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Summary

Due to the link between microglial morphology and function, morphological changes in microglia

are frequently used to identify pathological immune responses in the central nervous system. In the

absence of pathology, microglia are responsible for maintaining homeostasis, and their morphology

can be indicative of how the healthy brain behaves in the presence of external stimuli and genetic

differences. Despite recent interest in high throughput methods for morphological analysis, Sholl

analysis is still the gold standard for quantifying microglia morphology via imaging data. Often,

the raw data are naturally hierarchical, minimally including many cells per image and many

images per animal. However, existing methods for performing downstream inference on Sholl

data rely on truncating this hierarchy so rudimentary statistical testing procedures can be used.

To fill this longstanding gap, we introduce a fully parametric model-based approach for analyzing
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2 E. D. VonKaenel and others

Sholl data. We generalize our model to a hierarchical Bayesian framework so that inference can

be performed without aggressive reduction of otherwise very rich data. We apply our model to

three real data examples and perform simulation studies comparing the proposed method with a

popular alternative.

Bayesian analysis; Generalized non-linear models; Hierarchical models; Microglia; Sholl analysis.

1. Introduction

It has been shown that microglia are key players in countless brain pathologies including neurode-

generative disorders, traumatic brain injury, and psychiatric diseases (Sierra and others, 2019;

Prinz and others, 2019; Gomez-Nicola and Perry, 2014). As the main immune cells in the central

nervous system, microglia respond to these pathologies in a myriad of ways. Alongside reactive

behavior, microglia may also have a direct impact at the onset of several diseases. For example,

recent genome-wide association studies showed that genes which are risk factors for Alzheimer’s

disease are largely expressed in microglia rather than in other brain cell types (Hemonnot and

others, 2019). Other specific pathologies which involve the microglia include glioma, strokes,

multiple sclerosis, Parkinson’s disease, autism, and schizophrenia (Hambardzumyan and others,

2016; Patel and others, 2013; Long-Smith and others, 2009; Takano, 2015; Monji and others,

2009; Bogie and others, 2014). Further, studies have also linked microglia function to various

lifestyle factors such as stress, diet, and alcohol consumption (Tynan and others, 2010; Johnson,

2014; Marshall and others, 2013).

A primary reactive behavior of microglia is to change their morphological phenotype. Home-

ostatic microglia are ramified cells, characterized by a number of highly branched processes ex-

tending from a central soma. In response to the presence of either pathological or physiological

stimuli, microglia can re-organize these processes to change their number, shape, and distribution,
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resulting in a broad spectrum of morphological phenotypes. Theses morphological changes are a

dynamic process which potentially differ depending on the stimulus, environmental context, and

the stage of the microglial response (Franco and Fernández-Suárez, 2015; Tang and Le, 2015).

While it is challenging to make direct inferences about microglial function based purely on mor-

phological changes (Paolicelli and others, 2022), morphology remains an important indicator of

changes in microglial function in many different physiological and pathological settings.

Though there has been interest in high-throughput methods for analyzing microglial morphol-

ogy (Colombo and others, 2022; Heindl and others, 2018), often studies rely on simple analysis

methods implemented in freely available software, such as Sholl analysis (Sholl, 1953), as a means

to quantify cell morphology. Despite the popularity of Sholl analysis, methods for performing in-

ference on cell morphology using Sholl data are extremely limited. Though Sholl analysis is able

to capture a wide range of morphological changes, current methods struggle to take advantage

of all available information. We aim to fill this gap by proposing novel methods for performing

inference using Sholl data.

In this article, we propose a fundamentally different inference procedure for Sholl data. Specif-

ically, we propose a model based approach using biologically meaningful parameters. We adopt

a hierarchical Bayesian framework, which can easily capture variation at each level of the exper-

imental hierarchy. Further, the model is parameterized so that Sholl curve summaries commonly

used in the literature can be retrieved directly from the model parameters. This allows investi-

gators to perform inference using all of the data available to them and incorporate variation at

each level of the experimental hierarchy.
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2. Methods

2.1 Existing Methods

To perform Sholl analysis, one constructs concentric circles around the soma of a cell, the smallest

containing the soma, and the largest containing the entire process arbor, i.e. the entire cell. Then,

the number of times any process crosses each circle is counted. A Sholl curve (Figure S1 A) is

constructed by plotting the counts for each circle against the corresponding radii.

