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Nucleic acid autoantibodies, increase type I interferon (IFN-a) levels, and

immune cell hyperactivation are hallmarks of systemic lupus erythematosus

(SLE). Notably, immune cell activation requires high level of cellular energy that

is predominately generated by the mitochondria. Mitochondrial reactive

oxygen species (mROS), the byproduct of mitochondrial energy generation,

serves as an essential mediator to control the activation and differentiation of

cells and regulate the antigenicity of oxidized nucleoids within the

mitochondria. Recently, clinical trials on normalization of mitochondrial

redox imbalance by mROS scavengers and those investigating the recovery

of defective mitophagy have provided novel insights into SLE prophylaxis and

therapy. However, the precise mechanism underlying the role of oxidative

stress-related mitochondrial molecules in skewing the cell fate at the

molecular level remains unclear. This review outlines distinctive

mitochondrial functions and pathways that are involved in immune

responses and systematically delineates how mitochondrial dysfunction

contributes to SLE pathogenesis. In addition, we provide a comprehensive

overview of damaged mitochondrial function and impaired metabolic

pathways in adaptive and innate immune cells and lupus-induced organ

tissues. Furthermore, we summarize the potential of current mitochondria-

targeting drugs for SLE treatment. Developing novel therapeutic approaches to

regulate mitochondrial oxidative stress is a promising endeavor in the search

for effective treatments for systemic autoimmune diseases, particularly SLE.

KEYWORDS

systemic lupus erythematosus, mitochondrial reactive oxygen species, mitochondrial
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.929520/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.929520/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.929520/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.929520&domain=pdf&date_stamp=2022-07-25
mailto:vivian08152003@163.com
mailto:zhaolidanpumc@163.com
https://doi.org/10.3389/fimmu.2022.929520
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.929520
https://www.frontiersin.org/journals/immunology


Wang et al. 10.3389/fimmu.2022.929520
Introduction

Systemic lupus erythematosus (SLE) is a chronic

autoimmune disease characterized by self-tolerance

breakdown, excessive production of autoantibodies and

impaired clearance of immune complexes, which incites

sustained inflammatory response and multi-organ damage (1).

As the signature of SLE, excessive production of type I IFN

(especially IFN-a) substantially contributes to SLE pathogenesis

by triggering the activation and expansion of autoreactive

immune cells, promoting autoantibodies production and

inflammatory cytokines release, hence leading to the formation

of nucleic acid-protein immune complex and perpetuating the

autoreactive immune response. Despite great improvement has

been achieved in SLE survival, the morbidity from both the

disease and the medications makes the prognosis still far from

satisfactory (2). Therefore, deeper understanding and further

elucidation of the cellular and molecular immune aberrations in

SLE pathogenesis are still in desire.

Cellular bioactivity cannot be accomplished without

energy and mitochondria is the critical organelle in

initiating and maintaining cellular energy metabolism. By

generating adenosine triphosphate (ATP) through oxidative

phosphorylation, mitochondria provide energy for multiple

cell activities and determine the cell fate like activation

and differentiation (3). In addition, mitochondria are

also the major producer of reactive oxygen species (ROS),

which are involved in redox balance and oxidative damage,

and regulate iron homeostasis, calcium efflux, and metabolic

pathways (4). Abnormal mitochondrial function participate

in numerous diseases, such as neurological disorders,

endocr inopathy , inflammatory bowel d isease , and

autoimmune diseases (5). Moreover, under oxidative stress

conditions, immune complexes and IFN-a stimulate

excessive mitochondrial ROS (mROS) production that

consequently induces highly immunogenic oxidative

mitochondrial DNA (Ox-mtDNA). This Ox-mtDNA

activates inflammatory signaling pathways and promotes

cell death progression (6, 7). Notably, several studies have

reported that mitochondrial dysfunction is closely associated

with SLE (8, 9). Furthermore, regulation of excessive levels of

mROS and alleviation of deleterious consequences of

mitochondrial dysfunction have emerged as promising

therapeutic approaches for SLE treatment (9, 10).

This review aimed to summarize the current research

advances on physiological and pathological roles of

mitochondria., Mitophagy defects of antioxidant defense

and mitochondrial dysfunction contributing to SLE

immunopathogenesis were systematically reviewed. The drugs

based on the normalization of mitochondria function and

mitophagy metabolic pathways were briefly introduced and

their potential therapeutic values in SLE were discussed.
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Mitochondrial functions and
homeostasis maintenance

Mitochondrial functions

Mitochondria are energy-producing cellular organelles that

generate energy in the form of ATP via oxidative

phosphorylation (OXPHOS) performed by the electron

transport chain (ETC) complexes. These complexes consist of

five enzymes, wherein complexes I and III are the primary

enzymes that catalyze the generation of low concentrations of

superoxide anions. These enzymes maintain the mitochondrial

antioxidant defenses (11). However, increased mROS levels

during oxidative stress cause mitochondrial DNA (mtDNA)

impairment and ETC defects, resulting in mitochondrial

dysfunction (12).

The tricarboxylic acid (TCA) cycle occurs in the

mitochondria is essential for ATP energy supplement and

participates in multiple mitochondria metabolic pathways (13,

14). This review mainly discusses defective mROS clearance for

nutrient energy signaling activation (e.g., activation of AMP-

activated protein kinase (AMPK) and mammalian target of

rapamycin complex 1 (mTORC1)) by regulating the

mitochondrial dynamic loop and releasing the antigenicity of

the mtDNA to induce the immune responses. Furthermore,

preclinical safety therapeutics for the clearance of excessive

mROS and mtDNA production were collectively recapitulated

in autoimmune diseases, particularly SLE (Figure 1).
Mitochondria dynamics balanced with
biogenesis and mitophagy

Mitochondria continuously undergo a cycle of production

(biogenesis), morphology (fusion/fission), and degradation

(mitophagy); hence, they are crucial for maintaining cellular

homeostasis (15) (Figure 2).

The mitochondrial biogenesis and function require

peroxisome proliferator-activated receptor (PPAR)-g
coactivator-1 (PGC) family of transcriptional coactivators,

including PGC-1a, PGC-1b, and PGC-1–related coactivator

(PRC) (16). PGC-1a is a primary mitochondrial biogenesis

core regulator that recruits several transcription factors, such

as nuclear respiratory factor (NRF)-1, NRF-2, and estrogen-

related receptors. It also promotes the assembly fatty acid b-
oxidation, OXPHOS and co-activate the mitochondrial

biogenesis. Remarkably, NRF-1 and NRF-2 significantly induce

the transcription of mitochondrial proteins in the nucleus;

among these proteins, the expression of the mitochondrial

transcription factor A (TFAM) is essential for balancing

mtDNA transcription and clearance (17). PGC-1a plays a

complex role in regulating the expression of ROS-scavenging
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proteins, such as superoxide dismutase (SOD2) (18).

Furthermore, in response to the cellular energy demands, it

activates the key energy sensors AMPK and sirtuin 1 under

differential nutritional conditions. Owing to its critical role in

cellular energy homeostasis, AMPK participates in various

catabolic processes. Indeed, its phosphorylation stimulates

mitochondrial biogenesis, autophagy, mitophagy, fatty acid

oxidation (FAO), and glycolysis, and induces ATP generation

during cellular metabolism (19). We discussed AMPK-mediated

regulation of PGC-1a expression in kidney podocytes in the SLE

organ damage section (4.1 Mitochondria and Lupus Nephritis).

