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Abstract

Root growth angle (RGA) in response to gravity controlled by auxin is a pertinent target trait

for obtainment of higher yield in cereals. But molecular basis of this root architecture trait

remain obscure in wheat and barley. We selected four cultivars two each for wheat and barley

to unveil the molecular genetic mechanism of Deeper Rooting 1-like gene which controls

RGA in rice leading to higher yield under drought imposition. Morphological analyses revealed

a deeper and vertically oriented root growth in “NARC 2009” variety of wheat than “Galaxy”

and two other barley cultivars “Scarlet” and “ISR42-8”. Three new homoeologs designated as

TaANDRO1-like, TaBNDRO1-like and TaDNDRO1-like corresponding to A, B and D

genomes of wheat could be isolated from “NARC 2009”. Due to frameshift and intronization/

exonization events the gene structures of these paralogs exhibit variations in size. DRO1-like

genes with five distinct domains prevail in diverse plant phyla from mosses to angiosperms

but in lower plants their differentiation from LAZY, NGR and TAC1 (root and shoot angle

genes) is enigmatic. Instead of IGT as denominator motif of this family, a new C-terminus

motif WxxTD in the V-domain is proposed as family specific motif. The EAR-like motif IVLEM

at the C-terminus of the TaADRO1-like and TaDDRO1-like that diverged to KLHTLIPNK in

TaBDRO1-like and HvDRO1-like is the hallmark of these proteins. Split-YFP and yeast two

hybrid assays complemented the interaction of TaDRO1-like with TOPLESS—a repressor of

auxin regulated root promoting genes in plants—through IVLEM/KLHTLIPNK motif. Quantita-

tive RT-PCR revealed abundance of DRO1-like RNA in root tips and spikelets while transcript

signals were barely detectable in shoot and leaf tissues. Interestingly, wheat exhibited stron-

ger expression of TaBDRO1-like than barley (HvDRO1-like), but TaBDRO1-like was the least

expressing among three paralogs. The underlying cause of this expression divergence

seems to be the presence of AuxRE motif TGTCTC and core TGTC with a coupling AuxRE-
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like motif ATTTTCTT proximal to the transcriptional start site in TaBDRO1-like and HvDRO1-

like promoters. This is evident from binding of ARF1 to TGTCTC and TGTC motifs of TaB-

DRO1-like as revealed by yeast one-hybrid assay. Thus, evolution of DRO1-like wheat homo-

eologs might incorporate the C-terminus mutations as well as gain and loss of AuxREs and

other cis-regulatory elements during expression divergence. Since root architecture is an

important target trait for wheat crop improvement, therefore DRO1-like genes have potential

applications in plant breeding for enhancement of plant productivity by the use of modern

genome editing approaches.

Introduction

Root architecture appears as the most relevant target trait for breeding against nutrient and

water scarce conditions [1–4]. It pertains to spatial underground distribution of roots in the

soil. It is demonstrated by growth rate, extent of branching, biomass, texture, length, width,

steepness, shallowness, orientation and root angle in response to gravity. Unlike tap root sys-

tem in dicots which comprise primary and lateral roots, the fibrous root system of monocots

contains wide mass of equally sized roots contributed by seed borne seminal roots or shoot

borne crown roots [5–7]. Root depth is an important feature for plant growth as it allows better

access to nutrients such as nitrogen and stored water present in deeper layers of soil thus, lead-

ing to higher yield [8–10]. It is generally acknowledged that a deeper, thicker and more

branched root system with a high root to shoot ratio can enhance the tolerance of rice to water

deficit [11, 12]. In cereal crops, deeper rooting is manifested by the combination of a large root

growth angle (RGA) which is the angle between the soil surface and the shallowest primary

root, and long seminal and nodal roots [13]. Because of direction control, RGA determines

whether a plant develops shallow or deep rooting system. Thus, requirement of an efficient,

steeper and vertically oriented root system to exploit water expeditiously is a desirable strategy

in major food safety crops such as wheat [14]. But this organ i.e., root remained orphan not

only in wheat but also in other crops mainly due to lack of investment in the form of projects,

underground nature that makes it inaccessible to direct observations or efficient phenotyping

and scarcity of genetic data pertinent to root growth and architecture.

Root development is a complex phenomenon that involves constitutive and adaptive mech-

anisms of genes as well as close cis-regulatory correlations with the shoot parts of the plant

[15]. However, due to its extreme importance in breeding programs especially under adverse

climate, unveiling of molecular mechanism of root development is inevitable. Genetic determi-

nants of root development in rice, maize, Arabidopsis and prunes were identified using com-

plementary direct and reverse genetic approaches such as QTL detection, mutant analysis,

transcriptomics and functional genomics. Research on root architecture has brought into light

the implication of various factors including key genes, hormones, gene networks and nutrients

and hitherto, little progress has been made in connecting RGA, steepness and orientation with

yield [7, 16–18]. The first report on influence of auxin on root growth angle of lateral growth

was published in Arabidopsis [19]. Later on in rice, in addition to DRO1 involved in RGA, 3

other major QTLs including DRO2, DRO3 and qSOR1 (quantitative trait locus for SOIL SUR-
FACE ROOTING 1)) were also mapped that might control the root architecture system under

water deficient conditions for greater rice production [20–24]. Negatively regulated by auxin,

DRO1enforses downward bending of roots leading to asymmetric growth. The RGA seems to

be controlled by elongation of cells in root tips which may facilitate root in bending downward
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direction. Due to greater expression of DRO1 gene, RGA increases towards gravity. DRO1

gene enabled the scientists to reduce drought problem by allowing the root to penetrate deeper

thereby help in increasing yield even under shortage of water. Guseman et al. [25] found that

DRO1-related genes are present across diverse plant phyla, and fall within the IGT gene family.

The IGT family also includes NGR (NEGATIVE GRAVITROPIC RESPONSE OF ROOTS),

TAC1 (TILLER ANGLE CONTROL 1) and LAZY1. Previously it was reported that LAZY1 and

its orthologs affect the shoot and root gravitropism in rice, Arabidopsis, maize and Medicago
[26–32]. In Arabidopsis, there are 6 LAZY genes which influence tropism, auxin gradient and

plant architecture in response to gravity [33]. The IGT family manifests 5 domains (I-V) with

IGT as conserved motif in the region II. The AtTAC1 and OsTAC1 lack V region. In line with

a potential role in root development, AtDRO1 and PpeDRO1 expression is restricted to root

[25]. Transgenic Arabidopsis and peach exhibited deeper root angles and phenotypes under

ectopic expression of DRO1-like while mutation of DRO1-like resulted in the growth of lateral

roots in horizontal orientation. An EAR-like motif IVLEI at the C-terminus seems to be

involved in generating overexpression phenotypes. This EAR-like is present in many other

proteins as well as in IGT family including TAC1 and LAZY1 [25]. The DRO1-like is an

important gene with potential to improve yield in wheat under drought regimes. However, its

cloning, expression analysis and interaction with other proteins involved in root architecture

needs to be unraveled before using it as a marker in the new breeding method i.e. genome edit-

ing. Moreover, the contribution of cis-regulatory elements in the expression and evolution of

DRO1-like genes in wheat and barley has not yet been explored.

Wheat and barley are the most important food safety crops cereal crops adapted to diverse

climatic conditions. Modern wheat (Triticum aestivum L.) is hexaploid with complex genetics

comprising AA, BB and DD genomes contributed by wild relatives. In contrast the diploid

genome of barley is closely related to one of the wheat genomes. It will be interesting to study

the expression patterns of DRO1-like paralogs in wheat and role of cis-regulatory elements

underlying expression divergence since paralogs evolve under similar evolutionary constraints

post duplication/triplication as compared to the orthologs [34]. Therefore the major objective

of this study was to unveil expression divergence of DRO1-like genes driven by cis-regulatory

elements during the course of evolution in tritici (here refers to Triticum aestivum, Triticum
urartu, Aegilops speltoids and Aegilops tauschii only).

This study reiterates that 3 DRO1-like homoeologs exist in wheat corresponding to AA, BB

and DD genomes. Due to deletions, insertions, frameshifts or intronization/exonization events

the genomic locus of TaBDRO1-like exhibit different exon/intron structures than other para-

logs. All the three wheat homoeologs can interact with TPL with different intensities, probably

through IVLEM/KLHTLIPNK motif at the C-terminus. Absence of an AuxRE binding motif

TGTCTC and core TGTC as well as a coupling AuxRE-like ATTTTCTT motif proximal to the

transcriptional start site (TSS) in TaADRO1-like, might be responsible for enhanced expres-

sion of this gene in root tissues. Conversely, weaker expression of TaBDRO1-like in root tips is

attributed to stronger binding of these elements by ARF1 as evident form yeast one hybrid

assay.

