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EDITORIAL

Lipids and genes: Regulatory roles of lipids in RNA
expression

Lipid metabolism and metabolites play an irreplaceable
role in maintenance of cell biology and function. The
rapid development of methodologies allows us to pro-
vide new insights for monitoring the dynamics of lipid
metabolism, associated gene transcription, specific pro-
tein activation and molecular network regulation. Lipid
metabolism in diseases is an important part of clini-
cal and translational medicine and has been selected
as a thematic issue. Dysregulation of lipid metabolism
contributes to mitochondrial injury and inter-organelle
dysrfunction,1,2 imbalance between cell proliferation and
cell death3,4 and acceleration of epithelial-mesenchymal
transition and cancer cell metastasis.5,6 Growing evidence
demonstrates that metabolites and molecules generated
during disease-associated lipid metabolism can be an
important source to identify and develop new diagnos-
tic biomarkers and therapeutic targets.1,2,7–9 The clini-
cal lipidomics platform integrates lipidomic profiles with
clinical phenomes to uncover disease stage-, severity-,
duration- and type-specific biomarkers.10,11 The interac-
tion between lipids and genes plays critical roles in expres-
sion and activation of gene-specific lipid proteins and
enzymes and lipid metabolism-associated genes, as well as
in multi-directional regulations. This Editorial highlights
the value of lipid-gene interaction in the identification
and development of biomarkers and targets and empha-
sizes the significance of inter-regulation between lipids
and genes in innovation and application of precise thera-
pies for patients.
The interaction between lipids and genes within the

nucleus influences functions of the genome without
changing the nucleotide sequence (lipotranscriptome), as
an epigenetic modification (epitranscriptome). Appropri-
ate expression, transcription and translation of mRNA
require proper quality and quantity of multiple factors and
formulation of fluid dynamics within the nucleus to reg-
ulate and balance the interaction and binding between
molecules. Specifically, the amount and function of lipids
localized in nuclear membranes, nucleoli, nuclear matrix
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and chromatin contribute to the construction of inner
nuclear membrane (INM) and the function of RNA–
DNA activities.12 Nuclear lipids include nuclear lipid
microdomains and lipid droplets that vary amongst intra-
nuclear localizations and cell types and have variousmem-
brane biophysical functions that influence permeability,
fluidity, lipid mobility and domain formation. Chromatin-
lipid interaction and chromatin lipid metabolism regu-
late transcriptional and replicative chromatin activities,
linking with the signal transduction pathway functions.
Lipid metabolism occurs in the INM, indirectly influenc-
ing the three-dimensional genome, while phospholipid
synthesis in the outer nuclear membrane maintains the
nuclear integrity. The INM-promoted lipid storage con-
tributes to the synthesis of nuclear lipid droplets (NLDs)
through Seipin-dependent membrane bridges, genetic cir-
cuits for NLD synthesis, and interaction between nuclei
and endoplasmic reticulum by sequestration of tran-
scription factors.13,14 Abnormalities of gene-lipid inter-
actions and nuclear lipid metabolism cause dysfunction
of genome regulation, transcriptomic expression, nuclear
receptor activation that correlate with cell phenome and
death, although the exact mechanisms need to be further
explored.
Lipid elements and metabolism regulate gene expres-

sion, DNA duplication and transcription directly by lipid
binding to nuclear transcriptional proteins and recep-
tors, and/or indirectly by modulating the intra-nuclear
microenvironment, membrane biophysics or other intra-
cellular mechanisms. In patterns distinct from those
induced by inflammatory mediators and pathogens,15
administration of external lipids or increase/reduction of
intra-cellular production/transport can change transcrip-
tomic profiles and expression, although the exact mecha-
nisms remain unclear. Within the fat nucleosome, Lipids
directly interact with chromatin though multiple binding
sites between, affect chromatin structure and condensed
regions, and alter gene expression and cell phenotypes.16
For example, cholesterol is required tomaintain chromatin
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organization and remodeling and direct transcriptional
functions by interactions with a conserved cholesterol
interaction motif and promoter region of Wilms tumor
1 transcriptional corepressor gene, as a gene-specific tar-
get of cholesterol.17 Other metabolites can directly inter-
act with chromatin as main substrates or cofactors of
chromatin-modifying enzymes, regulate properties and
functions of uncommon regulatory molecules from lipid
intermediates and take part in atypical enzymatic and non-
enzymatic chromatin modifications.
Another mechanism by which lipids directly act with