However, AMPK inhibits energy-consuming pathways via

mTORC1 and ULK1 phosphorylation under nutrient

deprivation conditions, consequently activating mitophagy

(20). The mammalian target of rapamycin (mTOR) pathway is

another nutrient-sensing pathway that regulates mitochondrial

biogenesis and activates PGC-1a in response to external stimuli

(21). Furthermore, PGC-1a interacts with various transcription

factors, such as hypoxia-inducible factor 1 subunit alpha (HIF-

1a) that mediates mitochondrial biogenesis and mitophagy (22).

Distinct mitochondrial molecular mechanisms and signaling

pathways have been proven to regulate the pathways mentioned

above (23). For instance, mitochondrial fusion is primarily

mediated by mitofusin 1/2 (Mfn1/2), optic atrophy protein 1

(Opa1), and three GTPases. Mfn1/2 localizes to the outer

mitochondrial membrane and facilitates the fusion of adjacent

mitochondria by forming homo- or heterodimers. In contrast,

Opa1 predominately induces the fusion of the inner

mitochondrial membrane in a synchronized manner.

Additionally, dynamin-related protein (Drp1) and other

receptors play essential roles in regulating mitochondrial

fission through phosphorylation and ubiquitination (24).

Notably, Drp1 mutation affects mitochondrial fission, ROS

generation, and kidney-specific cell damage and effacement,

eventually initiating cell apoptosis (25). Mitochondrial fission-

mediated fragmentation, concomitant with other mitochondrial

damage, initiates mitophagy and mediates mROS production.

On the contrary, mitochondrial fusion promotes the exchange

and restoration of mitochondrial content by tethering adjacent

mitochondria (26). The mitochondrial fission and fusion

dynamics modulate a metabolic shift towards cel l

differentiation. For example, memory T cells have fused

mitochondria that favor OXPHOS and FAO, whereas effector

T cells enforce fission of punctate mitochondria, promoting the

catabolic aerobic glycolysis pathway (27). This suggests that

manipulating the mitochondrial structure can determine cell

differentiation and, eventually, cell fate.

Mitophagy is closely associated with mitochondrial fission

and selectively removes damaged or depolarized mitochondria

during lysosomal degradation (28). Similar to autophagy,

mitophagy is a catabolic process that is initiated by the

recruitment of autophagy machinery proteins to activate the
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mitochondrial surface. Thereafter, autophagosomes enclose

mitochondria and transport them to lysosomes for

degradation (29). Two major degradation processes enable

the removal of defective mitochondria to maintain the

homeostasis of cell function and metabolism. For instance,

ATPases specifically degrade senescent and damaged

mitochondria into smal l pept ides ; however , these

mitochondria can also be eliminated in lysosomes through

mitophagic degradation (30). Under cellular stress stimuli,

mitophagy selectivity initiates multiple cell death signals

through the PTEN-induced kinase 1 (PINK1)/Parkin-

mediated ubiquitination pathway and receptor-mediated

pathways, such as BCL2 interacting protein 3 and FUN14

domain-containing protein 1 (31, 32). PINK1 and Parkin-

mediate ubiquitination signaling play crucial roles in the

interplay between mitophagy and mitochondrial dynamics.

Hence , t ime ly e l imina t ion of damaged and aged

mitochondria reduces the excessive accumulation of mROS,

avoiding triggering the cytoplasmic DNA sensor by releasing

the mtDNA (33). Mitochondria are endosymbionts evolved

from bacteria. The mtDNA and N-formyl peptides are two

mitochondrial components that represent mitochondrial

damage-associated molecular patterns (DAMPs), serve as the

innate immune response to produce inflammatory cytokines

and chemokines via Toll-like receptors (TLR), absent in

melanoma 2 (AIM2), nucleotide-binding oligomerization

domain (NOD)-like receptors (NLRs), and retinoic acid-

inducible protein I (RIG-I)-like receptors (RLRs) (33).

Beyond the clearance capability of mitophagy, damaged

mitochondria trigger the innate immune response by

releasing mitochondrial DAMPs to recognize pattern

recognition receptors and G-protein-coupled formyl peptide

receptors, which explains the stimulation of a pro-

inflammatory response in the innate immune system under

microbiology-free condition (34).
Mitochondrial dysfunction in SLE

The vicious cycle of redox disturbance

Under physiological conditions, mitochondria generate low

levels of mROS to modulate various signaling pathways and

cellular metabolisms. However, mROS levels beyond a threshold

can be pathogenic, causing mitochondrial dysfunction and

further cellular damage (35). Glutathione peroxidase (GPX), as

one of the antioxidant enzymes to balance between glutathione

and glutathione disulfide, detoxifies lipid peroxides and

scavenges ROS from the mitochondria (36). Under the

oxidative stress condition, mtDNA can be extruded from the

mitochondria into the cytoplasm (4). A recent study has

discovered that the formation of 8-hydroxy-2-deoxyguanosine
frontiersin.org

https://doi.org/10.3389/fimmu.2022.929520
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2022.929520
(8-OHdG), which is recognized as an indicator of oxidant-

induced DNA damage, is greatly eliminated upon the decline

of the mtDNA copy number in SLE patients (37). On the other

side, highly immunogenic Ox-mtDNA induces mROS

overproduction and stimulates an inflammatory response (38).

In addition, defective mitochondrial antioxidant enzymes in the

immune cells of SLE patients can further aggravate oxidative

stress in a vicious cycle (38). Therefore, oxidative stress-

mediated mitophagy has been recognized to play a critical role

in genetic predisposition and immune cell activation in SLE.
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Genetic mechanism of mitochondrial
dysfunction

Genetic predisposition along with many other etiological

factors contributes to the pathogenesis of SLE. Multiple

genome-wide association studies have identified several

mitochondrial s ingle nucleotide polymorphisms as

responsible for conferring susceptibility towards SLE (39).