Results

Wheat and barley exhibit variations in root length and angle

One week old plantlets of two varieties of wheat “NARC 2009 & Galaxy”, and barely cultivars

“ISR42-8 & Scarlet” grown in pots were evaluated for root growth architecture (Fig 1A and

1B). Both the species developed fibrous hairy rootlets. NARC 2009 exhibited longer and/or

deeper roots than the Galaxy. The average root length was 21cm in NARC 2009 in comparison

Expression divergence of DRO1-like genes in wheat and barley

PLOS ONE | https://doi.org/10.1371/journal.pone.0214145 April 4, 2019 3 / 28

https://doi.org/10.1371/journal.pone.0214145


Expression divergence of DRO1-like genes in wheat and barley

PLOS ONE | https://doi.org/10.1371/journal.pone.0214145 April 4, 2019 4 / 28

https://doi.org/10.1371/journal.pone.0214145


with 14cm in Galaxy. Barley cultivar Scarlet developed steeper roots with length of 14.9 cm

than the wild barley ISR42-8 which produced only 11.4 cm long roots. Interestingly, wild bar-

ley generated shortest or the shallowest roots among the selected wheat and barley cultivars

while NARC 2009 developed the longest or deepest roots. However, NARC 2009 demonstrated

a significance difference at P = 0.05. In other varieties, the P values remained non-significant.

Overall, wheat plants of these varieties demonstrated deeper roots than barley. Moreover,

drought tolerant wheat plants were taller with higher survival rate.

Furthermore, we calculated the dry weight of the cultivars from 6 to 21 days at the intervals

of 3 days (Fig 1C). A positive correlation was observed between increase in number of days

and root biomass in the form of dry weight for all the cultivars. Nevertheless, NARC 2009

revealed the maximum dry weight of 20 g after 21 days, while ISR42-8 showed minimum

weight of 9 g. Hence, root dry weight seems to be directly related to root length. An important

parameter evaluated was the shape or quantification of root tip angles of 6-day-old plants

grown on vertically oriented culture plates (Fig 1D and 1E). In case of wheat, NARC 2009

exhibited narrower root angle and featured more vertically oriented root growth. The average

root angle of NARC 2009 was 30˚ in comparison with 32˚ in Galaxy. The ISR42-8 showed

greater root angle of 48˚ and promoted less vertically oriented root growth than NARC 2009

and Galaxy.

As DRO1 gene is involved in RGA in response to gravity under drought conditions in rice,

therefore we focused on the isolation and analysis of DRO1-like orthologs from wheat and

barley.

DRO1-like orthologs belong to the IGT family of genes in plants. In order to isolate

coding sequences of DRO1-like homoeologs from selected wheat varieties, genes specific prim-

ers corresponding to A, B and D genomes of wheat were employed using root tip cDNA of

NARC 2009 as template (S1 Table). PCR amplification following by sequencing and BLAST

search in “Ensembl Plants” revealed three DRO1-like gene products designated as TaAN-
DRO1-like, TaBNDRO1-like and TaDNDRO1-like (Fig 2A). These newly isolated paralogs clus-

tered with their respective clades comprising TuDRO1-like (Triticum urartu), AsDRO1-like
(Aegilops speltoids) and AtaDRO1-like (Aegilops tauschii) in the phylogeny of tritici (Fig 2B).

Coding sequences analysis revealed that the size of the newly isolated DRO1-like paralogs

remained conserved corresponding to their homologs already present in IWGSC database.

This size conservation reflects the absence of any deletion, insertion or nonsense mutations in

the CDS (S1A–S1C Fig). Pairwise alignment of newly isolated genes showed that the TaAN-

DRO1-like with amino acid length of 251 shared 98.4% identity with TaADRO1-like from

database harboring only 4 amino acids substitutions. Similarly, TaBNDRO1-like and TaDN-

DRO1-like shared 97.8% and 98.6% identity with their counterparts, respectively (S2–S4 Figs).

In order to discern the different structural domains of the DRO1-like proteins, we gener-

ated a multiple alignments of the CDS collected from diverse plants including Triticum, Aegi-
lops, Hordeum, cereals, monocots, dicots, Arabidopsis, Amborella, Selaginella and

Physocmitrella. Fig 2C features 5 distinct domains (I-V) with different types of amino acids for

DRO1-like proteins (S5 and S6 Figs). In Triticum, Aegilops and Hordeum all the 5 conserved

Fig 1. Morphological comparison of root architecture in wheat and barley cultivars. (A) Photographs showing the

roots of 6-day old plantlets of wheat varieties “NARC 2009 and Galaxy” and barley cultivars “Scarlet and ISR42-8”. Scale

bars indicate 4 cm. (B) Graph showing root length comparisons of wheat and barley. Error bars indicate the standard

deviation. � Significant (P<5%). (C) Line graph depicting the trend in total root dry weight in 6 to 21 days old plantlets

of wheat and barley. (D) Photographs exhibiting root growth angle on MS media in wheat and barley cultivars. (E)

Graphical representation of variations in root angle of wheat and barley cultivars. Root angle was measured by ImageJ

software.

https://doi.org/10.1371/journal.pone.0214145.g001
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Fig 2. Gene isolation, phylogenetic reconstruction and conservation of DRO1-like homoeologs and orthologs in tritici and close relatives. (A) PCR amplification of

TaANDRO1-like, TaBNDRO1-like and TaDNDRO1-like from NARC 2009 which is a drought tolerant variety of wheat. M stands for 1kb ladder. (B) Phylogenetic tree of

DRO1-like CDS of Tritici, Aegilops and Hordeum generated in neighbor-joining algorithm by taking Arabidopsis as an outgroup. Bootstrap values for 10000 replicates

were calculated for reliability of tree. Scale is given at the base. (C) Multiple alignments were generated using ClustalW program in Bio-Edit software. Domains are
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domains of variable length are observed. However, 3 insertions of total 4 amino acids are

prominent in Hordeum in the region I, III and IV.

The common denominator of this gene family is an IGT motif [GFL(A/T)GT] which is

present downstream of the N-terminus in the region II. This motif is also conserved in other

DRO1 related proteins such as LAZY and TAC1 [25]. A very prominent feature of this align-

ment is the conservation of 3 amino acid residues WxxTD at the C-terminus in the 5th domain.

This motif seems to be more highly conserved in all the DRO1-like proteins than IGT. In

Selaginella, the IGT is located 28 aa residues further downstream of the conserved region in

the 2nd domain. But WxxTD remained intact in 5th domain in all the DRO1-like proteins.

Another hallmark of DRO1-like proteins is the occurrence of EAR-like motif (LxLxL)

“IVLEM” in the region V at the extreme C-terminus. Ethylene-responsive element binding

factor-associated amphiphilic repression (EAR) motif-mediated transcriptional repression is

one of the principal mechanisms of plant gene regulation [35]. In DRO1-like genes of dicots,

this motif diverged into IVLEI. In tritici however, IVLEM is present in TaADRO1-like and

TaDDRO1-like but it is completely altered in TaBDRO1-like and HvDRO1-like with a consen-

sus sequence of LHTLIPNK marked with an addition of IPNK amino acids. The hypothetical

progenitor of tritici, Brachypodium (in this study) and a primitive plant Amborella, kept this

IVLEM sequence conserved. Nevertheless, in Oropetium grass and other lower plants such as

Physcomitrella this C-terminal motif is variable in length and sequence composition but it is

difficult to distinguish whether these are more DROI-like or LAZY1-like proteins.

Comparison of gene structures of the 17 DRO1-like orthologs from various plant phyla

indicated the conservation of 5 exons and 4 introns in most of the plants (S7 Fig). But sizes of

their genomic loci were variable. Lower plants exhibited larger size of the DRO1-like gene due

to larger exon and smaller introns. However, a reduction in gene size took place during the

course of evolution. For example, Physcomitrella encode a protein of 431aa residues followed

by Amborella of 357 amino acids but rice contains only 221 aa which is even shorter than

wheat with 251 residues. It is mainly due to deletions in the coding regions. But in some cases

such as TaBDRO1-like and HvDRO1-like genes of wheat and barley respectively, there might

occurred intronization or a merger of exon 4 and 5. Nevertheless, the other two paralogs TaA-
DRO1-like, TaDDRO1-like and their progenitors (TuDRO1-like) (Triticum urartu) and (Ata-
DRO1-like) Aegilops tauschii kept their exon-intron structures conserved. All the protein

coding regions started with ATGAAG exon but Oropetium is an exception to this. The first

exon of DRO1-like gene in Oropetium is 576 bp in size containing only two very short introns.

The longest 2nd exon of 962bp was detected in Physcomitrella. Remarkably, the shortest introns

were found in Oropteium and Arabidopsis. The length variations in gene structures occurred

probably due to deletion, insertions and frameshifts or intronization/exonization events.

In spite of length and sequence variations in gene structures, nevertheless, all the DRO1-like

proteins kept the IGT signature, EAR-like and WxxTD motifs conserved.

