 2577 PWD and found a strong relationship 
between TIR and HbA1c (R = − 0.84; R2 = 0.71) (60). 
Their results showed that for every 10% change in TIR, 
there was a 0.8% change in HbA1c.

Similar relationships were observed by Hirsch and 
colleagues who analyzed individual-level data from four 
randomized trials including 545 PWDs who had central 
laboratory measurements of HbA1c. TIR of 70% and 50% 
strongly corresponded with an HbA1c of approximately 
7% (53 mmol/mol) and 8% (64 mmol/mol), respectively. 
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An increase in TIR of 10% (2.4 h per day) decreased 
HbA1c for about 0.5% (5.0 mmol/mol) (61). Petersson and 
coworkers analyzed data from 133 children with type 1 
diabetes from Sweden and demonstrated a significant 
non-linear relationship between time in tighter range 
70–140 mg/dL and HbA1c (R2 = 0.69) over 60 days in 
frequent CGM (at 80% of the time) users (62). Beck and 
coworkers (63) re-analyzed data from the DCCT study. 
They used 7-point blood glucose profiles to validate the 
use of TIR as an outcome measure for clinical trials 
and demonstrated that the hazard ratio for retinopathy 
progression increased by 64% for each 10% decrease in 
TIR. Similarly, the hazard ratio for microalbuminuria 
development increased by 40% for each 10% reduction 
in TIR. Lu and colleagues evaluated the association 
between the TIR, assessed by CGM, diabetic retinopathy 
as a marker of microvascular complications (64), and 
intima media thickness, as a marker of macrovascular 
complications (65), in individuals with type 2 diabetes. 
Individuals with more progressive retinopathy, regardless 
of stage, and with abnormal intima media thickness 
had significantly lower TIR, and a decreased risk for 
complications with improved TIR was demonstrated (64, 
65). Recently, an association between higher TIR and 
reduction in the urinary creatinine-albumin ration was 
demonstrated from a prospective randomized controlled 

trial (66). Several prospective clinical trials with TIR as 
the primary outcome are ongoing.

Finally, TIR can be used for evaluating the efficacy 
of different treatment modalities. Automated glucose-
responsive insulin therapy (closed-loop) was revitalized 
(67) and a roadmap towards closing-the-loop in six steps 
was defined 15 yr ago (68, 69). Consequently, a broad 
spectrum of treatment modalities for closing the loop is 
currently available on the market (in details discussed 
elsewhere (70)), including low-glucose suspend (71, 72), 
predictive low-glucose suspend systems MiniMed 640G 
(Medtronic Diabetes, USA) and Tandem t:slim X2 Insulin 
Pump with Basal IQ ®Technology (Tandem Diabetes 
care, USA) (73, 74) and automated insulin delivery 
systems Medtronic MiniMed 670G and 780G (Medtronic 
Diabetes, USA) (75), DBLG1 (Diabeloop, France) (76), 
Tandem Diabetes Care t:slim X2 with Control IQ 
(Tandem Diabetes care, USA) (77) and CamAPX FX 
(CamDiab LtD, UK) (78).

The efficacy of newer technologies was evaluated 
in a recent network meta-analysis: closed-loop systems 
are demonstrated to have several advantages over other 
treatment modalities (79). Figure 1 summarizes data 
regarding TIR from recent randomized controlled trials 
including individuals with type 1 diabetes using either 
closed-loop therapy, predictive low glucose suspend or 

Table 1.	 Targets for glycemic control: Type 1 / Type 2 and older / high-risk individuals

Type 1 / Type 2 Older/high-risk 
Type 1 / Type 2

Time above range (TAR) Above target range > 180 mg/dL
> 10.0 mmol/L

% of time/d < 25%
< 6 h

Above target range > 250 mg/dL
> 13.9 mmol/L

> 250 mg/dL 
> 13.9 mmol/L

% of time/d < 5%
< 1 h, 12 min

< 10% 
< 2 h, 24 min

Time in range (TIR) Target range 70–180 mg/dL
3.9–10.0 mmol/L

70–180 mg/dL 
3.9–10.0 mmol/L

% of time/d > 70%
> 16 h, 48 min

> 50% 
> 12 h

Time below range (TBR) Below target range < 70 mg/dL
< 3.9 mmol/L

< 70 mg/dL 
< 3.9 mmol/L

% of time/d < 4%
< 1 h

< 1% 
< 5 min

Below target range < 54 mg/dL
< 3.0 mmol/L

% of time/d < 1%
< 15 min

Each incremental 5% increase towards time in range (TIR) targets is associated with clinically significant 
benefits for Type 1 / Type 2. Adapted from: Battelino T, et al. Clinical targets for continuous glucose 
monitoring data interpretation: recommendations from the International Consensus on Time in Range (58).
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CGM alone.

Summary

In conclusion, with a proven benefit on glycemic 

outcomes and QoL, CGM devices are being increasingly 
adopted worldwide. To unify and improve clinical 
outcomes and quality of life with our routine diabetes 
care, we need to constantly improve the presentation 
and usage of provided CGM data. Individual CGM 
daily glucose profiles within the AGP can be used as a 
standardized overview and can effectively guide shared 
decision-making between a user and her/his HCP to 
personalize diabetes care and enable real-time treatment 
adjustments. This communication can be facilitated with 
clear and understandable time in ranges targets. Based 
on existing data, current recommendations set time in 
range (70–180 mg/dL, or 3.9–10 mmol/L) of more than 
70%, with time below range (< 70 mg/dL, or < 3.9 mmol/L) 
of less than 4% for the majority of people with type 1 or 
type 2 diabetes. Every 5% increment towards the time 
in range target is clinically meaningful. All treatment 
targets can be effective in practice only if personalized 
and agreed upon with each individual with diabetes.
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