RNA is through lipid membrane binding with RNA
through the G-quadruplex formation and riboregulation
of guanine residues in short RNAs, which are depen-
dent upon RNA nucleotide content, base pairing and
length.18 The lipid-RNA interaction and modification of
ribozyme activity occur on the lipidmembrane as synthetic
riboswitches and RNA-based lipid biosensors. Different
from lipid-DNA complexes, the lipid-transfer RNA (tRNA)
complexes play critical roles in maintenance of tRNA fold-
ing status, aggregation, stability and condensation and are
dependent on lipid metabolite chemical properties, con-
centrations, binding locations and action duration. In addi-
tion, nuclearmembrane lipid biosynthesis andmetabolism
participate in the process of genome protection by coordi-
nating the remodeling of the nuclear envelope. Reshaping
of the nuclear lipid membrane facilitates forming and fus-
ing of nuclear-pore complexes, indirectly contributing to
gene expression and gene construction.
NLDs are important for lipid appearance, transforma-

tion, storage and function in the nuclei and contribute
to the INM formation and the maintenance of nuclear
homeostasis and microenvironment. Different from cyto-
plasmic lipid droplets responsible for structural and func-
tional connection between intra-cellular organelles, NLDs
separate the nuclei from other organelles to segregate
nuclear energy and function, although molecular mecha-
nisms of NLD formation and origination vary among cell
types.13,19 Multiple factors are dependently or indepen-
dently involved in NLD synthesis and lipolysis, includ-
ing lipoprotein precursors, triglyceride synthesis enzymes,
mTOR signaling, lipin-1, seipin, fatty acid-binding proteins
and choline kinases alpha. Although intra-cellular lipid
droplets have been found to be associated with multiple
diseases andmetabolic disorders, the precise roles of NLDs
in pathogeneses and pathophysiological processes remain
unclear.
Advances in the understanding of the clinical and trans-

lational medicine roles of gene-lipid interaction require
further definition of the biochemical structures and sta-
bility of small lipid elements and metabolites during bio-
logical processes and in response to microenvironmen-
tal perturbations. It will be important to define the bind-

ing sites of lipid elements to nucleosomes or chromatins,
for example, molecular size and structure, affinitive speci-
ficity, regulators and function-dependent biophysics, so
as to advance the discovery and development of new
therapies. It will be important to clarify whether lipid-
chromatin interactions-associated processes and partici-
pants are measurable and are disease phenome-specific.
It is still unclear if transcriptional factors and regula-
tors involving cytoplasmic lipid metabolism, lipid droplet
formation and organelle membrane biophysics have a
role in the structural and functional dynamics of NLDs.
There is an urgent need to characterize direct and indi-
rect effects of NLDs in gene expression and transcrip-
tion, biological associations between nuclear and cytoplas-
mic lipid metabolism and droplet biochemical properties
and intercommunication between nuclear and cytoplas-
mic lipid microenvironments. Advances will require tech-
nical advances to develop simple and repeatable meth-
ods that are sufficiently sensitive to dynamically mon-
itor changes of nuclear lipid contents, precise enough
to spatiotemporally track the heterogeneity of the lipid
atlas within nuclei and between nuclei and cytoplasm and
sophisticated enough to define the interaction and links
between nuclear lipidomics and transcriptomics. To trans-
late nuclear lipid systems biology and lipotranscriptomics
research into clinical practice, it will be important to better
understand the relationship of nuclear lipid structure and
function with disease classification, stages, phases, phe-
nomes, responses to interventions and prognoses.
In conclusion, nuclear lipid metabolism and metabo-

lites play important roles in regulation of lipid–lipid, lipid–
gene, lipid–chromatin, lipid-membrane and lipid-protein
interactions to maintain the nuclear microenvironment,
three-dimensional chromatin architecture, gene expres-
sion and transcription and biological function. Regula-
tory functions of nuclear lipid dynamics and biophysics
modify transcriptomic expression, and modification (lipo-
transcriptome) can be a new approach for discovery and
development of disease-specific diagnoses and therapies,
although there are several challenges to be overcome. Bet-
ter understanding of how lipid-based changes of nuclear
functions and transcriptomic profiles modify clinical phe-
nomes will provide new insights to understand molecu-
lar mechanisms of diseases and to develop spatiotemporal
molecular medicine diagnostics and therapeutics.
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