DRO1-like interacts with TOPLESS protein. Previously it was reported that TPL gene

involved in lateral branches growth interacts with EAR-like proteins [36]. This EAR-like motif

IVLEI at the extreme C-terminus of the DRO1-like proteins in Arabidopsis is implicated in

narrowing lateral root branching by reducing angle and shortening root lengths as well as in

shoot upward curling at leaf margin and alterations in shoot branch angles. With amino acid

enclosed in a solid line box and domain number is given under the alignment in each row. One and two amino acid insertions in Hordeum vulgare HvDRO1-like are

indicated in grey color. Amino acids highlighted in yellow in domain II indicate the IGT motif which is the denominator of this gene family. Bold amino acids in yellow

(WxxTD) in the 5th domain at the C-terminus are the newly reported conserved amino acids for distinction of DRO1-like and related proteins. An EAR-like motif

comprising 5 amino acids IVLEM is shown in red color but this motif is diverged and extended to 9 aa KLHTLIPNK in a few proteins by the addition of IPNK highlighted

in blue. This extended motif is specific for AsDRO1-like, TaBDRO1-like, TaBNDRO1-like and HvDRO1-like proteins.

https://doi.org/10.1371/journal.pone.0214145.g002
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sequence variations this motif is present in all the DRO1-like and LAZY1-like proteins selected

for study (Fig 3A). Interestingly, in TaBDRO1-like and HvDRO1-like proteins of wheat and

barley, respectively, this motif is altered and extended as KLHTLLIPNK. It will be very inter-

esting to find whether TaTPL (S8A and S8B Fig) interacts with wheat and barley homoeologs

or not. For this purpose, we adopted transient bimolecular fluorescence complementation

(BiFC) approach in Nicotiana benthamiana. Split-YFP analyses in Fig 3Babc indicate that

Nicotiana leaves infiltrated with TaADRO1-like, TaBDRO1-like and TaDDRO1-like exhibit

YFP signals in cytoplasm, cell membrane and nucleoi, though at different intensities. TaB-

DRO1-like-TaTPL complementation showed stronger YFP signals than the other two para-

logs. As TaBDRO1-like is very similar to HvDRO1-like, therefore these interactions might

hold true for HvDRO1-like barley ortholog as well.

In order to test the function of the EAR-like motif we deleted it from all the three wheat

DRO1-like proteins. Interestingly, the truncated DRO1-like proteins i.e., TaADRO1-likeΔ246,

TaBDRO1-likeΔ245 and TaDDRO1-likeΔ246) were unable to interact with TPL as revealed by

complete absence of YFP signals (Fig 3Bdef). Snapshots for the authenticity of YFP signals in

black, white and chlorophyll backgrounds using LSCM are given in Fig 3C and 3D. Further-

more, in vitro binding assay using Y2H system was also performed to validate the interaction

of TaDRO1-like with TPL proteins (S9 Fig).

These results allow us to infer that TaDRO1-like proteins interact with TPL through EAR-

like motifs. How this protein i.e. TPL is involved in DRO1-like pathway needs to be empiri-

cally validated.

DRO1-like orthologs exist in diverse phyla of plant kingdom. Since DRO1-like is an

important developmental protein recruited in root architecture [22] therefore it may exist in

entire plant kingdom. We compiled a dataset of 82 DRO1-like orthologs from sequenced

genomes of plants representing different phyla. In order to probe the evolutionary relationship

among different plants phylogenetic reconstruction was performed in Neighbor Joining

algorithm.

A circular tree (S10 Fig) demonstrates the occurrence of DRO1-like orthlogs in diverse

plants that can be differentiated into 9 to 10 different clades. At the base a small clade of moss

Physcomitrella and lycophyte Selaginella is present. This linage splits into cereals mostly tritici

and grasses such as Oropetium which harbors a fibrous root system. In the tritici, all the pro-

genitors or genome contributors of modern wheat (Triticum aestivum) including Triticum
urartu, Aegilops speltoids and Aegilops tauschii are clustered together. Remarkably, barley

HvDRO1-like is more closely related to TaBDRO1-like and AsDRO1-like. Brachypodium seems

to be basal to the tritici. Cereals monocots are next neighbor to palms and banana. Remark-

ably, Solanaceous plants occupy the position as a sister clade of very diverse plants including

Coffea, Populus and Jatropha which in turn are close relatives of lotus and beans instead of

Arabidopsis and other Brassica family members. Cotton is clustered with melons and citrus.

Prunes, leguminous crops and other trees show close relationship to each other probably due

to their root system architecture similarities. Surprisingly, Amborella trichopoda is sister to

Beta vulgaris though these two have quite different root morphologies.

An important feature that can be observed from this tree is the occurrence of gene/genome

duplication of DRO1-like orthologs in different plants. In addition to occurrence of genome

triplication in modern wheat, this phylogeny reveals genome duplication in Glycine max, Pha-
seolus vulgaris, Brassica napus, banana, oil palm, grapes and Nicotiana etc. The duplicates in

certain cases are so diverged that these are not even sister to each other as in the case of Phaseo-
lus vulgaris.

This phylogenetic reconstruction reveals wide spread occurrence of DRO1-like genes in

plants. Their clustering in different clades alludes towards existence of evolutionary
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Fig 3. Recruitment of EAR-like motif in interaction of DRO1-like proteins with TOPLESS. (A) Amino acid sequence alignment of the 5th domain of the DRO1-like

proteins of Tritici, Aegilops, Hordeum, Brachypodium, monocot cereals, Arabidopsis, Prunes, Oropetium thomaeum, Amborella, Selaginella, Physcomitrella and LAZY1 of

Prunus is shown. The EAR-like motif is highlighted in red letter while blue residues depict an EAR-like motif in AsDRO1-like, TaBDRO1-like and HvDRO1-like with

addition of IPNK residues. (B) Bimolecular fluorescence complementation analysis. Protein-protein interactions studies of DRO1-like homoeologs with TOPLESS (TPL)

Expression divergence of DRO1-like genes in wheat and barley

PLOS ONE | https://doi.org/10.1371/journal.pone.0214145 April 4, 2019 9 / 28

https://doi.org/10.1371/journal.pone.0214145


relationship in plants with respect to root architecture. Hence expression patterns of these

genes are predicted to be divergent even in tritici.

Barley and wheat DRO1-like paralogs exhibit divergent and stronger expression in root

tissues. Quantitative and semi-quantitative RT-PCR was carried out to compare the expres-

sion patterns of TaBDRO1-like and HvDRO1-like in wheat and barley root tips, respectively.

Interestingly, root tips of NARC 2009 and Galaxy showed stronger transcript expression over

both the barley cultivars (Figs 4A and S11). Wild barley ISR42-8 displayed the weakest gene

expression while NARC 2009 demonstrated the strongest signals. We further compared the

expression patterns of DRO1-like paralogs of wheat (TaADRO1-like, TaBDRO1-like and TaD-
DRO1-like) in root tissues of NARC 2009. Surprisingly, the expression of TaBDRO1-like was

the lowest among three paralogs. On the contrary, TaADRO1-like showed the strongest tran-

script signals in root tips whereas TaDDRO1-like featured moderate level of gene expression.

Remarkably, the gene expression of TaBDRO1-like was even weaker than its close ortholog

HvDRO1-like in barley.

In order to compare the expression of three paralogs in different tissues includes roots,

shoot, leaf and spikelets of NARC 2009 and Galaxy, semi-quantitative and quantitative real

time RT-PCR was performed. Fig 4C–4F demonstrates that NARC 2009 surpasses Galaxy in

the accumulation of RNA transcripts for the three DRO1-like wheat paralogs. All the three

genes show stronger expression in root tissues for both the varieties but transcripts are barely

detectable in shoot tissues. Root tips exhibit the strongest transcript signals for all three homo-

eologs in both the varieties. Interestingly, expression of DRO1-like wheat paralogs also culmi-

nates in spikelets. Nevertheless, all the three paralogs are expressed in root tissue albeit to

different level.

These data allow us to infer that besides, showing structural differences, the DRO1-like trip-

licates of wheat also feature divergence in expression. Thus, there is a need to probe into their

cis-regulatory regions specifically promoters.