For example, ATP synthase 5/6, displacement-loop, D310,

NADH dehydrogenase subunit (ND) 1, and ND2 have been
FIGURE 1

Crosstalk of mitochondria homeostasis and immune signaling. Mitochondria support the major generation of reactive oxygen species(mROS) for
modulating various signaling and cellular metabolism. Mitochondria produce ATP through the tricarboxylic acid cycle (TCA) oxidative
phosphorylation (OXPHOS) at electron transport chain (ETC) complexes. Detoxify free radicals from ETC complexes reduced by manganese
superoxide dismutase (MnSOD) and glutathione peroxidase (GPX) into water (H2O). GPX, as a catalase, also regulates the conversion balance of
oxidized glutathione (GSH) and glutathione disulfide (GSSG) in mitochondria. Under the circumstance of oxidative stress that is stimulated by
insults and exogenous pathogens, various DNA sensors trigger aberrant mitochondrial function by activation of pattern recognition receptors in
the cytosol and mitochondria (e.g. retinoic-acid-inducible protein I (RIG-I), melanoma differentiation-associated protein 5 (MDA-5), and Toll-like
receptor(TLR)). Expulsion of highly immunogenic Ox-mtDNA out of mitochondria stimulates AMP-activated protein kinase (AMPK), mammalian
target of rapamycin complex 1 (mTORC1), Nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain-containing protein 3
(NLRP3)-mediated IL-1b and IL-18 production, and cyclic GMP-AMP (cGAS) and the cyclic GMP-AMP receptor stimulator of interferon genes
(STING)-dependent IFN-a. Under conditions of nutrient deprivation, AMPK inhibits energy-consuming pathways by mTORC1 for mitophagy
activation. The HRES-1/Rab4-mediated dynamin-related protein 1 (Drp1) depletion reverses mitochondrial accumulation via mTOR-independent
pathway. Mitochondrial respiration (ETC), mTORC1, and cGAS-STING signaling pathway serve as potential therapy targets. Several medications
that targeting mitochondria metabolism process has been observed the therapeutic clinical effectiveness in SLE, including N-acetylcysteine
(NAC), Rapamycin, Metformin, Mito Q, Hydroxychloroquine (HCQ), and Idenenone. The voltage-dependent anion selective channel (VDAC)
oligomer inhibitor VBIT 4 can inhibit the release of mtDNA. I, II, III, IV, and V represent the electron transport chain complexes I–V. Glutathione
reductase (GR).
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demonstrated to be involved in mitochondrial biogenesis and

mitophagy, proving that mtDNA polymorphisms confer

susceptibility to SLE (39–42). As known, pathogenic

autoantibodies and the deposition of immune complexes in

tissues cause multiple organs damage in SLE. Autoantibodies

against various mitochondrial components indicate that

mitochondria are key antigenic stimulants that incite an

immune response in SLE. Various autoantibodies, such as

anti-mitochondrial, anti-whole mitochondrial (43), anti-

mtDNA (44), mitochondrial-RNA (45), and anticardiolipin,

have been generated by targeting distinct mitochondrial

components, including the mitochondrial surface, mtDNA,

mitochondrial RNA, and mitochondrial inner membrane,

respectively. These findings suggest that mitochondria are an

important source of autoantigens that contribute to SLE

pathogenesis. Furthermore, accumulating evidence suggests

that mitochondrial dysfunction and abnormal mitophagy

result in redox disturbance of mtDNA, overproduction of

mROS, an imbalance of oxidative stress, and activation of

inflammatory pathways. All these factors are involved in the

initiation and development of SLE (46).
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Mitochondrial dysfunction in immune
cells

Mitochondria are hypothesized to originate from

endosymbiotic bacteria. Additionally, self-energy modulation

in the mitochondria is essential for mitochondrial metabolism

and host immune response signaling cascade (47).

Mitochondrial dysfunction-induced redox disturbance

differentially activates various inflammatory pathways in

adaptive and innate immune cells. Studies have investigated

multiple cellular signaling pathways that regulate mitophagy in

SLE, including the mTORC1, AMPK, NLR family pyrin

domain-containing 3 (NLRP3) inflammasome, and cGAS–

STING pathways (48–51) (Figure 1).

Mitochondrial dysfunction in adaptive immune
cells

Mitochondrial dysfunction has been detected in lupus T cells

and is characterized by excessive mROS production, elevated

transmembrane potential, downregulated mitophagy, and

reduced glutathione levels (52–54). Moreover, oxidative stress
FIGURE 2

Mitochondria dynamics balanced with biogenesis and mitophagy. Mitochondrial biogenesis. Immune signals of AMP-activated protein kinase
(AMPK) and sirtuin 1 (SIRT1) have been reported to increase mitochondrial biogenesis by peroxisome proliferator-activated receptor-g
coactivator-1a (PGC-1a). The master regulator, PGC-1a, drives mitochondrial biogenesis, oxidative phosphorylation(OXPHOS), and fatty acid
oxidation by co-activating transcription factors, including Estrogen Related Receptor Alpha (ERRa), peroxisome proliferator-activated receptor
(PPAR)-g, nuclear respiratory factor (NRF)-1 and-2. Mitochondrial transcription factor A(TFAM) aids in the transcription of genes that is essential
for balancing mtDNA transcription and clearance. Mitochondrial dynamics. Mitochondrial dynamics of fission and fusion are regulated by
dynamin-related protein-1 (Drp1), fission 1 (Fis1) and mitofusin-1 (Mfn1), mitofusin-2 (Mfn2), and optic atrophy 1 (Opa1) respectively. mtDNA
extrudes from the mitochondria through pores formed by voltage-dependent anion-selective channel (VDAC) oligomers. Mitophagy activation.
The augment of fission promotes mitophagy activation by the PTEN-induced kinase 1 (PINK1)/Parkin-mediated ubiquitination pathway and
receptor-mediated pathways, such as BCL2 interacting protein 3 (BNIP3) and FUN14 domain-containing protein 1(FUNDC1). Timely elimination
of damaged and aged mitochondria reduces the excessive accumulation of mitochondria reactive oxygen species (mROS), which can be
inhibited by mitochondrial enzymes such as superoxide dismutase 2 (SOD2). Damaged mitochondria with decreased mtDNA undergo
mitophagy.
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impairs proximal T cell receptor (TCR) signaling, pathway

activation, and exhaustion-associated gene expression program

activation (55). Furthermore, chronic antigen stimulation

induces irreversible T cell exhaustion and impairs mitophagy,

causing mROS overproduction and autoantigen release (56).

Multiple signaling pathways enable the sequestration and

successful clearance of damaged mitochondria by mitophagy,

suppressing mtROS accumulation (57). Redox-dependent

activation of the mTOR pathway plays an essential role in

altering TCR signal transduction and T cell differentiation in

SLE patients (48, 58). Additionally, it is believed that

mitochondrial localization to an immune synapse is required

for T cell activation. However, mTOR activation decreases T cell

surface receptor/CD3z chain levels and in compensation

augments tyrosine-protein kinase and Fcgamma chain receptor

(FcgR) levels. Consequently, this increases the calcium flux in

lupus T cells through HRES-1/Rab4-dependent lysosomal

degradation (48). The aberrant Ca2+ alteration may account

for the inappropriate activation in lupus T cells. Notably,

upregulated expression of the small GTPase HRES-1/Rab4

depletes the Drp1 levels, leading to decreased mitophagy in

CD4+ T cells in lupus. In contrast, Rab4 inhibited with 3-

pyridinyl ethylidene hydroxyl phosphonocarboxylate (3-

PEHPC) restores Drp1 function via the mTOR-independent

pathway, reversing mitochondrial accumulation in lupus T

cells (59).

