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If the response to treatment depends on genetic biomarkers, it is important to identify predictive
biomarkers that define (sub-)populations where the treatment has a positive benefit risk balance. One
approach to determine relevant subpopulations are subgroup analyses where the treatment effect is
estimated in biomarker positive and biomarker negative groups. Subgroup analyses are challenging
because several types of risks are associated with inference on subgroups. On the one hand, by disre-
garding a relevant subpopulation a treatment option may be missed due to a dilution of the treatment
effect in the full population. Furthermore, even if the diluted treatment effect can be demonstrated in
an overall population, it is not ethical to treat patients that do not benefit from the treatment when they
can be identified in advance. On the other hand, selecting a spurious subpopulation increases the risk
to restrict an efficacious treatment to a too narrow fraction of a potential benefiting population. We
propose to quantify these risks with utility functions and investigate nonadaptive study designs that
allow for inference on subgroups using multiple testing procedures as well as adaptive designs, where
subgroups may be selected in an interim analysis. The characteristics of such adaptive and nonadaptive
designs are compared for a range of scenarios.
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reallocation; Utility function.
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1 Introduction

Technical methods to investigate the genetic heterogeneity of patients have improved rapidly. In the
development of targeted therapies there is an increasing interest in clinical trials investigating predictive
biomarkers (Beckman et al., 2011; Ziegler et al., 2012) that explain the genetic diversity of patients
therapeutic response.

Subgroup analyses in clinical trials to assess the consistency of a treatment effect in different
subpopulations defined by genetic markers have often been considered as exploratory analysis only
and confirmatory claims on the treatment effect were made only for the total trial population. In recent
years clinical trials with more complex objectives, which allow one to confirm a treatment effect in the
overall population as well as only in a subpopulation, have raised more and more attention.

∗Corresponding author: e-mail: martin.posch@meduniwien.ac.at, Phone: +43-140400-7489, Fax: +43-140400-7477

C© 2014 The Authors. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.



Biometrical Journal 57 (2015) 1 77

In the development of targeted therapies with prior evidence that the treatment effect may be stronger
(or only present) in a subgroup defined by a biomarker, one faces several design options when planning
a clinical trial. The trial can be performed either in the biomarker positive subgroup only or in the
full population (Maitournam et al., 2005; Mandrekar and Sargent, 2009a,b; Freidlin et al., 2013). In
the latter case, a multiple testing procedure can be preplanned to allow one to test for a treatment
effect in the subgroup as well as in the full population (Song and Chi, 2007; Alosh and Huque, 2009;
EMA, 2010; Millen et al., 2012). A third option, that may be attractive in situations with considerable
uncertainty left on the treatment effect in the biomarker negative subgroup, are adaptive designs that
allow one to enrich the study population after an interim analysis. In a first stage patients are recruited
from the full population. In the interim analysis, the trial population may be adapted based on the
observed treatment effects in the subgroup. The trial continues either in the full population or in a
subpopulation only. To control the type I error rate adjusting for the adaptive choice of populations as
well as the multiplicity arising from the testing of subgroups, combination tests (Bauer and Koehne,
1994; Bauer and Kieser, 1999; Bretz et al., 2009) and the conditional error rate principle (Mueller and
Schaefer, 2001, 2004) have been proposed (Brannath et al., 2009; Jenkins et al., 2011; Friede et al.,
2012; Stallard et al., 2014; Wang et al., 2007). These approaches base the test decision on data from the
first and the second stage of the trial. Different decision rules to select the population for the second
stage have been considered, ranging from simple rules based on differences of z-statistics (Kelly et al.,
2005; Friede et al., 2012) to Bayesian decision tools (Brannath et al., 2009).

All the above approaches require that the subpopulation is prespecified which is the most common
scenario in a confirmatory setting. However, also more general approaches have been proposed, that
allow one to search for predictive biomarkers to define a subgroup based on the first stage data (Freidlin
and Simon, 2005; Jiang et al., 2007; Mehta et al., 2009). With these approaches, however, the statistical
test for the identified subgroup uses the second stage data only. Another generalization are trial designs
for settings with more than one subpopulation (Magnusson and Turnbull, 2013).

It has been shown that adaptive designs may lead to superior statistical power compared to fixed
sample designs, where power is usually defined as the power to reject at least one false null hypothesis
(Wang et al., 2009; Boessen et al., 2013). In a setting where multiple hypotheses are tested, however, this
may not be the only operating characteristic of interest. Other power definitions, such as the average
power, or the power to reject all null hypotheses have been proposed (Stallard et al., 2009; Bretz et al.,
2009). A limitation of the latter power concepts is that they are symmetric in all tested hypotheses
and therefore cannot appropriately reflect the objectives in the setting of subgroup analyses where the
consequences of inferences on subgroups and the full populations may substantially differ.