Gain and loss of cis-regulatory elements in the promoters of DRO1-like wheat paralogs

might influence the expression divergence. The underlying cause of expression divergence

is generally the incremental contribution of cis-regulatory elements residing in the promoter

and introns [37]. For cis-regulatory comparison—using the PipMaker tool—we generated dot

plots of -2kb upstream promoter regions of wheat and barley DRO1-like orthologs as well as

their progenitors including TuDRO1-like, AsDRO1-like and AtaDRO1-like (S12 Fig). All the

DRO1-like wheat promoters showed divergence from each other and only up to -600bp region

near the TSS could be aligned. However, these paralogs exhibited strong conservation with

their progenitors, particularly TaADRO1-like with TuDRO1-like and TaDDRO1-like with Ata-
DRO1-like. Interestingly, TaBDRO1-like seemed to be quite divergent from its progenitor

AsDRO1-like. It also shows very less homology with HvDRO1-like in comparison with other

wheat paralogs although the CDSs of TaBDRO1-like and HvDRO1-like are quite similar. Inter-

estingly, HvDRO1-like promoter is more closely related to TaDDRO1-like than TaBDRO1-like.
This is surprising because their CDS and genes structures are similar, and expression patterns

also do overlap. Their expression patterns might be governed by the same cis-regulatory

motifs. This is one of the speculations that can be put forward for this anomaly.

protein were carried out in Nicotiana benthamiana using Split-YFP analysis. Leaf tissues of Nicotiana infiltrated with full-length CDS of TaADRO1-like, TaBDRO1-like

and TaDDRO1-like constructs as well as with truncated versions i.e., TaADRO1-likeΔ246, TaBDRO1-likeΔ245 and TaDDRO1-likeΔ246 were scanned for detection of YFP

signals using Nikon Digital SIGHT DS-i2, ECLIPSE Ni- fluorescence microscope. The letters a, b and c on the left depict the YFP signals with full length CDS of

TaADRO1-like, TaBDRO1-like and TaDDRO1-like, respectively while d, e and f show that YFP signals are vanished with truncated version of DRO1-like proteins. Scale

bars represent 100 nm. (CD) Confocal Laser Scanning Microscope (CLSM) snapshots of TaBDRO1-like-TPL with white, black and chlorophyll back ground for

authenticity of YFP signals.

https://doi.org/10.1371/journal.pone.0214145.g003
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Previously it was reported that an auxin response factor element (AuxRE) TGTCTC near

the TSS in the DRO1 promoter bound by auxin response factor (ARF1) influences the expres-

sion of this gene in rice roots [22]. In this study we mapped the position of TGTCTC and core

ARF motif TGTC in the promoter and intronic regions of DRO1-like of tritici and other plants

(Table 1). The core motif TGTC was located in the intronic and promoter regions more fre-

quently with almost equal rate for all the orthologs. But AuxRE with complete TGTCTC

sequence was found only in Sorghum, rice, Amborella and tritici. Interestingly, among tritici

only the AsDRO1-like, TaBDRO1-like and HvDRO1-like, which are sister to each other phylo-

genetically, contain this motif in the promoter proximal region.

We further probed into the promoters dataset and narrowed down to tritici only. Partial

multiple alignment of conserved regions of tritici in Fig 5A (S13 Fig) features a 25bp insertion

immediately upstream of the TSS in hypothetical diploid progenitor Brachypodium. Interest-

ingly, this insertion encloses an AuxRE core motif TGTC in all the tritici except TaADRO1-like
and TuDRO1-like promoter where it is mutated to GGTC. As DRO1 is negatively regulated by

auxin, therefore presence of TGTCTC upstream and core TGTC in this insertion might be

responsible for weaker expression of TaBDRO1-like and HvDRO1-like genes. On the other

hand, their absence in other paralogs TaADRO1-like and TaDDRO1-like might underlie stron-

ger and moderate expression in root tissues, respectively. Remarkably, further upstream of this

AuxRE, a composite AuxRE-like motif is present in all the tritici except TaADRO1-like and

TuDRO1-like. The combination of both these motifs in close vicinity is reported to enhance

the chances of ARF1 binding. Thus, expression divergence of TaDRO1-like paralogs may also

be attributed to the possibility of combinatorial interactions of the AuxRE-AuxRE-like motifs.

This is very interesting findings because this might hint the relative functional contribution of

DRO1-like paralogs in roots architecture in wheat. This facilitates in selecting the paralogs that

might be used for further functional characterization through genome editing approach.

The binding activity of ARF1 with AuxREs was tested by the Y1H assay using three 200 bp

DNA fragments from different regions of TaDRO1-like promoters. Fig 5B (upper panel) shows

that only yeast clones harboring pGAD-ARF1 plasmid in the presence of TaBDRO1P-TGTC,

grow on the medium indicating that ARF1 is indeed able to recognize and interact with

AuXREs. In contrast, in the presence of TaADRO1P-GGTC which contains no AuxRE, yeast

growth is undetectable suggesting that this sequence no longer serves as a binding site for

ARF1. Remarkably, yeast growth is visible for interaction of TaBDRO1P-TGTCTC with pGA-

D-ARF1indicating that true AuxRE has strong binding affinity for ARF1. Non-lethal β-galacto-

sidase assay confirmed the above mentioned interactions (Fig 5C lower panel). The unit activity

of β-galactosidase was calculated for the interaction affinity. The results show that there is maxi-

mum number of miller units (more than 81) for TaBDRO1P-TGTCTC with pGAD-ARF1. How-

ever, no units of activity were observed for TaADRO1P-GGTC as this region is devoid of any

AuxRE. Moreover, the values obtained were also statistically significant.

Importantly, the TGTC element also occurs at various other positions in the promoter and

intronic regions (Table 1). There are 6 TGTCs in the promoter and 7 in the introns (6+7) of

Fig 4. Gene expression patterns of DRO1-like transcripts in wheat and barley. (A) Quantitative real-time RT-PCR results of the

HvDRO1-like and TaBDRO1-like transcripts in barley and wheat were performed. Normalized fold expression was generated using t elf as the

internal control. Error bars indicate the standard deviation. (B) Comparison of normalized fold expression of four DRO1-like orthologs

including TaADRO1-like, TaBDRO1-like, TaDDRO1-like of wheat and HvDRO1-like of barely. The tubulin and elf served as endogenous

controls for normalized fold expression. (C) Semi-quantitative RT-PCR of DRO1-like transcripts of TaADRO1-like, TaBDRO1-like and

TaDDRO1-like in different tissues of NARC 2009. The tubulin served as an internal control. CR, crown root; RT, root tip; LF, leaf; MR, middle

root; BR, basal root; BS, basal root; SP, spikelet. (DEF) Quantitative real-time RT-PCR of DRO1-like transcripts of TaADRO1-like (D),

TaBDRO1-like (E) and TaDDRO1-like (F) in different tissues of NARC 2009 and Galaxy cultivars of wheat. The tubulin and elf served as

endogenous control for normalized fold expression. Color legend is given. Error bars indicate the standard deviation.

https://doi.org/10.1371/journal.pone.0214145.g004
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TaBDRO1-like, and 4+7 in TaDDRO1-like. Though HvDRO1-like contains 5+5 but it is present

singly in highly expressing TaADRO1-like and its progenitors TuDRO1-like. In Selaginella, this

motif is present but not existing in Physcomitrella (Fig 5A). Its position is a little bit down-

stream in Oropetium. In other cereals and monocots, TGTC core motif is mutated and even

absent in Brachypodium.

Taken together, during the evolution of DRO1-like from TuDRO1-like to TaADRO1-like
and AsDRO1-like to TaBDRO1-like there was a gain of one TGTC in each but in contrast, TaD-
DRO1-like lost one TGTC after hybridization (Fig 6). Thus, cis-regulatory regions including

promoters and introns diverged, and gain and loss of TGTC might have occurred during

genome triplication or hybridization.

A schematic diagram showing the evolution of DRO1-like genes in Tritici including Aegi-
lops and Hordeum. The empty upward arrows at the left side indicate the occurrence of

DRO1-like evolutionary events from hypothetical diploid progenitor to gene expression stage

in the roots of wheat. Dotted arrows symbolize the hypothetical progenitor and originators

whereas solid upward arrows mark the changes in gene structures and cis-regulatory elements

along with variations in gene expression from TuDRO1-like, AsDRO1-like and AtaDRO1-like
to TaADRO1-like, TaBDRO1-like and TaDDRO1-like, respectively in wheat paralogs. Exons in

gene structures are symbolized by filled boxes while promoters by empty boxes. Upwards

arrows between the exon boxes in the gene structures, show the introns, and numbers above

indicate the length of exons and promoters in base pairs. Blue boxes depict the reduction in

exon number in AsDRO1-like, HvDRO1-like and TaBDRO1-like as well as extension of an

EAR-like motif (from IVLEM to KLHTLIPNK) at the C-terminus. Numbers above the nucleo-

tides on gene structures represent the times occurrence of TGTCTC (marked red) and TGTC
(marked black) in the promoter regions. An asterisk in the promoter boxes of HvDRO1-like,

AsDRO1-like and TaBDRO1-like symbolizes the presence of TGTCTC (red) and TGTC

Table 1. Identification of AuxREs in DRO1-like promoters and introns of Tritici and other plants.

Sr.

No.