Increased calcium flux also promotes oxidative stress-

dependent T cell activation. For instance, the calcium-

mediated phosphatase calcineurin dephosphorylates nuclear

factor of activated T cell (NFAT). Intranuclear NFAT,

accompanied by other transcription factors such as AP-1, NF-

kB, and Oct-1, promotes the expression of the inflammatory

cytokine interleukin (IL)-2 (54). Of note, Rab4A inhibition

improves impaired mitophagy of lupus T cells, activation of T

cells, and production of autoantibodies in SLE. This

demonstrates that recovery of mitochondrial dysfunction

caused by insufficient mitophagy and mROS overproduction

normalizes the phenotypes of T cells in SLE. Furthermore, few

clinical trials have demonstrated that either inhibiting mTORC1

by rapamycin (sirolimus) (60) or supplementing N-

acetylcysteine (NAC), a glutathione precursor and an

antioxidant (58), is therapeutically effective and improved

systemic inflammation in patients with SLE. Interestingly,

mitochondrial accumulation depletes memory T cells and

regulatory T (Tregs) cells in SLE (60). Indeed, decreased

number of Treg cells fail to maintain self-tolerance and

immunosuppressive function in SLE, whereas supplementation

of Treg cells normalizes the inflammatory response and SLE

pathology in lupus mice (61). With regard to mitochondrial

energy metabolism, these cells have a higher requirement for

OXPHOS via AMPK activation than the T helper 17 (Th17) cell

subset (62). Metformin, by targeting AMPK activation, can

optimize the immunoregulatory effect of Treg cells by
Frontiers in Immunology 06
enhancing STAT1 expression in an AMPK-dependent manner

in SLE (63).

Little is known about the mitochondrial immune

metabolism of B cells in SLE. Nonetheless, induced

differentiation of CD27+IgD+ unswitched memory B cells into

D27hiCD38hi plasmablasts is accompanied by activation of

mTORC1 (64). In fact, increased activation of mTORC1 has a

positive correlation with the overproduction of autoantibodies

and cytokines in the B cells in SLE (64, 65). Remarkably,

suppression of hyper-responsiveness in B cells was observed

upon rapamycin treatment in SLE (66). with consistency,

suppressing mTOR activity by deletion of RAPTOR, an

essential signal adaptor for mTORC1, blocks plasma cell

differentiation in a mouse model of lupus (67). Previous

evidence has also revealed that long-lived plasma cells require

quiescent and slow ATP generation through AMPK signaling

and mitochondrial OXPHOS (68). Metformin has been

demonstrated to ameliorate SLE manifestations by preventing

B cell differentiation into plasma cells and germinal center

expansion by altering AMPK–mTOR–STAT3 signaling (69).

Mitochondrial dysfunction in innate immune
cells

Neutrophils and plasmacytoid dendritic cells (pDCs)

produce IFN-a under the stimulation of nucleic acid–protein

immune complexes (70). Of note, excessive IFN-a production

occurring in more than half of all SLE patients stimulates the

release of interferongenic DNA (including mtDNA) from

neutrophils, forming an autoantigen/antibody immune

complex (71). However, exposure to the IFNa/RNP immune

complex disrupts mitochondrial degradation, leading to the

accumulation of abundant Ox-mtDNA within mitochondria

and eventually out of mitochondria, which would be a potent

pDC stimulator (49). Owing to the presence of the Ox-mtDNA

autoantibody, mtDNA is potent antigen that stimulates

autoantibody production in SLE (45). Furthermore, the

common oxidative DNA damage marker 8-OHdG is elevated

in the blood cells of SLE patients (37). mtDNA served as a

DAMP induces the production of IFN-a, which activates the

cytosolic DNA-sensing cGAS-STING (72), and NLRP3 signaling

pathway (51). Defective mitophagy and consequent mtDNA-

dependent DNA sensor activation might conceivably be a

fundamental event in SLE pathogenesis (3).

The formation of neutrophil extracellular traps (NETs),

which are extrusions of genomic DNA and chromatin to kill

invading pathogens (73). The ribonucleoprotein immune

complex and IFN-a induce spontaneous NETosis through

cGAS–STING pa thway ac t i va t i on , m i tochondr i a l

hyperpolarization, and mROS overproduction in SLE (74).

Notably, mROS-mediated Ox-mtDNA enclosed within NETs

that are expelled to the neutrophil cell surface triggers IFN

production. Thus, mROS inhibition reduces NETosis by

inhibiting mitochondrial respiration in lupus mice. This
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reinforces the notion that mitochondrial functioning and ROS

productivity drive SLE pathogenesis (75).

In addition, high mROS levels and increased oxidative stress

have been detected in SLE monocytes exhibiting IFN-a
signature. Defection of IFN-a-mediated mtDNA degradation

leads to a high mitochondrial membrane potential in SLE

monocytes, promoting their autoreactivity in a STING-

dependent manner (76). Moreover, the differentiation of

circulating monocytes into autoinflammatory dendritic cells in

the presence of IFN-a promotes the activation and expansion of

autoreactive lymphocytes, partially mediating an adaptive

immune response (77). Notably, pDCs are the major

producers of IFN-a in SLE, and IFN-a production from pDC

mediated by TLR9 is reduced by mTOR inhibitor, which

regulates pDC differentiation and activation by modulating

mitochondrial biogenesis and energy metabolism (78).

Therefore, normalization of mtDNA and repairment of

mitophagy by an antioxidant treatment are promising

therapeutic strategies for SLE treatment (76).

NLRP3 and AIM2 are DNA sensors that along with

apoptosis-associated speck-like protein and pro-caspase-1

(component of the NLRP3 inflammasome) trigger the

production of several downstream pro-inflammatory cytokines

(e.g., IL-1b and IL-18) and promote pyroptosis (79). Although

multiple models of NLRP3 inflammasome activation have been

identified in autoimmune diseases, the most common model

comprises NLRP3 inflammasome activation with ROS

production (80, 81). Clearance of damaged mitochondria by

decreasing oxidative stress signals over time and increasing

mitophagy physiology are necessary for limited NLRP3

activation. In addition, mROS and mtDNA are crucial for

optimal NLRP3 inflammasome activation and concomitant

calcium influx (82). Mitochondria are essential for intracellular

calcium storage and are key modulators of mitochondrial

homeostasis. Of note, calcium influx promotes the release of

mROS and mtDNA to amplify NLRP3 activation in a feedback

loop (83). NOD2/RIPK2-dependent mitophagy and LC3B/

Beclin 1-mediated autophagy contribute to the clearance of

damaged mitochondria and thus negatively regulate NLRP3

inflammasome activation (82, 84).

Several studies have also indicated that NETs-mediate the

activation of the NLRP3 inflammasome in macrophages of lupus

patients, subsequently promoting IL-1b production via ROS and

K+ efflux (85). Importantly, insufficient clearance of damaged

mitochondria causes excessive mtDNA, mROS, and cardiolipin

externalization and that of other stimulators (e.g., K+ efflux),

thereby activating the NLRP3 inflammasome (86). However,

administration of mROS scavengers significantly decreases

inflammasome-related gene expression and mature IL-18

expression in lupus mice (75). Conversely, studies reported

that loss-of-function mutations of inflammasomes are

correlated with disease development in SLE patients (87). The
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possible explanation is that homeostatic inflammasome function

is required for the equilibrium of protective and destructive

immunity. In addition, defective lysosomal degradation of

autophagosomes and their cargo in macrophages fail to clear

mtDNA and lysosomal TLR7 activation. Notably, lack of

mitochondria-related GTPases, e.g. the IRGM1, could lead to

sustained activation of IFN, consequently induce cGAS–STING

axis activation and autophagy inhibition in various autoimmune

diseases (88).
Mitochondrial dysfunction damages
organs

Target organs of SLE, especially kidney, nerves, and gut,

require high level of energy supply to drive their function and are

more susceptible to oxidative stress and subject to chronic

inflammatory injuries (1). Moreover, it is being increasingly

evident that impaired mitochondria are central mediators of

injury in different tissues and organs in SLE (46), which will be

discussed in-depth in the subsequent section and summarized

in Figure 3.
Mitochondria and lupus nephritis

The kidney is one of the most energy-consuming organs in

human body and the mostly attacked organ in lupus (89).