Inference on subpopulations is challenging because different types of risks need to be accounted
for: On the one hand, disregarding a relevant subpopulation one may miss a treatment option due to
a dilution of the treatment effect in the full population. Furthermore, even if the diluted treatment
effect can be demonstrated in an overall population, it is not ethical to treat patients that do not
benefit from the treatment, when they can be identified in advance. On the other hand, selecting
a spurious subpopulation increases the risk to erroneously conclude that a treatment is efficacious
(inflating the type I error rate), or may wrongly lead to restricting an efficacious treatment to a
too narrow fraction of a potential benefiting population. The latter can not only lead to a reduced
revenue from the drug, but is also unfavorable from a public health perspective. Instead of focusing on
power definitions, we quantify these risks with utility functions and investigate the characteristics of
adaptive and nonadaptive study designs that allow for confirmatory inference on subgroups controlling
the family wise type I error rate. In addition, we derive optimized adaptive designs that maximize
expected utilities by optimizing the first stage sample size and decision thresholds for the selection of
subgroups.

The paper is structured as follows. In Section 2 we discuss fixed sample designs and compare their
performance based on their expected utility. In Section 3 we assess adaptive approaches based on
expected utilities and use simulation results to identify optimized designs for a range of scenarios. The
findings and extensions of the approach are discussed in Section 4.
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2 Fixed sample design

Consider a clinical trial where a treatment is compared to a control in a parallel group design and a
subpopulation S (e.g. based on a biomarker) is investigated. Let θS (θSC ) denote the true difference in
means (control versus experimental arm) of a normally distributed endpoint in the subpopulation S and
its complement SC . Then the treatment effect in the full population is given by θF = λθS + (1 − λ)θSC ,
where λ denotes the prevalence of subpopulation S. For this setting we consider two design options to
plan a fixed sample clinical trial:

(i) Stratification design: Patients are recruited from the full population and hypotheses tests for
both populations are performed, testing

H0,F : θF ≤ 0 vs. θF > 0 and H0,S : θS ≤ 0 vs. θS > 0.

Due to performing two tests (for F and S), a multiplicity adjustment is performed to control
the family wise type 1 error rate at a prespecified level α.

(ii) Enrichment design: Patients are recruited from the subpopulation only (achieving the same
overall sample size as in the stratified design) and efficacy is tested only in the subpopulation,
testing

H0,S : θS ≤ 0 vs. θS > 0.

While both designs allow one to test HS, the stratification design additionally tests for a treatment
effect in the full population. However, assuming the same total sample size n per treatment group, the
enrichment design includes a larger number of patients from subpopulation S.

In the following we consider a parallel group comparison for the means of two normal-distributions
with common known variance σ . The effect θ j is assumed to be the mean difference between treat-
ment and control for j = F, S, SC . In the enrichment design, HS is tested using a z-test with test
statistics zS = θ̂S

√
n/(2σ 2) where θ̂S is the observed effect estimate using the total sample size n per

group, assuming groups of equal size and a common known variance σ 2. In the stratification de-
sign HS is tested with a z-test with test statistics zS = θ̂S

√
nλ/(2σ 2) and HF is tested with a stratified

z-test zF = √
λzS + √

1 − λzSC where zSC = θ̂SC

√
n(1 − λ)/(2σ 2) is the test statistic of the complement.

Correction for multiplicity in the stratification design is performed using the Hochberg test (Hochberg,
1988; Simes, 1986). For both designs the total per treatment group sample size n is chosen such that
in the stratified design a standardized effect size in the full population of θF = θS = θSC = 1 can be
detected at level α = 0.025 and the power to reject at least one of the two hypotheses HF or HS is about
0.8, given a prevalence of λ = 0.3.

2.1 Power considerations

The power to reject any of the two hypotheses depends on the unknown true effect sizes � = (θS, θSC )

as well as the prevalence λ of the subgroup. In a setting where a targeted therapy is developed, there is
uncertainty whether θSC < θS. Note that the case θSC > θS is not considered in the power calculations
as we assume that it is ruled out for scientific reasons. For the given setting the enrichment design
(recruiting only patients in S) always leads to the highest power to reject at least one null hypothesis:
if θSC < θS the enrichment design has larger power due to the larger effect and the larger sample size
for the subgroup S as compared to the stratification design, where the sample size of S is λn. Note
also that there is a dilution of the treatment effect in the full population for the stratification design.
If θSC = θS the enrichment design has a larger power because the stratification design is using an
adjustment for multiple testing due to performing two tests (for F and S). Thus, if in truth θSC ≤ θS
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(which is the underlying assumption for the consideration of the subgroup), regarding the power to
reject any hypothesis the enrichment design is always preferable.