Gene TGTCTC Position in

Promoter

TGTCTC Position in

Introns

TGTC Position in Promoter TGTC Position in Introns

1 AtDRO1 -1287 - -36, -634, -1196, -1851 +233

2 SiDRO1 - - -167, -1414, -1427, -1677 -

3 SbDRO1 -1486 +77 -769, -823, -1099 +221, +609, +632, +804, +1037, +2164

4 OsDRO1 -375 - -91 +631, +653, +731, +755, +777, +852, +2618

5 ZmDRO1 - - -309, -501, -607, -770, -994 +308, +1080, +1382, +1586, +2052, +2857, +2888

6 TuDRO1 - - -772 +72, +452, +838, +1044, +1059, +1147, +1397

7 TaADRO1 - - -772, -853 +72, +453, +1046, +1061, +1149, +1406

8 AtaDRO1 - - -372, -1708, -1726, -1827 +510, +676, +852, +886, +901, +977, +1245

9 TaDDRO1 - - -1708, -1726, -1827 +510, +676, +852, +886, +901, +977, +1245

10 AsDRO1 -1802 - -367, -753, -809, -938, -1785 +513, +827, +848, +882, +897, +1002, +1015

11 TaBDRO1 -1251 - -742, -798, -926, -1738, -1749, -1841 +509, +824, +845, +879, +894, +999

12 HvDRO1 -1967, -1977 - -364, -1330, -1747 +392, +757, +791, +902

13 BdDRO1 - - -825 +254, +382, +677, +684, +862, +1018, +1268

14 AtrDRO1 -1333 - -818 +1071, +1155, +4031, +4055, +4574

15 OtDRO1 - - -205, -350, -929, -1281, -1843 -

16 SmDRO1 - - -107, -388, -587, -1412, -1669 -

17 PpDRO1 - - -851, -875, -1482, -1591 +36, +355, +1669

The position of TGTCTC and TGTC are shown in the promoters with “-” sign while in the introns are indicated with “+” sign. The only “-” sign indicates the absence of

TFBSs in the respective regulatory sequence. The position of nucleotide upstream of ATG is taken as -1 while that of downstream as +1.

https://doi.org/10.1371/journal.pone.0214145.t001
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Fig 5. ARF1 binds more strongly with the AuxREs in the promoter region of TaBDRO1-like. (A) Multiple alignment of partial promoter sequence of DRO1-like
orthologs from 17 different plants is shown (right panel). The conservation of AuxRE core motif (right panel) and upstream N10–like CArG-boxes (left panel) is depicted.

Nucleotides marked as yellow indicate the standard TGTCTC motif and TGTC as core near the TSS while nucleotides underlined as yellow represent the N10-like CArG-

box which is a binding site for MADS-box transcription factors. B) Yeast 1-hybrid analysis was performed for the detection of binding of ARF1 with cis-DNA fragments of

TaDRO1-like (upper panel). The lower panel indicates non-lethal β-galactosidase assay. (C) Calculations of β-galactosidase activity of binding of ARF1 with AuxREs

(TGTCTC and TGTC) of TaDRO1-like. � Significant (P<5%).

https://doi.org/10.1371/journal.pone.0214145.g005
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(black) motifs. The TGTC asterisk is also there in AtaDRO1-like and TaDDRO1-like but not in

TaADRO1-like, and even in hypothetical progenitor that may be BdDRO1-like which is

Fig 6. Evolution of DRO1-like genes in the Tritici.

https://doi.org/10.1371/journal.pone.0214145.g006
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symbolized by a question mark. Gain and loss of TGTCTC and TGTC is indicated by +1 and -1

in the boxes whereas qualitative expression in wheat root tips (RT) is shown as +, ++ and ++

+ for weaker, moderate and stronger, respectively.

In addition to TGTC, there is loss of MADS-box cis-regulatory elements (CArG-boxes) at

various positions in the promoters of tritici (S2 Table. These CArG-boxes (CCAAATATGG or

CCWWWWWWGG, an N10-like box) might be binding sites for the AGL17 clade member such as

AGL21 reported to play a crucial role in lateral roots growth induced by auxin [38]. Different

variants of CArG-box were detected in tritici. But interestingly, this element occurred with

greater frequency in TaBDRO1-like while but remained absent in TaADRO1-like. Hence, expres-

sion of TaBDRO1-like was decreased while that of TaADRO1-like increased in the root tips.

We further determined the number and positions of all the plant transcription factor binding

sites along the entire length of tritici and barley promoters by taking BdDRO1-like as hypotheti-

cal progenitor (S3 Table). A total of 597 TFBSs for 35 different types TFs were detected in all the

promoters. Remarkably, AsDRO1-like, TaBDRO1-like and HvDRO1-like gained the maximum

TFBSs sites while TaDDRO1-like the least, when compared with Brachypodium. These sites

include some of the very important TFs such as MYB84, ABF1, ANT (as highlighted in S12 Fig)

ERF2 and NAC69 etc. that play important role in root and shoot development through hor-

mones and stress responsive pathways.

Thus, it is speculated that gain and loss of TFBSs might be responsible for alterations in

expression of DRO1-like triplicates during root tip development in wheat.

Materials and methods

Plant material and growth conditions

Seeds of two varieties of hexaploid wheat (Triticum aestivum L.), “NARC 2009” (drought toler-

ant) and “Galaxy” (drought susceptible) were obtained from Bio-Resources Conservation

Institute (BCI) and Crop Sciences Institute, National Agricultural Research Centre (NARC),

Islamabad, Pakistan. The Institute of Resource Conservation (INRES) at Bonn University pro-

vided the seeds of barley (Hordeum vulgare L.) cultivars ISR42-8 (wild barley) and Scarlet (cul-

tivated barley). Seeds were sown in the pots in glasshouses of INRES and National Institute for

Genomic and Advanced Biotechnology (NIGAB), NARC, Islamabad. Nicotiana benthamiana
plants were also grown under standard conditions for split-YFP analysis. The work related to

plant morphology and protein-protein interactions was performed at NIGAB but rest of the

research work regarding gene isolation, cloning, expression and bioinformatics analyses was

executed at INRES as well as in the Genome Editing and Sequencing Lab at National Centre

for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan.

Root length, angle and dry weight determination

For determination of root length, 6-days-old germinated seedlings of NARC 2009, Galaxy,

ISR42-8 and Scarlet were selected. Plants were shifted from the pots, separated and roots were

gently washed with tap water until cleaned. The root length of wheat and barley varieties were

measured with a scale and data were recorded as means of replicates.

In order to measure the root angle of selected wheat and barley varieties, surface steriliza-

tion of seeds were done with 15% Clorox solution for 12 min. Seeds were rinsed three to four

times with sterile distilled water and germinated for 2 d on vertical orientated 0.5 X MS media

containing 0.7% agar and 1% sucrose. Seedlings were imaged and root angles were measured

using ImageJ software. Furthermore dry weight of the roots was also compared. Seven to

21-days-old plantlets of NARC 2009, Galaxy, ISR42-8 and Scarlet were uprooted at intervals of

3 days. Roots were kept in oven at 37.8˚C for 24 hours. They were sealed inside Ziploc bags to
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avoid regaining of the moisture and weighed on balance after cooling. The procedure was

adopted for every single plant separately. Data were recorded as means of replicates. A Stu-

dent’s T-test was applied to calculate the statistical significance of the bar chart data.

Genes isolation

Coding sequences of DRO1-like genes were retrieved from IPK Barley BLAST Server (http://

webblast.ipk-gatersleben.de/barley_ibsc/) and International Wheat Genome Sequencing Con-

sortium (IWGSC; https://www.wheatgenome.org/Tools-and-Resources/Sequences) databases.

Primers were designed from the CDS of TaADRO1-like, TaBDRO1-like, TaDDRO1-like and

HvDRO1-like for gene isolation, expression pattern analysis and protein-protein interaction

experiments (S1 Table). Total RNA was extracted from root tips of the NARC 2009, Galaxy,

ISR42-8 and Scarlet using TRIZole reagent kit (Thermo Fisher Scientific). The cDNA template

was generated by RevertAid kit (Thermo Fisher Scientific). In order to amplify full length cod-

ing sequences of DRO1-like genes by PCR, rTaq polymerase (TaKaRa, Tokyo, Japan; Code

R001) was used. The PCR profile was set at 95˚C for 5 minutes, followed by 94˚C for 30 sec-

onds, 58˚C for 30 seconds and 68˚C for 1 minute for 37 cycles. PCR products were resolved

and photographed on 1% agarose gel containing ethidium bromide. The purified amplicons

were cloned in pTZ57R/T vector by using InsTAclone PCR Cloning Kit (Thermo Fisher Scien-

tific) following the manufacturer’s guidelines, and then sequenced commercially. Similarly,

TPL ortholog from wheat was also amplified, cloned and sequenced. Newly isolated TaA-

DRO1-Like-N, TaBDRO1-Like-N and TaDDRO1-Like-N genes have been deposited in NCBI

database under accession numbers MK639010, MK639011 and MK639012, respectively,

Genomic loci of 17 DRO1-like genes form different plants including tritic, Aegilops, Hor-
deum and other higher and lower plants were retrieved using Ensembl genome browser. These

sequences were annotated for determination of CDS, UTRs, start-stop codons and intron-

exon structures. All the information was documented in the form of a flowchart with nucleo-

tide numbers and positions in base pair unit.