Indeed, glomerular podocytes and tubular epithelial cells

require a bundle of mitochondria to provide sufficient energy

to remove waste from the blood and maintain the electrolyte

balance (90). Current evidence suggests that impaired

mitochondrial degradation in glomerular and tubular cells are

involved in LN pathogenesis and renal damage (91). Targeted

therapies against impaired mitophagy have been designed to

prevent LN (91–93).

Dysfunction of podocytes with abnormal permeability and

viability and aggravated podocytes apoptosis by pathogenic IgG

and IFN-a have been found in LN patients and lupus mice,

which could be partially restored by activation of autophagy via

mTORC1 inhibition (91). Recent evidence demonstrates that

lupus mice with severe proteinuria had low autophagosomes in

the podocytes with significant foot process effacement and

fusion, while lupus mice with mild proteinuria had a high

number of autophagosomes observed with slight podocyte foot

fusion. Podocyte function is regulated by an imbalance in

mitochondrial division and fusion and activates mitophagy to

remove damaged mitochondria via Mfn1 and Drp1 expression.

However, once decompensated, mitochondrial dysfunction leads

to a vicious cycle of defective mitophagy in LN (94). Therefore,

further investigation of systemic and local mitophagy

mechanisms is required to elucidate LN.
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Since glomerular and tubular cells are metabolically active,

they are particularly susceptible to oxidative stress-mediated

mitophagy. The uptake of filtered iron and the high

mitochondrial content are essential for iron metabolism, which

is an under-investigated driver of LN (95). Podocytes serve as the

primary components of iron uptake in glomerular epithelial

cells. Indeed, they take up hemoglobin and transferrin via

megalin–cubilin complex-mediated endocytosis and store the

absorbed iron as ferritin (96). Notably, recent evidence has

identified novel mechanisms of mitophagy independent of the

PINK1/Parkin pathway (97). For instance, mitophagy induced

by iron chelator-mediated iron loss is associated with increased

expression of mitochondrial ferritin. In fact, the mitochondrial

ferritin interacts with nuclear receptor coactivator 4, an

autophagic cargo receptor, triggers mitophagy and regulates

the expression of antioxidants and detoxifying enzymes via

HIF-1a specific protein 1 axis (92). Furthermore, studies have

demonstrated that excessive dietary iron intake may aggravates

human lupus, whereas iron infusion increases disease

progression and worsens symptoms (98). Renal iron

accumulation have been reported in different strains of lupus

mice, and hepcidin could ameliorates LN development in MRL/

lpr mice by regulating iron metabolism (99). Treatment with

deferiprone, a U. S. Food and Drug Administration-approved
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iron chelator, significantly ameliorates pathogenic anti-dsDNA

IgG expression and renal injury. Although deferiprone has been

authorized for only limited diseases, its ability to interfere with

iron loss‐induced mitophagy highlights its therapeutic potential

in treating SLE and thus deserves further investigation (95). In

lupus-prone mice with neutrophil-specific glutathione

peroxidase-4 (GPX4) haploinsufficient, treatment with a

specific ferroptosis inhibitor via GPX4, the component most

downstream to the ferroptosis pathway, significantly

ameliorated disease severity. This further proves the feasibility

of manipulating iron metabolism in SLE treatment (100).

Remarkably, the molecular mechanism of iron-induced

injury in glomerular and tubular cells has been attributed to

mROS production (93). Indeed, excess mROS activates the

NLRP3 inflammasome by upregulating IL-1b and IL-18 levels,

further exacerbating inflammatory reactions within these cells

(51, 93). Studies have also determined the activation of the

podocyte NLRP3 inflammasome in both lupus-prone mice and

LN patients (101, 102). Mitochondrial ROS inhibitors can

suppress the activation of the NLRP3 inflammasomes alleviate

the podocyte lesions and proteinuria (101, 103).

To date, there has been a lack of mitochondrial antioxidant

therapeutics developed in preclinical studies. Notably,

supplementation of coenzyme Q10 (CoQ10), a potent
FIGURE 3

Aberrant mitophagy and redox disturbance cause multiple organs damage in SLE. SLE is a heterogeneous systemic autoimmune disease,
affected multiple organs, such as kidney, nerves, gut and hematologic (non-immune cells). (A) Brain-Gut axis is novel therapeutic strategy on
modulation of mitochondrial dyshomeostasis by neutralizing excessive ROS in microglial cells in neuropsychiatric SLE (NPSLE). (B) Extracellular
mitochondria (specifically platelets mitochondria and erythrocytes) serve as an immunogenic DNA, activated the cGAS–STING pathway,
consequently trigger IFN-a production through binding to FcgRIIA in SLE. (C) The microbiota metabolites can directly interfere with the
mitochondrial redox status in the host cells. Microbiota metabolites, such as hydrogen sulfide (H2S), short-chain fatty acids (SCFAs), and
tryptophan, play an essential role in regulation of intestinal epithelial cells (IEC) integrity in SLE. (D) Impaired mitochondrial degradation in
glomerular and tubular cells causes proteinuria and renal failure in LN. Iron loss-induced mitophagy is associated with the mitochondrial ferritin
by nuclear receptor coactivator 4(NCOA4). Iron-induced injury of glomerular and tubular cells has been attributed to excessive mROS
production, which contributes to drive NLRP3 inflammasome activation in SLE podocytes. Ubiquitin-proteasome system (UPS), Five respiratory
complexes (complexes I–V), tricarboxylic acid (TCA) cycle.
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antioxidant, significantly reduces tacrolimus -induced oxidative

stress and mitochondrial membrane potential in proximal

tubular cells. Thus, this can be a promising approach to

reduce nephrotoxicity via regulation of mitochondrial function

(104). More potential targets treatment beneficial for

mitochondrial function and structure, and preventing

oxidative injuries are expected.
Mitochondria and microbiome dysbiosis

It has been widely proposed that mitochondria and the gut

microbiome have a shared phylogenetic history, and their

crosstalk regulates cellular homeostasis and metabolism (47).

Furthermore, increasing evidence suggests that microbiota and

their metabolites directly interfere with the mitochondrial

respiratory chain and maintain the redox status in host

cells (105).

Emerging evidence suggests that a disturbed gut microbiota

is an essential pathogenic mechanism in SLE development (106,

107). Owing to their tight junctions and coated mucus layers,

host intestinal epithelial cells (IEC) act as frontline machinery

that partition the host inner organs from the gut microbiota in

the lumen (108). Gut microbiome regulates mitochondrial

energy production via biosynthesis and mitophagy, whereas

mitochondrial homeostasis in IECs maintains intestinal barrier

integrity against pathogens (109, 110). Of note, excessive mROS

levels induce a redox imbalance and modify phosphorylation of

tight junction proteins (e.g. occludin and ZO-1), and disrupt the

tight junctions of the intestinal epithelial barrier (111). However,

studies have noted that treatment with the mROS scavenger

mitoquinone (MitoQ) and the antioxidant NAC restores

mitochondrial ATP synthesis and enhances epithelial cell

mitophagy in vivo and in vitro (112, 113).