However, it appears that the power to reject any null hypothesis does not appropriately reflect the
objectives in this setting. The enrichment design allows one to demonstrate a treatment effect in the
subpopulation only. While revenues are complex and multifactorial, one would expect that this leads to
a lower gain for the sponsor simply due to the smaller size of the population the drug can be marketed
to after regulatory approval. Especially in an indication where the market is saturated and competitor
drugs are already approved, the loss in the number of potential patients cannot be compensated by
higher prices because the per patient price paid by reimbursement bodies is restricted by the price of
competitor products. More importantly, the restriction to a subgroup only in an enrichment design may
raise ethical concerns because patients that potentially may benefit from the treatment are excluded.
To account for these aspects, we consider an approach based on utility functions.

2.2 Utility functions for decisions on subgroups

Considering the power to reject any null hypotheses implies that the outcomes “reject HF ” and “reject
HS” are equally desirable. However, the gain for the sponsor as well as the gain from a public health
perspective depends on which hypothesis is actually rejected. To quantify the gain, we propose utility
functions that assign different gains to different outcomes of the test. As examples, we consider two
simple utility functions, in the following denoted by “sponsor view” and “public health view”. While
these utility functions are somewhat simplistic and cannot cover all aspects of utilities in the considered
scenarios, they better formalize the key components than traditional power considerations and allow
for a systematic evaluation of study designs under different perspectives.

For the “sponsor view” utility function we assume that when showing a treatment effect in the
full population, that is HF is rejected, a gain gF , is achieved. If the treatment effect is shown in the
subpopulation only, that is HS is rejected only, a smaller (or equal) gain gS ≤ gF is achieved because
from the sponsor’s perspective, demonstrating a treatment effect in a smaller population implies a
smaller market. Furthermore, we assume the gain gF achieved if efficacy is demonstrated in the full
population, does not depend on whether the treatment is in truth effective or not. If none of the two
hypotheses is rejected, the gain is 0. Thus, the sponsor’s view utility function is given by

U sponsor(�) = gF P�(reject HF ) + gSP�(reject only HS). (1)

Note that the utility under the “sponsor view” depends on the test decisions only but not on the true
effect in the considered populations. The “sponsor view” is motivated by the work of Beckman et al.
(2011) who suggest to use Phase 2 data to decide whether performing an (adaptive) enriched study or
not. In contrast, the “public health view” utility function depends on both, the test decisions and the
true effects in the subpopulations. We define,

U public(�) = 1θS,θSC >0

[
gF P�(reject HF ) + gSP�(reject only HS)

]

+ 1θS>0,θSC ≤0

[
gSP�(reject HF ) + gSP�(reject only HS)

]
. (2)

The public health view assigns the gain of gF if HF is rejected and there is a homogeneous treatment
effect in HF such that the treatment is effective in S and SC . If the treatment is effective in S only,
the gain is assumed to be equal to gS ≤ gF regardless if HF or HS is rejected. This reflects the fact,
that only the patients in the subset S will actually benefit from the treatment. For gS = gF = 1 the two
utility functions U sponsor and U public are both equal to the power of rejecting at least one of the two
hypotheses (HF or HS). Note that we do not explicitly include costs in the utility functions. However,
we restrict the comparison of trial designs to designs with equal overall sample size. Assuming the
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Figure 1 Subsets in the (θS, θSC )-plane where the enrichment (light-gray) or the stratification design
(dark-gray) are achieving the highest expected utility for the sponsor view, setting gS = 1, 0.5, and 0.3
(panels A, B, C), and the prevalence was set to λ = 0.3.

trial costs to be proportional to the sample size, we therefore compare only trial designs with the same
costs. Furthermore, without restricting generality we normalize the gains by setting gF = 1.

Which of the two design options, the stratification or the enrichment design, is preferable in terms of
utility depends on the effect sizes of the subpopulation, θS, and the complement, θSC , the prevalence,
λ and the gain gS. Figure 1 shows the subsets in the (θS, θSC )-plane where the stratification or the
enrichment design lead to a higher expected utility. Values are given under the sponsor view for
different gS assuming λ = 0.3. Note, that if gS = 1 or θSC ≥ 0 the public health view is equal to the
sponsor view leading to the same preferable designs. For gS = 1 (i.e. the utility functions are equal to
the power of rejecting any hypothesis) the stratification design is only preferable if θSC > θS, however,
this is a parameter constellation which is typically not considered plausible if a targeted therapy is
investigated. With decreasing gS (i.e. a smaller gain if efficacy is shown in the subgroup only) the
parameter range where the stratification design is preferable increases. For larger positive θSC the
stratification design is leading to a higher expected utility due to the larger chance of rejecting HF and
therefore achieving the gain gF . However, also for small negative θSC and small θS the stratification
design is preferable under the sponsor view. This is in contrast to the public health view, where for
θSC < 0, always the enrichment design is preferable. For small positive θSC the stratification design
is optimal for very small and very large θS but not for intermediate effect sizes: If both θS and θSC