Currently, some of the most popular morphological analysis methods are based on the analysis

of Sholl curves. Most existing methods involve aggressive data reduction or transformation so that

basic statistical procedures can be used. There are two primary avenues for analyzing these data:

transformation-based and summary-based methods.

Transformation-based methods involve linearizing Sholl curves so that ordinary least squares

can be applied, the most common being the semi-log and log-log methods. For the ith concentric

circle, let xi be the radius, Ai be the area, and yi be the number of intersections. Then the

semi-log regression model is given by log10

(
yi
Ai

)
= −βxi+ εi, where εi ∼ N(0, 1). Similarly, the

log-log model is given by log10

(
yi
Ai

)
= −β log10(xi) + εi, where εi ∼ N(0, 1). The parameter β

is called Sholl’s regression coefficient, which is often interpreted as the decay rate of the number

of branches with distance from the soma (Sholl, 1953; Milosević and Ristanović, 2006).

These linearizations can be quite poor, typically resulting in the transformed Sholl curve

oscillating about the fitted linear curve. Even when the linearization appears reasonable, the

typical oscillation is still apparent (Figure S1 B). Additionally, we commonly have access to

many cell images, often in some nested hierarchical structure induced by experimental design, so

a single linearization technique may not be appropriate for all available data. Even if a model is

reasonably chosen, we are still limiting our analysis of very rich data to a single parameter model.

Another strategy involves reducing the Sholl curve into a summary statistic, which can be
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passed to a hypothesis testing procedure. Some previously proposed Sholl curve summaries are:

• Branch Maximum: the maximum number of crossings across all radii

• Critical Value: the radius at which the maximum number of crossings is observed

• Schoenen Ramification Index: the branch maximum divided by the number of branches

originating at the soma

• Area Under the Curve

• Full Width Half Max: the width of the curve at half the maximum number of crossings

Often, there is some amount of averaging that occurs before these summaries are calculated.

Hierarchical data are collapsed at the subject-level so that each subject only has a single, aggre-

gated Sholl curve. This aggregate curve is typically the point-wise mean of each cell-level curve

associated with that subject. Inference is commonly performed on Sholl curve summaries using

ANOVA so that group differences and interactions can be tested.

2.2 The Sholl Curve Model

We start by specifying our model for a single Sholl curve. Let Z⩾0 and R⩾0 denote the set of

integers and real numbers greater than or equal to 0, respectively. Then a Sholl curve is the pair

(X,Y ), where Y = (y1, . . . , yJ) ∈ ZJ⩾0 are the process crossings corresponding to the concentric

shells of radius X = (x1, . . . , xJ) ∈ RJ⩾0, where x1 < · · · < xJ . The model is then given by:

yi|xi ∼ Poisson(µi)

log(µi) =

{
α1(γ − xi)

2 + τ , for xi < γ

α2(xi − γ)2 + τ , else
(2.1)

where α1, α2 < 0, 0 < γ < xJ , and τ > 0. This is essentially a change-point generalized non-

linear model assuming a Poissonian random component with canonical link function. Intuitively,
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the log transform of Sholl curves are approximately asymmetric quadratics (Figure S2), which we

directly model in the log-mean function. Since Sholl curves are count data, a Poissonian random

component with canonical log link is a natural approach.

Fig. 1. The mean model induced by Equation 2.1 as each parameter varies. A: The growth parameter
α1 controls the behavior of the curve before the change-point. B: The decay parameter α2 controls the
behavior of the curve after the change-point. D: The parameter τ controls the branch maximum of the
fitted curve via eτ . C: The parameter γ controls the critical value, i.e. the change-point, of the fitted
curve.