Bimolecular fluorescence complementation (BiFC)

The TPL protein interacts with other proteins through EAR motif regulated by auxin. As

DRO1 is also regulated by auxin, therefore we did the BiFC experiments in planta to validate

the interaction of TPL with TaADRO1-like, TaBDRO1-like and TaDDRO1-like, and their

truncated versions (TaADRO1-likeΔ246, TaBDRO1-likeΔ245 and TaDDRO1-likeΔ246) by

removing IVLEM/KLHTLIPNK motif. For this purpose split-YFP system elaborated by Bra-

cha-Drori (2004) and Walter (2004) was employed [39, 40]. The full-length ORFs of these

three proteins were first cloned into the pENTR/D-TOPO-201 vector to generate entry clone

(Invitrogen) and then Gateway technology (Invitrogen) was used for introducing it into the

pBaTL-YFPc and pBaTL-YFPn vectors. The Agrobacterium tumefaciens strain GV3101RK was

electroporated with the above mentioned 6 constructs. The constructs were co-infiltrated into

the 2- to 3-week-old leaves of Nicotiana benthamiana from abaxial surface after pinching with

a yellow tip. The addition of the p19 viral silencing suppressor was must in the infiltration mix-

ture to avoid co-suppression [41]. The plants with infiltrated leaves were kept under glasshouse

conditions for 2 to 3 days. A normal fluorescence microscope Nikon Digital SIGHT DS- i2,

ECLIPSE Ni-U was used for scanning YFP signals in leaves after three days of growth. YFP sig-

nals were also scanned with CLSM (Leica) and snapshots were taken.

Generation of yeast 2-hybrid constructs and protein-protein interaction studies. For

detecting TaDRO1-like interactions with TPL protein, AH109 strain with two yeast vectors

pGBKT7 (bait) and pGADT7 (prey) were employed (Clontech). Y2H in vitro assay was done
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according to the methods described in the yeast protocols handbook (Clontech). A total of 6

yeast constructs, two each for TaADRO1-like, TaBDRO1-like and TaDDRO1-like, and their

truncated versions (TaADRO1-likeΔ246, TaBDRO1-likeΔ245 and TaDDRO1-likeΔ246) were

tested. Autoactivation and autobinding were tested by co-transformation TaDRO1-like-TPL

proteins with empty bait and prey vectors. Finally, all the constructs were co-transformed into

yeast strain AH109 to study their interactions with each other. High-stringency (SD/-Trp-Leu-

His-Ade) yeast media were used for plating. The Y2H analysis and interaction matrix was gen-

erated as mentioned in Ihsan et al. [42].

Gene expression

Gene expression patterns of DRO-like in wheat and barley were discerned by semi-quantitative

and quantitative real-time RT-PCR using real-time PCR machine 7500 Fast (ABI). Total RNA

was extracted from different tissues of wheat and barley cultivars using TriZole reagent (Invi-

trogen). These tissues included crown root, root tip, leaf, middle root, basal root, basal shoot

and spikelet. A reaction volume of 25μl was used for each sample. The elf and tubulin served as

endogenous controls. Primers specific to TaADRO1-like, TaBDRO1-like, TaDDRO1-like and

HvDRO1-like were used on cDNA templates, and RT-PCR was performed as described by

Khan et al. [43]. The relative expression of DRO1-like transcripts was compared in wheat and

barley cultivars. The transcript abundance was also compared for three wheat homoeologs in

root tips of NARC 2009. Three biological as well as technical replicates were undertaken.

Semi-quantitative RT-PCR products were resolved on 1.5% agarose gel whereas normalized

fold expression of real-time PCR products was attained using 7500 Fast Software v2.3.

Sequence analysis and phylogenetic reconstruction

Newly isolated sequences of TaANDRO1-like, TaBNDRO1-like and TaDNDRO1-like were ana-

lyzed using Bio-Edit tool. Sequences were BLAST-searched and only sequences with maxi-

mum number of hits with quality score were selected. Complete coding sequences were

assembled. In addition to newly isolated sequences, the retrieval of both the coding and pro-

moter sequences of DRO1-like orthologs from the different phyla of plant kingdom with

sequenced genomes (82 around) including mosses, lycophytes, Amborella, Oropetium grass,

tritici, monocots, dicots, rosids, astrids etc. was carried out using NCBI, Ensembl genome

browser [44], (http://www.ensembl.org), IWGSC databases and IPK barley blast server. For

sequence analysis, different datasets were generated for titici, monocots, dicots and entire

plant phyla. Multiple and pairwise alignments were generated using ClustawlW program in

the Bio-Edit Sequence Alignment Editor (http://www.mbio.ncsu.edu). Conserved domains

and important motifs were highlighted. In order to infer the evolutionary relationship of

DRO1-like orthologs, a circular neighbor-joining tree with bootstrap replications of 10000 was

reconstructed by MEGA6 [45, 46].

Promoter analysis and identification of cis-regulatory elements

Without a special note we retrieved -2kb upstream sequence as a promoter for all the DRO1--
like orthologs. Among these, most of the promoter sequences consisted of tritici but also

included mosses, liverworts, tuft grass, monocots, dicots and rosids etc. We also selected entire

genomic loci of the above mentioned plants comprising all the exon-introns for the identifica-

tion of cis-regulatory elements. Dot plots analyses in PipMaker program (http://pipmaker.bx.

psu.edu/pipmaker/) were done [47] for comparison of promoter sequences and identification

of regions of close similarity. For this purpose, promoter sequence -2kb upstream of ATG for

each gene was inserted in the input box and a dot plot was generated through pairwise

Expression divergence of DRO1-like genes in wheat and barley

PLOS ONE | https://doi.org/10.1371/journal.pone.0214145 April 4, 2019 18 / 28

http://www.ensembl.org/
http://www.mbio.ncsu.edu/
http://pipmaker.bx.psu.edu/pipmaker/
http://pipmaker.bx.psu.edu/pipmaker/
https://doi.org/10.1371/journal.pone.0214145


alignment. For identification of cis-regulatory motifs including auxin response elements

(AuxREs), we used Bio-Edit and different online programs such as Mulan (Multiple-sequence

local alignment) (http://mulan.dcode.org) with TBA and MultiTF (http://rvista.dcode.org/cgi-

bin/mTTP.cgi), and also did it manually [48]. The number and position of TGTCTC and

TGTC core motifs was documented for each promoter and intronic region individually. The

positions of conserved regions containing AuxREs and AuxRE-like were located and TGTC

motif was highlighted.

In order to find all the plant specific TFBSs in the promoter of all the tritici, Mulan program

was used. Putative cis-acting elements in the individual promoters and downstream regions

were predicted using the plant specific cis-acting DNA elements in the TRANSFAC (http://

www.gene-regulation.com/pub/databases.html) database. The type, number and times occur-

rence of TFBSs with position was recorded separately for each gene promoter. Presence and

absence of TFBSs was compared and gain and loss of TFBBs was inferred from the tables

generated.

Yeast 1-hybrid assay. In order to confirm the in vitro binding of TaDRO1-like by trans-reg-

ulators ARF1 to AuxREs (TGTCTC and TGTC) in the promoters, we performed Y1H analysis.

The Y1H assay was carried out using the MATCHMAKER one-hybrid system (Clontech). Three

types of TaDRO1-like DNA fragments each around 200bp in length were selected. The type 1

fragment contains core AuxRE TGTC of TaBDRO1-like while sequence of type 2 fragment was

GGTC in case of TaADRO1 near the TSS. The region towards more proximal promoter from

-1100 to -1300 bp containing complete TGTCTC motif was included in the 3rd type of fragment.

These three fragments were directly inserted into the multiple cloning sites of reporter plasmids

of pLacZi and pHISi-1, respectively. After linearization these three bait constructs were inte-

grated into the genome of yeast strain YM4271. The dual reporter strain was selected and main-

tained on synthetic dextrose (SD)/-His/-Ura medium. For construction of the pGAD-ARF1

fusion, the cDNA of ARF1 was ligated with GAL4 activation domain in pGAD424 plasmid.

Finally constructs were introduced into yeast strain with dual reporter genes, with a blank

pGAD424 plasmid as control. After co-transformation, the yeast transformants were tested on

SD/-Leu/-His/-Ura medium containing of 3.0 mM 3-amino-1, 2, 4-triazole (3-AT) and 80 mg l−1

of 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-Gal) and 1× BU salt.

Non-lethal β-galactosidase assay was performed as described in Clontech manual. The ORF

of ARF1 was fused in-frame with the GAL4 activation domain of the one-hybrid vector

pGAD424, and then transferred into yeast cells containing pLacZi-AuxREs plasmids, respec-

tively; the blank pGAD424 plasmid was used as control. The unit of β-galactosidase activity

was calculated by the equation of U = 1000×[OD420]/(time (in min)×volume (in ml)×[OD600].

A Student’s T-test was applied to calculate the statistical significance of the bar chart data.

Discussion

“The Power of Movement in Plants” is famous book in which Charles and Francis Darwin [49]

long ago documented the capability of plants for orienting their root growth towards gravity

through root tip bending. Gravitropism is necessary for roots to grow into the soil not only for

water and nutrient acquisition but to anchor plant as well [50]. Presence of a profuse and

deeper root system may have a direct impact on yield under adverse climatic conditions [51].