are small, the power of both the enrichment and the stratification design is close to the significance
level, but the stratification design leads to a larger gain. For intermediate θS the effect size in the full
population is too diluted such that the loss in power of the stratification design cannot be compensated
by the increased gain if HF is rejected. For very large θS however, the treatment effect in the full
population (driven mainly by the subgroup) is large enough to guarantee sufficient power to test HF
and the stratification design has a higher utility.

Assessing the utility of clinical trial designs under specific assumptions on the efficacy parameters can
be a useful tool when assessing different design options, but it does not take into account uncertainty
in the prior knowledge on effect sizes. To account for this uncertainty we consider a Bayesian approach
to quantify expected utility. To this end we consider a prior assuming that the treatment is effective
in the subpopulation but that there is uncertainty about the treatment effect in the complement. For
simplicity we restrict the investigations to a two point prior reflecting the scenarios where the treatment
either has an effect of θS = θSC = 1 in both S and SC or an effect of θS = 1 in S but no effect (θSC = 0)
in the complement. Thus, the prior is defined by a single probability π that the treatment is efficacious
in S and SC .

Figure 2 shows the normalized expected utilityU sponsor
π (sponsor view) as well asU public

π (public health
view) as a function of the prior π for gS = 1, 0.5, and 0.3, assuming a prevalence of λ = 0.3. For each
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Figure 2 Expected normalized utility for the fixed sample design as a function of the prior probability
π for different gains gS = 1, 0.5, and 0.3 (panels A, B, C) setting gF = 1. Expected normalized utility
is shown for the public health view (gray lines) and the sponsor view (black lines) for the stratification
design (solid lines) and the enrichment design (dashed lines). The prevalence was set to λ = 0.3.

gS and prior π the utilities are normalized by the corresponding maximum achievable utility (assuming
all false null hypotheses can be rejected with probability 1). For the sponsor view the maximum utility
is gF , such that the normalized utility is given by U sponsor

π = Eπ (U sponsor(�))/gF . For the public health
view the maximal achievable utility depends on the prior π and is given by gF π + gS(1 − π), such
that the normalized utility is U public

π = Eπ (U public(�))/(gF π + gS(1 − π)). The normalized expected
utility can then be interpreted as the proportion of the expected utility that is achieved compared to
the maximum achievable utility under a certain prior and utility function. Note that the normalization
has no impact on the selection of the preferable trial design for a specific utility function.

As noted above, for gF = gS = 1 the utilities U sponsor
π = U public

π are equal to the power of rejecting
at least one hypothesis and the enrichment design (dashed line) has a larger power over all prior
probabilities as compared to the stratification design (solid line). The situation changes, however, if
the gain gS for rejecting HS is smaller than gF . Note again that gF was set to 1.

While for small π (i.e. a strong prior evidence that the treatment works in the subgroup only) the
enrichment design is still leading to a higher expected utility compared to the stratification design, for
larger π the stratification design is preferable. The smaller gS the larger the area where the stratification
design is preferable in terms of the given utility functions. For the sponsor view the range of prior
distributions where the stratification design is preferable is larger than for the public health view and
this difference increases with decreasing gS.

3 Adaptive approach

If there is prior evidence of a treatment effect in a certain subpopulation but little or no knowledge
on the treatment effect in its complement, a further design option is an adaptive approach which is an
intermediate strategy between the enrichment and the stratification design (Bretz et al., 2009; Brannath
et al., 2009; Chen and Beckman, 2009; Beckman et al., 2011; Sargent and Madrekar, 2013; Freidlin
and Korn, 2014). In adaptive designs the treatment effects are estimated in an interim analysis and the
design of the remaining part of the trial maybe modified. Consider, for example, a trial that starts in an
overall unselected population. If the treatment effect estimate in the biomarker negative subpopulation
crosses a futility threshold in an interim analysis, accrual maybe restricted to the biomarker positive
subgroup. Such designs have been proposed and formalized for ethical and efficiency reasons to
minimize the number of patients that are treated with a nonefficacious treatment. Assume now, that
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an interim analysis is performed after a first stage. An overall sample size n per group was preplanned
and the interim analysis is performed after n1 = rn observations per group (λn1 observations in the
subpopulation). Based on the interim results, it is decided to continue only with S (testing only for S)
or to continue with F (testing F and S), that is the first stage data is used to choose the second stage
population. The efficacy of the treatment is then demonstrated using data of both stages.