The interaction between epithelial cell mitophagy and

disturbed microbiota in the gut of SLE patients has attracted

increasing attention (114). For example, studies have discovered

that microbial metabolites, such as hydrogen sulfide (H2S),

short-chain fatty acids (SCFAs), and tryptophan, in particular,

considerably regulate mitophagy in SLE (114–116). Indeed, a

previous study has demonstrated that several intestinal

pathogens (e.g., Escherichia coli and Salmonella spp.)

exhibiting degradation of sulfur amino acids produce a large

amount of H2S (117). Recently, a study has detected detrimental

responses to excessive intestinal H2S, which inhibits complex IV

of the mitochondrial ETC during inflammation, reduced SCFA

production and damage gut epithelial barrier integrity (115,

118). Increased intestinal permeability and gut microbes

translocation have been eventually proposed contributing to

the pathogenesis (119). Indeed, translocation of Enterococcus

gallinarum and Lactobacillus reuteri into various organs has

been independently implicated in different mouse models of

lupus (120, 121).
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Microbial fermentation of indigestible dietary fiber produces

SCFAs that are primarily composed of acetate, propionate, and

butyrate. These compounds are capable of regulating

mitochondrial activity (118). Generally, Firmicutes are the

principle producers of butyrate, whereas Bacteroidetes

primari ly produce acetate and propionates (122) .

Accumulating evidence has revealed that gut dysbiosis causes a

reduced ratio of Firmicutes/Bacteroidetes (F/B) in SLE patients

(123). Nevertheless, butyrate treatment has been demonstrated

to significantly alter the microbiome diversity and normalizes

the F/B ratio in lupus-prone mice (114). A recent study has

reported that activated mitochondrial Drp1 reduces the

production of SCFAs and perturbs the relevant microbes in a

ROS-specific manner, thereby substantially disturbing intestinal

homeostasis (124). Intriguingly, butyrate serves as an important

fuel for intestinal cells and participates in the TCA cycle by

modulating the mitochondrial ETC and mROS clearance (125).

Moreover, sodium butyrate alleviates H2O2-induced oxidative

stress and intestinal epithelium injury via the AMPK-

mitophagy-dependent pathway. However, treatment with an

AMPK inhibitor weakens this positive effect of sodium

butyrate on mitophagy, highlighting the importance of sodium

butyrate in maintaining mitophagy homeostasis (126). Frontier

research on the mitochondria and gut microbiome nexus further

illustrates that the AMPK activator metformin can enhance

SCFA production (125). These previous data suggest that

SCFA modulates gut microbiome diversity and is beneficial for

mitochondrial homeostasis in intestinal epithelial cells, making

it a complex yet fascinating target for lupus studies.

An abundance of the microbial metabolite tryptophan has

been observed in the gut of SLE patients and lupus-prone mice

and is considered to shift the composition of the gut microbiome

(123, 127, 128). Furthermore, fecal transfer from lupus mice fed

with a high-tryptophan diet compared to that from mice fed

with a low-tryptophan diet is more likely to induce

autoimmunity in Germ-free mice. Consequently, this

strengthens the link between gut microbiota and tryptophan

metabolism in the lupus phenotype (128). Remarkably,

tryptophan is metabolically processed through the kynurenine

pathway to produce nicotinamide adenine dinucleotide, which is

essential for the mitochondrial redox balance (116). However,

the complex link microbial metabolites and mitochondrial

functions is just at its beginning to be recognized (118).

Owing to the evidence provided by current studies on the

direct association between mitochondria and gut microbiota in

SLE pathogenesis, increasing focus is being directed toward

normalizing defective mitophagy by influencing the

gut microbiome diversity and microbial metabolites. Notably,

probiotics, diet, and/or fecal transplantation are emerging

strategies for maintaining redox balance and mitophagy

in SLE (129). Nonetheless, multiple interactions of gut

microbiota metabolites and mitochondria in SLE require

further investigation.
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Mitochondria and lupus hematological
damage

Mitophagy mediates the elimination of organelles that are

essential for regulating erythroid maturation. Previously, a study

has demonstrated that a deficiency of Nix, a Bcl-2 family

member, reduces mature erythrocyte levels and downregulates

compensatory expansion of erythroid precursors by regulating

the mitochondrial membrane potential (90). A recent study has

indicated that over one-third of mature erythrocytes in SLE

patients contain mitochondria (130). In this regard, certain SLE

patients exhibit a dysfunctional ubiquitin-proteasome system

(UPS) that fails to eliminate mitochondria in the mature

erythroid cells. It has been proposed that defects in the HIF-

1a-mediated metabolic regulation pathway prevent UPS

activation and mitophagy initiation, leading to the

accumulation of erythrocytes containing mitochondria (131).

These mitochondria-containing erythrocytes produce

interferongenic mtDNA that serve as immunogenic DNA in

SLE, inducing IFN-a production through the activation of the

cGAS–STING pathway in macrophages (132).

Presence of antiphospholipid antibodies is prothrombotic

and associates with risk of thrombosis. Emerging studies have

reported that increased anti-dsDNA autoantibodies or dsDNA

immune complexes strongly promote platelet activation and

thrombosis events by via binding to the FcgRIIA (133).

Despite the sources of circulating autoantigens in SLE have

not been completely elucidated. New evidence has indicated that

mtDNA and mitochondrial extrusion via platelet activation

through FcgRIIA stimulation induces a circulatory

autoantigenic load that ultimately leads to SLE pathogenesis

(134, 135). Given their abundance in the blood, platelets are a

primary source of mitochondria. In addition, platelet-derived

IgG-containing microparticles, mitochondria, mtDNA, and

cytokines are targets of autoantibodies to form immune

complexes in SLE. The DNA-containing immune complexes

captured by Fcg receptor stimulate multiple intracellular

signaling pathways for IFN-a production in SLE, including the

TLR9, RLRs, and cGAS–STING pathways (70, 134, 136). Since

platelets have crucial roles in an immune response, preventing

platelet activation by releasing microparticles and mitochondrial

antigens has emerged as a therapeutic strategy for SLE

treatment (137).
Mitochondria and neuropsychiatric SLE

Neuropsychiatric (NP) involvement and cognitive

symptoms are some of the most severe manifestations of SLE.

These symptoms are induced by multiple immune complexes

deposition and by pro-inflammatory cytokines/chemokines

(138) . However , the mechanism under lying brain
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abnormalities in NPSLE remains largely unknown, and

effective strategies to ameliorate neuropsychiatric disorders

are limited.

Since neurons require high energy supplied by healthy

mitochondria to get excited, the brain is very sensitive to

dyshomeostasis of mitochondrial redox-sensitive signaling

(57). Positron emission tomography implemented by a pilot

study has revealed that altering the distribution of a

mitochondrial translocator protein in the brain significantly

affects the cognitive functions of SLE patients (139). The

microglia cells are stimulated by pro-inflammatory cytokines

to cause impairment in axonal transmission and mitochondrial

dysfunction (140, 141). The swollen and vacuolated

mitochondria cause Ca2+ dysregulation and caspases signal

activation (140, 142). However, a therapeutic strategy of

neutralizing excessive ROS in microglial cells to modulate

mitochondrial dyshomeostasis requires further investigation in

NPSLE patients.