Therefore, in this study we focused on root system architecture of wheat and barley. When

morphologically compared, both the wheat varieties NARC 2009 (drought tolerant) and Gal-

axy (drought susceptible) showed longer roots in comparison with wild ISR42-8 (wild barley)

and Scarlet (cultivated variety). Among all cultivars NARC 2009 demonstrated a deeper root

network, more vertical RGA, gain of dry weight, healthier and taller plants.
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Development of drought resistant varieties with improved root architecture is the most

desirable strategy to increase the crop production [52]. Molecular basis of this orphan trait

revealed that DRO1 gene which is negatively regulated by auxin, controls RGA in response to

gravity in rice leading to increase in yield under drought imposition [22]. From NARC 2009,

we were able to isolate 3 DRO1-like paralogs designated asTaANDRO1-like, TaBNDRO1-like
and TaDNDRO1-like. Phylogenetically, HvDRO1-like of barley is sister to TaBDRO1-like of

wheat. Comparison of gene structures of the 17 DRO1-like orthologs from various plant phyla

indicated the conservation of 5 exons and 4 introns in most of the plants. But size of the gene

structures remained variable. The length variations in gene structures occurred probably due

to deletion, insertions and frameshifts or intronization/exonization events.

Here we found that DRO1-like proteins are present across diverse plant phyla and fall

within the IGT gene family [26]. LAZY, NGR and TAC1 are also reported as member of this

family. These genes control orientations of above and underground plant parts. Six LAZY

genes (LZY1-6) with differential expression in various tissues were identified in Arabidopsis by

Taniguchi et al. [32]. Arabidopsis LAZY1 family plays a key role in gravity signaling within sta-

tocytes and in branch angle control of roots and shoots. Yoshihara and Spalding [33] identified

the role of LAZY family in mediating the effects of gravity on auxin gradients and plant archi-

tecture. The previous name of LAZY3 was AtDRO1 or AtNGR2. LAZY and TAC1 contain

IGT motif but their function is to control lateral shoot development rather than RGA in

monocots and dicots [53–56, 27, 57–59]. In lower plants such as Physcomitrella and Selaginella,

the differentiation between LAZY, TAC1 and DRO1-like proteins remains enigmatic.

Though IGT motif is reported as the signature for this family but our study revealed that

another motif WxxTD in the 5th domain can also act as the prominent feature of this family

because its position is more conserved across the entire plant phyla than the IGT of 2nd

domain. Another common feature of this family is an EAR-like motif at the extreme C-termi-

nus. This motif is present in numerous co-repressors that show co-repression through interac-

tion with TPL protein [60]. Best known for interaction with auxin-regulated proteins such as

BODENLOS (BDL) involved in root development, TPL interacts with other transcription fac-

tor complexes involved in various other pathways in plants [61–66] thereby converting them

to transcriptional repressors [63]. These protein-protein interactions are mediated by a small

conserved motif known as the ethylene response factor (ERF)-associated amphiphilic repres-

sion (EAR) domain [46] with a consensus sequence (L/F)DLN(L/F)xP, which has also been

identified in several other transcription factors with repressive activity [46, 67, 68]. Around

219 candidate proteins belonging to 21 transcription regulator families harbor this EAR-like

motif and show protein repression [45].

Gruiseman et al. [25] demonstrated that C-terminus motif IVLEM in DRO1-like is

required for lateral root phenotypes in Arabidopsis. It also narrows the lateral root growth

angles. In the present study, through split-YFP and Y2H analyses we were able to confirm that

all the 3 wheat paralogs could interact with TPL protein with different intensities. Remarkably,

the difference of IVLEM in TaADRO1-like and TaDDRO1-like, and KLHTLIPNK in TaB-

DRO1-like did not affect the interactions spectrum of TaDRO1-like with TPL. But TaDRO1--

like proteins with removed IVLEM/ KLHTLIPNK abolished the interactions. Thus, IVLEM is

recruited in interaction with TPL. Root architecture seems to be trait controlled by a network

of genes and this is what our protein-protein interaction studies reveal. How this interaction

can change the function in any pathway with repressing activity remained to be unveiled. We

may speculate that it might have a role in auxin flux that negatively regulate the expression of

TaDRO1-like or block its expression in shoots. Hence, this interaction may serve as a link

between roots and shoot development.
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The role of cis-regulatory elements after duplication/triplication of genes during speciation

in expression divergence can hardly be exaggerated [69]. Different models have been proposed

and genome duplications seems to be the best option to study the gain and loss of cis-regula-

tory elements as genomic paralogs i.e., homoeologs are provided with the same environment

than orthologs [34]. DRO1-like triplicates of wheat in comparison with barley seems to be

ideal for studying the contribution of cis-regulatory elements in expression divergence is pro-

posed by this study. The analysis of promoter and intronic regions in wheat indicated that gain

and loss of cis-regulatory elements might have contributed in the expression divergence of

DRO1-like paralogs. Presence of an ARF1 binding motif TGTCTC in TaBDRO1-like and

HvDRO1-like upstream of the TSS at positions -1251bp and -1967, -1977, respectively, might

be responsible for stronger gene expression in wheat root tips than other two paralogs. Uga

et al. [22] observed this TGTCTC motif near the TSS in rice. Through electrophoretic mobility

shift assay (EMSA), they validated it as binding site for OsARF1/OsARF23. These auxin-

response elements (AuxREs) occur in upstream regions of some early-auxin-response genes,

and ARFs bind AuxREs to regulate the transcription of these genes [70]. Within AuxREs, the

TGTC motif makes the greatest contribution to ARF binding strength [71]. In promoter analy-

sis, we detected a conserved region near the TSS where TGTC was conserved in TaBDRO1-like
and TaDDRO1-like but mutated to GGTC in TaDDRO1-like. This is speculated to be an

important element, which by binding with ARF suppresses the expression of TaBDRO1-like
and HvDRO1-like. Mironova et al. [72] suggested that AuxRE with its coupling sequence

AuxRE-like (ATTTTCTT) may form a composite element for stronger binding of ARF. Inter-

estingly, this coupling motif is detected in TaBDRO1-like but not in TaADRO1-like promoters.

Remarkably, through Y1H we are able to empirically validate the binding of TaBDRO1-like

TGTC and TGTCTC while no binding of GGTC with ARF1 protein was detectable.

Another important motif that can bind MADS-box TFs i.e. CArG-box (CCWWWWWWGG,

other variants also do occur) was detected in TaBDRO1-like promoter with greater frequency.

Root specific AGL 17 clade MADS-box TF such as AGL21 [44] may bind it. These TFs play a

crucial role in lateral root development. In Arabidopsis, AGL21 was found positively regulating

auxin accumulation in lateral root primordia and lateral roots by enhancing local auxin bio-

synthesis, thus stimulating lateral root initiation and growth. It is speculated that binding of

AGL21 to CArG-motif of TaBDRO1-like decreases the auxin level and thus decreasing the

expression of these genes in roots. Other cis-element binding TFs including NAC69, MYB84,

ER, and DOF might also play an important role. Most of these sites were lost in the TaA-
DRO1-like and TaDDRO1-like but gained in HvDRO1-like, AsDRO1-like and TaBDRO1-like.
Thus, gain and loss of these cis-regulatory elements might have played a major role in expres-

sion divergence among TaDRO1-like homoeologs during evolution.

Speculations about the evolution of DRO1-like in tritici may be many (Fig 6). Earlier in the

history, the hypothetical diploid progenitor, for example Brachypodium contains a single

DRO1-like gene harboring an EAR-like IVLEM C-terminus motif but lacking TGTCTC/TGTC
core motif in the promoter region. It went through genome triplication/duplication or hybrid-

ization event. TuDRO1-like of Triticum urartu, AsDRO1-like of Aegilops speltoids and Ata-
DRO1-like of Aegilops tauschii originated through genome triplication from BdDRO1-like of

Brachypodium. It is denoted by dotted line. HvDRO1-like of Hordeum vulgare seems to be a

progenitor of AsDRO1-like after Brachypodium. During speciation procedure, changes in gene

structures such as reduction in number of exons through reading frameshifts in HvDRO1-like
and AsDRO1-like, and other promoter mutations where gain and loss of cis-regulatory motifs

occurred. In the lineage leading to TuDRO1-like, the CDS remained unchanged but there was

a gain of one core TGTC (AuxRE) motif upstream of the TSS. During the course of evolution

from TuDRO1-like to TaADRO1-like there was gain of one more TGTC in the proximal
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promoter though it lacked standard TGTCTC which is a complete sequence motif. Probably

due to the absence of TGTCTC and TGTC core motif near the TSS this gene transcript exhib-

ited stronger expression in the root tips that make it a good candidate for the functional con-

trol of root architecture in wheat. On the other hand, in the lineages leading to HvDRO1-like
and AsDRO1-like, in addition to 4 bp extension in IVLEM motif there was a gain of 2 TGTCTC
motifs in the promoter proximal region, and 3 to 5 TGTCs including one core motif in the

conserved region near the TSS. However, AsDRO1-like lost one TGTCTC but gained two

TGTC. The TaBDRO1-like re-gained one more TGTC and maintained standard TGTCTC as

well. Gain of this TGTCTC/TGTC might be responsible for the weakest expression of TaB-
DRO1-like and of HvDRO1-like. The evolution of TaDDRO-like is similar to TaADRO1-like
except it gained 3 core sequences that include TGTC conserved near the TSS. Hence, this gene

exhibited moderate expression in root tips. This gain and loss of cis-regulatory elements during

the evolution might have played a role in the expression divergence of these DRO1-like ortho-

logs in tritici.