3.1 Adaptive closed test

To control the family wise type I error rate in the strong sense for the given adaptive enrichment design,
the closure principle (Marcus et al., 1976) using adaptive combination tests as local tests can be applied
(Bauer and Kieser, 1999; Hommel, 2001; Bretz et al., 2009). To apply the closure principle, local level
α tests for the elementary hypotheses Hj , j ∈ {S, F } and the intersection hypothesis HF S = HS ∩ HF
have to be defined. Then the closure test rejects an elementary hypothesis Hj , j ∈ {S, F } controlling the
family wise type I error rate if the intersection hypothesis HF S = HS ∩ HF and Hj can be rejected at
local level α. In the adaptive setting as local level α tests combination tests are performed. To this end, a
combination function C(p, q) is defined, which is a function of a first stage p-value p and a second stage
p-value q, where the latter is computed from the second stage data only. The combination test rejects if
C(p, q) > c, where the critical value c is calculated such that for independent and uniformly distributed
p-values PH0

(C(p, q) > c) = α. In the adaptive enrichment design we have two options (say, options A
and B) at the interim analysis: If the trial continues in F (option A) the local combination test rejects
HS if C(pS, qS) > c, and HF if C(pF , qF ) > c, where p j and q j , j ∈ {S, F } are the elementary p-values
of the respective tests based on the first and second stage data. If the trial continues in S only (option
B), we formally set qF = 1 and HF is retained. To test the intersection hypothesis HF S we again apply
a combination test. As first stage test we use the Hochberg test (Hochberg, 1988) such that the first
stage p-value pF S is given by pF S = min(max(pF , pS), 2 min(pF , pS)). The choice of the second stage
test depends on the adaptation decisions in the interim analysis. If the trial is continued with F (option
A), the second stage test is again a Hochberg test and the second stage p-value qF S is defined as above
replacing pS, pF by qS, qF . If the trial is continued with S only (option B), we set qF S = qS. Then, the
combination test rejects HF S at local level α if C(pF S, qF S) > c. Thus, the adaptive closed test rejects
Hj , j ∈ {S, F } if C(pF S, qF S) > c and C(p j, q j ) > c.

Note that the population selection rule at interim may depend on the interim data and on external
data in any way. The selection rule needs not to be specified in detail. Furthermore, we may apply
sample size adaptations based on unblinded interim data. Using the adaptive closed test, the family
wise type I error rate is controlled in the strong sense (see e.g. Bretz et al., 2009).

3.2 Optimized adaptive designs

Consider an adaptive design where the decision on continuing with the full- or the subpopulation is
based on the observed effect size of the treatment in the complement SC . If the first stage p-value pSC

for the test of the treatment effect in the complement SC is smaller than a threshold α0 (i.e., there is a
promising effect in SC), the study continues with the full population (option A in Section 3.1), with a
second-stage sample-size n2 = n − n1 per group including a sample size of λn2 from the subpopulation.
If pSC > α0, indicating that there is no promising effect of the treatment in the complement, the trial
will be continued with the subpopulation only (option B in Section 3.1). Here, n2 patients per group
of the subpopulation only are recruited in the second stage. Note that such a design incorporates two
types of adaptation at the same time: If the trial continues with the subpopulation only, the hypothesis
HF is dropped and the sample size is reallocated by increasing the sample size for the remaining
hypothesis HS.
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As combination function we use the weighted inverse normal combination function approach of
Lehmacher and Wassmer (1999) setting

C(p j, q j ) = √
r�−1(1 − p j ) + √

1 − r�−1(1 − q j )

for j ∈ {F, S}, where r = n1
n1+n2

is the weight of the first stage test statistics and �−1 the quantile of

the standard normal distribution. Setting r = 0 (and therefore n1 = 0) and α0 = 0 the adaptive design
reduces to the enrichment design (ii) in Section 2, that is the fixed sample trial in the subpopulation
only. Setting r = 1 (i.e. n1 = n) and α0 = 1, the adaptive design is equal to the stratification design
(i) in Section 2, that is a fixed sample trial in the full population, testing both hypothesis HF and
HS. For 0 < r, α0 < 1 the design is adaptive with a first stage corresponding to a stratification design
and a second stage corresponding to the stratification or enrichment design depending on the interim
decision.

In the comparison below, optimized adaptive designs were considered, optimized in the parameters
r (and thus n1 = rn determined by r) and α0 with respect to the expected utilities U sponsor

π and U public
π .

Optimization is performed by simulating the trial designs for a grid of r and α0 values with 100,000
simulation runs per grid point and selecting the design with the highest expected utility. The grid
ranged from 0 to 1 in steps of 0.001. The stage wise p-values are computed based on z-tests and the
overall per group sample size n is chosen as in Section 2.