Inspired by the gut-brain axis concept, potential

neuromodulatory mechanisms of gut microbial metabolites

have been extensively studied. Evidence indicates that

metabolites influence the neuro microenvironment by

modulating mitophagy and microglial activation (143).

Notably, SLE patients exhibit lower levels of butyrate, the

mostly studied microbial metabolites. Studies have

demonstrated that butyrate induces transforming growth

factor (TGF)-b production and is essential for microglial

maturation and function in vivo (144, 145). Additionally,

butyrate suppresses the side effects of LPS and restraining the

mitochondrial function of oligodendrocytes in a mitochondrial

redox-dependent manner. Thus, it is considered to be a key

mediator of NP-SLE (146, 147). Moreover, gut dysbiosis and

neurotoxic substance production (e.g., amyloid proteins and

lipopolysaccharides) triggers microglial activation and

inflammation. Several studies have also reported that increased

kynurenine serum levels are positively correlated with

neurological manifestations of SLE (128, 148, 149). Indeed, a

kynurenine-derived metabolite, quinolinic acid, influences

neuronal activities and causes neurotoxicity (150, 151). More

intensive investigation into the mechanism underlying the

mitochondrial redox balance in the pathogenesis of NPSLE

is expected.
Therapeutics targeting the
mitochondria

Given the plenty of studies elucidating the essential role of

mitophagy, mitochondria have emerged as important

pharmacological targets. Thus, novel intervention strategies,

such as treatment using antioxidants, metabolic rescue of

autolysosomal degradation, and repurposing of conventional
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drugs, are possible options to counteract or fine-tune the current

treatment for SLE (152).
Sirolimus

Sirolimus is an mTOR inhibitor that naturally occurs as an

antifungal agent and was first discovered in Streptomyces

hygroscopicus. It exhibits anti-tumor, anti-proliferative, anti-

fibrotic, and immunosuppressive effects (153–155). Sirolimus

blocks both mTORC1 activation and T-cell hyperactivity, and its

effectiveness has been demonstrated in lupus mice by

normalizing proteinuria, protecting renal function, reducing

anti-dsDNA titers and inhibiting antiphospholipid antibody

production (156, 157). In 2018, a single-arm, open-label trial

further verified the role of mTOR inhibition by sirolimus in

treating SLE to recover mitochondrial dysfunction (60). Both the

off-label drug use and subsequent open-label phase 1/2 clinical

trial revealed that sirolimus effectively reduced SLE disease

activity (60, 158), and could be an effective therapeutic

medication for SLE. Nonetheless, further randomized

controlled trials of sirolimus in SLE are warranted.
NAC

The glutathione precursor NAC is an antioxidant and ROS

scavenger that inhibits mTORC1 and suppresses T cell

overactivation (53). By disrupting the mTOR pathway and

decreasing ROS levels, NAC displayed beneficial efficacy in

disease activity of lupus patients (58). As was aforementioned,

impaired mitochondrial function, accompanied by increased

mitochondrial transmembrane potential and sustained

hyperpolarization, potentiates the death of pro-inflammatory

T cells in SLE (53). Importantly, a randomized, double-blind

clinical trial has proven NAC to be an effective inhibitor of

mTOR activity and a regulator of the mitochondrial

transmembrane potential in SLE (58). As it is an ROS

scavenger and a glutathione precursor, NAC decreases ROS

levels while increasing glutathione levels in peripheral

lymphocytes (159). Moreover, NAC inhibits mitochondrial

ETC complex I, reduce the oxidative stress (159, 160),

diminish serum anti-dsDNA antibodies and improves lupus

nephritis as well as prevent disease flares in lupus mice (161).
CoQ10

CoQ10 is a potent antioxidant that prevents the oxidation of

cell membranes and cellular components by scavenging free

radicals in the cytoplasm. Furthermore, it plays a key role in

electron transport from complexes I and II to complex III in the

mitochondria (162). It is well recognized that mROS production
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triggers immune responses against SLE through NET formation

(74). A synthetic analog of CoQ10, MitoQ, effectively suppresses

autoimmune inflammation in SLE by inhibiting mROS

generation. This further downregulates granulocyte NETosis,

reduces disease activity, inhibits IFN-a responses, and

suppresses immune complex formation in the kidneys in a

lupus mouse model (74, 163). Furthermore, another synthetic

quinone analog of CoQ10, idebenone, has shown effectiveness in

improving immune dysregulation, preventing organ

impairment, and restoring mitochondrial abnormalities (75).
Metformin

Metformin is a first-line antihyperglycemic medication for

type II diabetes mellitus; however, it is also a promising

therapeutic agent for SLE with immunomodulatory properties.

Studies have observed the normalization of T-cell mitochondrial

metabolism (including mitochondrial oxidative stress and redox

balance) in SLE patients with metformin treatment (164–166).

Remarkably, add-on metformin treatment for mild or moderate

SLE decreases clinical flares, and reduces glucocorticoid dose

(167). Furthermore, metformin selectively inhibits

mitochondrial complex I and reduces NADPH oxidase

activity. While it significantly downregulates DNA release

from NETs by suppressing ROS production (168), it also

activates AMPK and suppresses OXPHOS in different immune

cells (169). Additionally, it has been proven to be effective in

inhibiting B cell differentiation into plasma cells in the germinal

center of lupus-prone mice, reduction of NLRP3 inflammasome

activation mediated by AMPK, and blockade of pyroptosis of

tubular epithelial cells in pristane-induced lupus mice (69, 170).

Importantly, the beneficial effects of metformin have been

confirmed via a post-hoc pooled analysis, demonstrating its

potential in improving SLE disease activity and decreasing

flare risks, particularly in serologically quiescent SLE

patients (171).
Chloroquine

Hydroxychloroquine (HCQ) and chloroquine (CQ) have

clinical applications for prevention and treatment of malaria

and have been repurposed to treat milder manifestations of SLE,

such as skin rash and arthritis (172). Although their precise

mechanisms of action remain to be completely elucidated, it has

been reported that HCQ inhibits the mitochondrial antioxidant

system induced by TCR crosslinking, consequently increasing

mROS levels and reducing CD4+ T cell proliferation through

oxidat ive stress (173). Furthermore, HCQ exhibits

immunomodulatory properties that downregulate the

constitutive activation of TLR7 and TLR9 in antigen-

presenting cells, and inhibited the cytokine production thereby
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(174). Another potential mechanism of HCQ and CQ is to

regulate cGAS activity by interfering with its binding to cytosolic

DNA, eventually reducing pro-inflammatory cytokine

production (175).
Potential mitochondrial therapeutic
targets in SLE

A few potential mitochondria-targeting chemicals have

emerged as beneficial therapeutics in lupus mice based on the

normalization of mitophagy metabolic pathways. For instance,

studies have shown that treatment with 3-PEHPC, an inhibitor of

Rab geranylgeranyl transferase, restores Drp1 expression, enables

mitochondrial accumulation, and prevents Antinuclear antibody

production and nephritis in MRL/lpr mice. Additionally, these 3-

PEHPC-treated mice exhibit altered inflammatory cytokine

profiles and low IL-10 expression post-treatment (59). Another

potential mitochondria-targeting agent is pioglitazone, a PPARg
agonist, induces the disassembly of complexes I and III in the

mitochondria, depleting cellular ATP production by upregulating

the mitochondrial respiratory chain subunit gene (176).