In nutshell, the variations at the C-terminus as well as gain and loss of AuxREs and other

cis-regulatory elements might have played a role in the evolution of DRO1-like wheat paralogs

involved in deeper rooting. Since root architecture is an important target trait for wheat crop

improvement therefore, isolation, expression and interaction studies of DRO1-like genes in

wheat have potential applications in plant breeding for enhancement of plant productivity. It

is imperative to study the regulation of stress responses at cellular level in roots, allele replace-

ment for QTL validation and the epigenetic regulation of roots. The unveiling of gene net-

works and complete pathway and most importantly expression repertories in wheat/crops in

root growth and drought avoidance by using genomic/transcriptomic data is inevitable. In this

regard, RNA-seq based high throughput sequencing can be a suitable approach. Drought

avoidance strategies by exploiting root growth genes through genome editing technique of

CRISPR-Cas9 may be very advantageous for designing annual and perennial crops that are

productive in moisture-poor soils. CRISPR-Cas9 can be used to disrupt the DRO1-like genes

for producing shallower and more profuse wider root systems in some crops for productively

enhancement. Ideally, the expression of DRO1-like can be enhanced using CRISPRa

manipulation.

Supporting information

S1 Fig. Isolation of DRO1-like genes from NARC 2009 cultivar of wheat. Pairwise amino

acid sequence alignments of the newly isolated DRO1-like paralogs in comparison with those

existing in “Ensembl Plants” browser are shown. (A) TaADRO1-like-N with TaADRO1-like.

(B) TaBDRO1-like-N with TaBDRO1-like. (C) TaDDRO1-like-N with TaADRO1-like. Con-

served nucleotides are shown as asterisks.

(TIF)

S2 Fig. Isolation of TaADRO1-like gene from NARC 2009 cultivar of wheat. Pairwise nucle-

otide sequence alignment of newly isolated TaADRO1-like-N with TaADRO1-like is shown.

Conserved nucleotides are shown as asterisks.

(TIF)

S3 Fig. Isolation of TaBDRO1-like gene from NARC 2009 cultivar of wheat. Pairwise nucle-

otide sequence alignment of newly isolated TaBDRO1-like-N with TaBDRO1-like is shown.

Conserved nucleotides are shown as asterisks.

(TIF)

Expression divergence of DRO1-like genes in wheat and barley

PLOS ONE | https://doi.org/10.1371/journal.pone.0214145 April 4, 2019 22 / 28

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0214145.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0214145.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0214145.s003
https://doi.org/10.1371/journal.pone.0214145


S4 Fig. Isolation of TaDDRO1-like gene from NARC 2009 cultivar of wheat. Pairwise nucle-

otide sequence alignment of newly isolated TaDDRO1-like-N with TaADRO1-like is shown.

Conserved nucleotides are shown as asterisks.

(TIF)

S5 Fig. Multiple partial protein alignment of DRO1-like paralogs and orthologs in tritici

and close relatives. Multiple alignments for first 3 domains (I-III) were generated using Clus-

talW program in Bio-Edit software. Domains are enclosed in a solid line box and domain

number is given under the alignment in each row. One and two aa insertions in Hordeum vul-
gare HvDRO1-like are indicated in grey color. Amino acids highlighted in yellow in domain II

indicate the IGT motif which acts as the signature of this gene family. Amino acids highlighted

in yellow in domain II indicate the IGT motif which is the denominator of this family of genes.

(TIF)

S6 Fig. Multiple partial protein alignment of DRO1-like paralogs and orthologs in tritici

and close relatives. Multiple partial alignments for last 2 domains (IV, V) were generated

using ClustalW program in Bio-Edit software. Domains are enclosed in a solid line box and

domain number is given under the alignment in each row. The bold amino acids in yellow

(WxxTD) in the 5th domain at the C-terminus are the newly reported conserved amino acids

for DRO1-like and related proteins. An EAR-like motif of 5 amino acids (IVLEM) is shown in

red color but this motif is diverged and extended to 9 aa KLHTLIPNK in a few proteins by the

addition of IPNK highlighted in blue. This extended motif is specific for AsDRO1-like, TaB-

DRO1-like, TaBNDRO1-like and HvDRO1-like proteins.

(TIF)

S7 Fig. Comparison of gene structures of DRO1-like orthologs. Gene structures of 17

DRO1-like orthologs from Tritici and other plants were analyzed using Ensembl genome

browser. The gene structures comprise CDS from ATG to stop codon including introns.

Exons in gene structures are symbolized by filled grey boxes while introns by upward lines

between the exonic boxes. The numbers above indicate the length of exons in base pairs. The

5’- and 3’- UTRs are shown as empty boxes at the ends. The first two codons of the CDS are

shown as ATGAAG in most of the structures except Oropetium thomaeum.

(TIF)

S8 Fig. Isolation of TOPLESS (TPL) gene form wheat. Pairwise sequence alignments of the

newly isolated TaTPL-N with existing sequence of TaTPL in Ensembl Plants are shown. (A)

Nucleotide alignment. (B) Amino acid alignment. Conserved nucleotides/amino acids are

shown as asterisks.

(TIF)

S9 Fig. In vitro interaction assay of TaDRO1-like proteins with TPL. (A) Protein-protein

interactions studies of DRO1-like homoeologs with TOPLESS (TPL) proteins were carried out

using yeast two hybrid analysis. The binding domain full-length CDS of TaADRO1-like, TaB-

DRO1-like and TaDDRO1-like constructs as well as with truncated versions (TaADRO1--

likeΔ246, TaBDRO1-likeΔ245 and TaDDRO1-likeΔ246) were co-transformed in yeast and grown

on stringent dropout media. Note; no growth of yeast colonies in case of truncated DRO1-like

proteins. (B) Non-lethal β-galactosidase assay.

(TIF)

S10 Fig. Phylogenetic reconstruction of DRO1-like genes. A circular neighbor-joining tree

of 82 DRO1-like orthologs from different phyla of plant kingdom was generated in MEGA6.

Bootstrap values of 10000 pseudo replicates are indicated at the nodes of the tree. Each clade of
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the tree is marked with different plant family name and related species.

(TIF)

S11 Fig. Gene expression patterns of DRO1-like transcripts in wheat and barley. Semi-

quantitative RT-PCR results of the HvDRO1-like and TaBDRO1-like transcripts in wheat and

barley. The elf is an internal control. M stands for 1kb leader.

(TIF)

S12 Fig. Comparison of DRO1-like promoters of Tritici, Aegilops and Hordeum. Graph

showing the results of DRO1-like promoter analysis of Tritici, Aegilops and Hordeum. The pro-

moter sequences -2kb upstream of ATG were retrieved and comparison was performed using

the PipMaker program (http://pipmaker.bx.psu.edu/pipmaker/).

(TIF)

S13 Fig. Promoter comparison and identification of transcription factor binding sites

(TFBSs) in DRO1-like promoter sequences of Tritici, Aegilops and Brachypodium. Partial

promoter sequences of DRO1-like of Tritici, Aegilops and Brachypodium were put in Bio-Edit

program for generation of multiple alignment through ClustalW tool. Solid boxes enclose the

TFBSs for MYB84, AuxRE-like, core Aux-RE in insertion, ABF1 and ANT marked as yellow.

A backward arrow indicates the putative position of the transcriptional start sites (TSS). Note

the mutation of AuxRE core i.e. TGTC to GGTC in TuDRO-like and TaADRO1-like, and also

in the AuxRE-like motif (ATTTTCTT to TTTTTAGC) as a coupling motif upstream.

(TIF)

S1 Table. List of primer sequences used in the study. Primers used for different experiments

including cDNA synthesis, gene isolation, expression and protein-protein interactions are

shown. The sequence direction is 5’ to 3’.

(TIF)

S2 Table. Identification of different types of MADS-domain binding elements i.e. CArG-

boxes in the DRO1-like promoters of tritici and closely related plants. Different types of

CArG-boxes were detected using Mulan program and their positions were marked. The posi-

tion of these elements was determined by taking first nucleotide upstream of ATG as -1bp.

The core sequence motif is mentioned in capital letters.

(TIF)

S3 Table. Identification of all the plant specific regulatory elements in the DRO1-like pro-

moters of tritici and closely related plants. For identification of TFBSs, -2kb sequence

upstream of translational start site was selected as promoter and analyzed using Mulan pro-

gram. The position and number of times occurrence of different TFBSs were recorded. The “-”

sign indicates the absence of a particular site in that promoter sequence. The total number of

TFBSs and their occurrence was also documented as highlighted in bold.

(TIF)

S1 File. Supporting Information Zip_Archive. Raw data for measurement of root morphol-

ogy (Fig 1B and 1C), root angle (Fig 1E) and real time gene expression (Fig 4A–4F) analysis.

(ZIP)
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