Figure 3 shows the subsets in the (π, gS)-plane where the stratification, enrichment or adaptive
designs have the highest expected utility. For the adaptive designs, the optimized adaptive design with
optimal parameters r and α0 are chosen. The results are given for the public health and sponsor view
utility functions.

For both utility functions, for large gS and small π the enrichment design is leading to the largest
expected utility while for small gS and large π the stratification design is preferable. Only for inter-
mediate values of gS and r an adaptive design is preferable. With increasing prevalence λ, the range
of scenarios where the adaptive design is preferable decreases. This holds for both utility functions.
Note that for the sponsor view utility function the range of scenarios where the adaptive design is
preferable is smaller than for the public health view utility function. For the sponsor view, the area
where the stratification design is preferable is larger than for the public health view, because in the latter
a rejection of HF (whose test has the highest power in the stratification design) entails an additional
gain only if the treatment is also effective in the complement of S.

Figure 4 shows the normalized expected utility for the optimal design (solid lines), the stratification
design (dotted lines), and the enrichment design (dashed lines) as a function of the gain gS for prior
probability π = 0.3, 0.4, and 0.5 separately for the public health view (black lines) and the sponsor
view (gray lines). For the sponsor view the advantage of the adaptive design may be small as compared
to the fixed sample enrichment or stratification design. For the public health view, the gain in utility is
larger, however decreasing with increasing π .

Table 1 shows for several values of the gain gS and the prior π the optimal design parameters r
and α0 as well as the corresponding normalized utility and the normalized utility of the enrichment
and the stratification design for the public health and sponsor view. The prevalence λ was set to 0.3.
For increasing gS, the threshold α0 is decreasing, reflecting that for larger gS the adaptive design is
approximating the enrichment design. For increasing prior probability π , α0 is increasing, reflecting
that for larger π the stratification design is preferable.

3.3 A utility function penalizing efficacy claims for too large populations

In settings where the treatment is effective in S but not in SC , the public health utility function (2)
specifies the same gain gS for the rejection of HS as for the rejection of HF . However, in scenarios where
the treatment entails a safety risk or if the cost of the treatment is taken into account, a utility that
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Figure 3 Subsets in the (gS, π )-plane where the enrichment design (light-gray), the adaptive design
(white) and the stratification design (dark-gray) show the largest expected utility for the public health
view (first row) and the sponsor view (second row). The prevalence is set to λ = 0.3 (first column), 0.4
(second column), and 0.5 (third column).

gS

no
rm

al
iz

ed
 e

xp
ec

te
d 

ut
ili

ty

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(A) π = 0.3

gS

no
rm

al
iz

ed
 e

xp
ec

te
d 

ut
ili

ty

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(B) π = 0.4

gS

no
rm

al
iz

ed
 e

xp
ec

te
d 

ut
ili

ty

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(C) π = 0.5

Figure 4 Normalized expected utility for the optimal design (solid lines), the stratification design
(dotted lines), and the enrichment design (dashed lines) as a function of the gain gS for prior probability
π = 0.3, 0.4, and 0.5 (panels A, B, C), separately for the public health view (black lines) and the sponsor
view (gray lines). The prevalence λ was set to 0.3.
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Table 1 Optimal design parameters r and α0, the corresponding normalized utility as well as the
normalized utility of the enrichment and the stratification design for the public health and sponsor
view for several values of the gain gS and the prior π . The prevalence was set to λ = 0.3.