Interestingly, murine lupus models treated with pioglitazone or

rosiglitazone have displayed positive responses regarding their

inflammatory pathways and disease activity (177, 178).

Furthermore, KN-93 is another potential therapeutic agent that

inhibits CaMK4 via the AKT/mTOR signaling pathway (179).

Notably, it can increase Treg cells and decrease the differentiation

of Th17 cells in lupus-prone mice, which contribute to suppresses

the development of glomerulonephritis and skin diseases (180,

181). cGAS–STING pathway is another possible strategy to

develop for SLE patients. Moreover, a potent small-molecule

inhibitor of STING, identified as H-151, has been proven to

inhibit both murine and human STING activation. Therefore, it

is under significant clinical consideration (182).

Only limited mitochondria-targeted drugs have been

translated in the clinical application of SLE. With the further

understanding of the unique energy metabolism feature of

mitochondria in a distinct population of immunocytes, tissue

or organ-specific therapeutics of mitochondria-targeting

intervention may provide promising strategies for SLE

treatment. Due to the critical role of mROS in many

pathophysiological processes, the majority of mitochondria-

targeted drug focus on antioxidants (183). The antioxidant

lipophilic cations have great potential for the treatment of a

wide range of pathologies. However, there are still some other

prospects for new mitochondrial modulation drugs, depending

on increasing lipophilic cation moieties, targeting cardiolipin,

and aiming on mitochondrial targeting signal peptides (184).

Besides to mitochondria-targeting design strategy, renew and

expansion of clinical applicability on the conventional

mitochondria-targeting drug is another potential translation
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Conclusion and prospects

Accumulating evidence has highlighted the importance of

mitochondria homeostasis in maintaining immune cell

differentiation and activation (33). However, alterations in

mitochondrial functions, such as excessive mROS and mtDNA

production, impaired mitophagy, altered mitochondrial

dynamics, and disrupted redox homeostasis, initiate an

immune cascade preceding the onset and progression of SLE

(127). Critically, mitophagy downregulation results in the release

of autoimmunogenic mtDNA that promotes the production of

inflammatory cytokines, such as IL-1b and IFN-a (46).

Targeting on mROS scavengers and mitophagy agonists are

advantageous in SLE clinical treatment (185). In this review,

mitophagy defects of antioxidant defense and mitochondrial

dysfunction in SLE were mainly discussed. Nevertheless, certain

questions and limitations remain to be addressed. During

metabolic processes, the TCA cycle occurs in the mitochondria

and involves in not only energy supplement glucose and lipid

metabolism pathways. As the sophisticated complexity of

mitochondria function, the effect of TCA cycle on immunity is

worth to be discussed elsewhere. Moreover, the potential pre-

clinical mitochondria-targeting chemicals have been only briefly

summarized according to the limited space.

Mitochondria-targeting are promising therapeutics due to the

clinical benefits. However, several challenges remain to be

addressed. One of these is an intensively debated mechanism

involved in mitochondria directing the cell fate in SLE (186).

During the pathogenic conditions of systemic and chronic SLE,

mitophagy and mitochondrial metabolism pathways form

extremely complex networks that mutually affect immune

signaling activation (7). Specific mROS scavenger and mitophagy

agonist/antagonist are required for their function assessment in

cellular fate decision and deepening the understanding of the

mitochondria-associated immunometabolism (184). With the aid

of the latest single-cell, multi-omics, and visualization technologies,

identification of key mitochondrial metabolites that determine cell

fate may shed light on SLE pathogenesis.

Furthermore, interdisciplinary research in pharmaceutics

and materials engineering is required to develop a novel drug-

targeting delivery platform that portrays great potential for SLE

treatment, facilitating the release of drug payload in an

organelle-specific and controllable manner for manipulating

the cell differentiation (152). In addition, drug repurposing,

which involves investigation of existing drugs for new

therapeutic purposes, particularly uses biophysics-based

molecular docking approaches and has been proven to be

effective and efficient and of immense value in biomedicine

(184, 187). The effect of repurposed drugs, such as metformin

and CoQ10 in SLE treatment has been well investigated (75,

171). Therefore, our accumulated data help elucidate the

mitochondrial metabolite landscape and in identifying
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mitochondria-targeting therapeutic strategies that precisely

modulate abnormal cell differentiation in SLE. Nonetheless,

the safety and efficacy of these strategies still require

further investigation.
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Glossary
3-PEHPC 3-pyridinyl ethylidene hydroxyl phosphonocarboxylate

8-OHdG 8-hydroxy-2-deoxyguanosine

AIM2 absent in melanoma 2

AMPK AMP-activated protein kinase

ATP adenosine triphosphate

BNIP3 BCL2 interacting protein 3

cGAS cyclic GMP-AMP synthase

CoQ10 coenzyme Q10

DAMPs damage-associated molecular patterns

Drp1 dynamin-related protein

ETC electron transport chain

F/B Firmicutes/Bacteroidetes

FAO fatty acid oxidation

Fc&gamma; R Fc&gamma; chain receptor

FUNDC1 FUN14 domain-containing protein 1

GPX glutathione peroxidase

GPX4 glutathione peroxidase-4

H2S hydrogen sulfide

HIF-1&alpha; hypoxia-inducible factor 1 subunit alpha

IEC intestinal epithelial cells

IFN interferon

IFN-&alpha; type I interferon

IL interleukin

LN Lupus Nephritis

Mfn1/2 mitofusin 1/2

MitoQ mitoquinone

mROS mitochondrial reactive oxygen species

mROS mitochondrial ROS

mtDNA mitochondrial DNA

mTOR mammalian target of rapamycin

mTORC1 mammalian target of rapamycin complex 1

NAC N-acetylcysteine

NETs neutrophil extracellular traps

NFAT nuclear factor of activated T cell

NLRP3 NLR family pyrin domain-containing 3

NLRs NOD-like receptors

NOD nucleotide-binding oligomerization domain

NRF nuclear respiratory factor

Opa1 optic atrophy protein 1

Ox-mtDNA oxidative mitochondrial DNA

OXPHOS oxidative phosphorylation

pDCs plasmacytoid dendritic cells

PGC-1&alpha; PPAR-&gamma; coactivator 1 alpha

PRC PGC-1&ndash; related coactivator

PINK1 PTEN-induced kinase 1

PPAR peroxisome proliferator-activated receptor

RLRs retinoic acid-inducible protein I (RIG-I)-like receptors

(Continued)
Frontiers in Immunolog
y 18
Continued

ROS reactive oxygen species

SCFAs short-chain fatty acids

SLE systemic lupus erythematosus

SOD2 superoxide dismutase

STING stimulator of interferon genes

TCA tricarboxylic acid

TCR T cell receptor

TFAM transcription factor A

Th17 T helper 17

TLR Toll-like receptors

Tregs regulatory T

ULK1 unc-51 like autophagy-activating kinase 1

VDAC voltage-dependent anion-selective channel.
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