Public health view Sponsor view

Optimal Fixed design Optimal Fixed design
design U public

π design U sponsor
π

gS π r α0 U public
π Enrich-

ment
Stratifi-
cation

r α0 U sponsor
π Enrich-

ment
Stratifi-
cation

0.2 0.3 0.34 0.48 0.70 0.40 0.68 1.00 1.00 0.38 0.18 0.38
0.2 0.4 1.00 1.00 0.72 0.34 0.72 1.00 1.00 0.44 0.18 0.44
0.2 0.5 1.00 1.00 0.75 0.30 0.75 1.00 1.00 0.51 0.18 0.51
0.3 0.3 0.31 0.32 0.68 0.52 0.63 0.34 0.48 0.39 0.27 0.39
0.3 0.4 0.30 0.41 0.70 0.46 0.68 1.00 1.00 0.45 0.27 0.45
0.3 0.5 1.00 1.00 0.72 0.41 0.72 1.00 1.00 0.52 0.27 0.52
0.4 0.3 0.26 0.24 0.68 0.61 0.60 0.24 0.40 0.43 0.35 0.40
0.4 0.4 0.31 0.32 0.70 0.55 0.65 0.32 0.46 0.48 0.35 0.47
0.4 0.5 0.30 0.41 0.71 0.51 0.69 0.34 0.48 0.53 0.35 0.53
0.5 0.3 0.18 0.19 0.70 0.68 0.57 0.21 0.26 0.47 0.44 0.42
0.5 0.4 0.26 0.24 0.70 0.63 0.62 0.24 0.34 0.51 0.44 0.48
0.5 0.5 0.31 0.32 0.71 0.59 0.67 0.30 0.41 0.55 0.44 0.54
0.6 0.3 0.00 0.00 0.74 0.74 0.55 0.00 0.00 0.53 0.53 0.43
0.6 0.4 0.18 0.19 0.71 0.70 0.60 0.20 0.24 0.55 0.53 0.49
0.6 0.5 0.26 0.24 0.72 0.66 0.65 0.21 0.34 0.59 0.53 0.55
0.7 0.3 0.00 0.00 0.78 0.78 0.53 0.00 0.00 0.62 0.62 0.45
0.7 0.4 0.00 0.00 0.76 0.76 0.58 0.00 0.00 0.62 0.62 0.50
0.7 0.5 0.12 0.15 0.73 0.73 0.63 0.14 0.20 0.63 0.62 0.56

penalizes efficacy claims for a too large population may be more appropriate. To this end we introduce
a further parameter τ ≤ 1 and define

U public
τ (�) = 1θS,θSC >0

[
gF P�(reject HF ) + gSP�(reject only HS)

]

+ 1θS>0,θSC ≤0

[
τgSP�(reject HF ) + gSP�(reject only HS)

]
. (3)

Setting τ = 1 gives the utility function (2) and implies that claiming efficacy for a too large population
(population F when the treatment is efficacious in S only) is not penalized in the utility function. Setting
τ < 1 the utility function assigns a lower utility to the rejection of HF than HS in the setting where the
treatment is effective in S only. If we assume that the cost to treat a patient in SC (where the treatment
is not efficacious) is equal to the gain to treat a patient in S (where the treatment is efficacious), the
utility assigned to the event that HF is rejected when the treatment is only efficacious in S, is given by
gSλ − gS(1 − λ). This corresponds to τ = 2λ − 1 in (3).

To optimize the trial design for the public health utility function when τ < 1 we extend the adaptive
test by introducing a consistency boundary c such that HF is rejected in the final analysis if the adaptive
closed test rejects HF and additionally pSC ≤ c, where pSC denotes the p-value for the comparison of
means in SC pooled over both stages. Thus, HF can only be rejected if also a minimum efficacy in
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Figure 5 Subsets in the (gS, π )-plane where the enrichment design (light-gray), the adaptive design
(white), and the modified stratification design with optimized consistency bound (dark-gray) show
the largest expected utility for the public health view when optimizing the consistency boundary. The
prevalence is set to 0.3 (panel A), 0.4 (panel B), and 0.5 (panel C) with τ = 2λ − 1. For comparison,
the dashed lines give the corresponding area boundaries for τ = 1 and the testing procedure without
consistency boundary, that is, the corresponding areas in Fig. 3, first row.

SC is observed. For a given prior, prevalence, and parameters gs and τ we optimized the consistency
boundary c together with α0 and r to maximize the utility function (3). We determined the optimal
design parameters by simulating the expected utility over a grid of the parameters c, α0, and r ranging
from 0 to 1 in steps of 0.01. Figure 5 shows that for τ = 2λ − 1 the set of priors π and gains gS where
the enrichment design is best is larger and the set where the stratification design is best is smaller
compared to the case τ = 1. Table 2 gives the optimal adaptive designs and its normalized utilities
compared to the enrichment and the stratification design for several values of gains gS and priors π .
Note that the adaptive design with r = 1 and α0 = 1 corresponds to a stratified design where HF is
rejected only if the p-value of the test of SC is lower than c. Such modified stratification designs are
included in the dark-gray area in Fig. 5.

4 Discussion

In this manuscript we considered the problem of designing a clinical trial in the setting where only a
subgroup of patients may benefit from a treatment. To compare different design options we propose
to quantify the achieved gains resulting from the different outcomes of a trial by utility functions.
Then, different trial designs can be compared with regard to the expected utility. While the considered
clinical trials designs are based on frequentist hypothesis tests, the evaluation of the expected utility of
the trials follows a Bayesian approach, assuming a prior distribution on the efficacy parameters.

Quantifying the expected utility of different trial designs is a complex task. In general, the utility will
depend on the outcome of the clinical trial as well as external factors and will differ between different
stakeholders as companies, patients, and society. The utility functions considered in this paper cover
important basic factors that determine the utility and give a transparent framework that allows to
understand the impact of key parameters on the utilities of different clinical trial designs. To include
additional factors into the model, the utility functions can be extended in several ways. A generalization
is to allow the utility functions to depend on the effect sizes. For the public health view the actual
effect sizes are most relevant, while for the sponsor view, the observed effect sizes as considered in
Posch and Bauer (2013) may be more important. We also made the simplifying assumption that the
cost of the trial is proportional to the total sample size, such that by comparing designs with the same
total sample size, the costs need not be explicitly included in the utility function to compare different
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Table 2 Optimal design parameters r, α0, and c, the corresponding normalized utility as well as the
normalized utility of the enrichment and the stratification design for the modified public health view
utility with τ = 2λ − 1 for several values of the gain gS and the prior π . The prevalence was set to
λ = 0.3.

Optimal design Fixed design U public
π

gS π r α0 c U public
π Enrichment Stratification

0.2 0.3 0.39 0.34 0.11 0.66 0.40 0.64
0.2 0.4 0.44 0.41 0.14 0.69 0.34 0.69
0.2 0.5 1.00 1.00 0.18 0.73 0.30 0.73
0.3 0.3 0.30 0.28 0.08 0.65 0.52 0.59
0.3 0.4 0.37 0.33 0.10 0.67 0.46 0.64
0.3 0.5 0.41 0.40 0.14 0.69 0.41 0.69
0.4 0.3 0.23 0.20 0.06 0.66 0.61 0.55
0.4 0.4 0.28 0.29 0.08 0.67 0.55 0.61
0.4 0.5 0.34 0.33 0.10 0.69 0.51 0.66
0.5 0.3 0.00 0.00 0.00 0.68 0.68 0.52
0.5 0.4 0.23 0.20 0.07 0.68 0.63 0.58
0.5 0.5 0.28 0.27 0.08 0.69 0.59 0.64
0.6 0.3 0.00 0.00 0.00 0.74 0.74 0.51
0.6 0.4 0.00 0.00 0.00 0.70 0.70 0.56
0.6 0.5 0.21 0.20 0.07 0.70 0.66 0.61
0.7 0.3 0.00 0.00 0.00 0.78 0.78 0.49
0.7 0.4 0.00 0.00 0.00 0.76 0.76 0.54
0.7 0.5 0.00 0.00 0.00 0.73 0.73 0.60

design options. Extending the utility function, one could account for situations where the restriction
of the recruitment to a subpopulation increases the costs and duration of a trial and take into account
that more complex clinical trial designs are more costly to implement. Furthermore, while we focused
on simple two point prior distributions, the approach can be easily extended to more complex priors
for the efficacy parameters. Another extension of the proposed approach is to explicitly include costs
for false positive decisions in the utility function. We considered hypotheses testing procedures that
control the type I error rate at a prespecified level (usually 2.5%). Including costs for false positive
decisions, the optimization can be extended to determine optimal significance levels that maximize
expected utility by balancing type I and type II errors leading to a classical Bayesian decision problem.
Such an approach may gain relevance as regulators recently discussed that excessive risk aversion may
not be in the best interest of patients and public health (Eichler et al., 2013) and there is a need to
balance false positive and false negative decisions. Advanced statistical expertise will be required to
implement such methods in regulatory decision making (Bauer and Koenig, 2014).

The optimization results show that the optimal trial design depends sensitively on the weights of
the prior distribution and on the parameters gS, gF that quantify the different gains for rejection of
HS and HF . For the sponsor view utility function, these parameters may be determined by the net
present value of the treatment which depends, among many other factors, on the prevalence of the
population it is marketed to. For example, Beckman et al. (2011) use a Bayesian decision analysis
approach after Phase 2 data are available to decide if the Phase 3 trial should be enriched, stratified
in the full population, adaptive or better not be conducted. They suggest that the actual utilities of
falsely or truly rejecting HS or HF should be determined by the drug development team, and therefore
corresponds to the sponsor view. For the public health view the quantification of the utility of different

C© 2014 The Authors. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. www.biometrical-journal.com



88 A. C. Graf et al.: Adaptive designs optimizing utility functions

outcomes may be measured in overall quality-adjusted life years, or a score that additionally takes the
costs for the treatment into account (Hirth et al., 2000; EMA, 2011).

The comparison of expected utilities suggests that only for specific scenarios adaptive designs can be
more efficient than fixed trial designs. Which design option is more attractive depends on the prevalence
of the disease, the gains assigned to the possible outcomes of the trial and the prior distribution of the
efficacy parameters in the different populations. Especially, only if there is a considerable uncertainty
left regarding a homogeneity of the treatment effect across subpopulation the option to adapt the
study population after an interim analysis can increase the efficiency of the trial.
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