We think of this model as a combination of a “growth-curve” and a “decay-curve”, which are

separated by the change-point γ. The parameters α1 and α2 control the growth and decay curves,

respectively. The maximum of the fitted curve is given by (γ, eτ ), allowing us to directly estimate

the critical value and branch maximum. We can also retrieve the y-intercept of the estimated

curve as α1γ
2 + τ , which is interpreted as the expected number of processes originating from the

soma. Changes in the mean model as each parameter varies can be seen in Figure 1.

Microglia experiments often contain many images per animal and many cells per image, so a

natural extension of the single curve model is a Bayesian hierarchical framework. We demonstrate

this extension in three hierarchical models which are later applied to real data examples. Though

specifically tailored to our examples, the three models we showcase can be used in many practical
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Fig. 2. Hierarchical structure for model 1. We assume parameters at any level are randomly sampled from
the corresponding distribution in the next highest level. Here, ϕ(∗) denotes the Gaussian distribution, µ
denotes population-level parameters, ω denotes animal-level parameters, ψ denotes image-level parame-
ters, θ denotes cell-level parameters, and Y denotes Sholl curve process crossings. For a given parameter
∗, Σ∗ denotes variance parameters for the corresponding Gaussian. Gaussian priors are truncated via A
and B to enforce the parameter constraints of Equation 2.1.

settings with minor adjustments.

2.3 Model 1

The first model extends the single curve model to a nested hierarchical structure with four levels.

In the applied example, the four levels correspond to population, animal, image, and cell, which

are nested in that order. We assume parameters for each level are independently sampled from

the corresponding distribution in the next highest level. For instance, the model parameters in

Equation 2.1 at the cell level are independently sampled from image-level distributions.

The hierarchical structure of this model is displayed in Figure 2. The population-level pa-

rameters seen in Figure 2 are defined as µ = (µα1
, µα2

, µγ , µτ ). Then for the lth animal, we

define ωl = (ωα1l, ωα2l, ωγl, ωτ,l) and Σω = diag(σ2
ωα1

, σ2
ωα2

, σ2
ωγ , σ

2
ωτ ). Parameters correspond-

ing to the kth image of animal l are defined as ψkl = (ψα1kl, ψα2kl, ψγkl, ψτkl) and Σψ =

diag(σ2
ψα1

, σ2
ψα2

, σ2
ψγ , σ

2
ψτ ). In Figure 2, cell-level parameters for image k of animal l are vec-
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Fig. 3. Hierarchical structure for Model 2. Denote groups in the first categorical variable as either ND or
MD, and the second as either I or C. Notation is consistent with Figure 2 except, for some combination
of groups ∗, ζ∗ denotes group-level parameters, Ω∗ = (ω∗

1 , . . . , ω
∗
L) denotes animal-level parameters, and

Y ∗ = (y1lm, . . . , yNlm) denotes Sholl curve process crossings. Additionally, group combination is indexed
by m and we model group level effects as additive terms b∗ on the mean parameter for group level
distributions.

torized as Θkl = (θ1kl, . . . , θJklkl), so that parameters for cell j in image k of animal l are given

by θjkl = (θα1jkl, θα2jkl, θγjkl, θτjkl) and Σθ = diag(σ2
θα1

, σ2
θα2

, σ2
θγ , σ

2
θτ ). We also vectorize the

Sholl curve process crossings for cells in image k of animal l as Ykl = (y1kl, . . . ,yJklkl), where

yjkl = (y1jkl, . . . , yNjkljkl) denote process crossings for cell j in image k of animal l.

We truncate normal distributions ϕ at each level of the hierarchy according to the parameter

space of Equation 2.1. The lower bound of the parameter space is A = (−∞,−∞, 0, 0) and

the upper bound is B = (0, 0, x̃,∞), where x̃ is the least upper bound on the support of the

Sholl curves. As suggested in Gelman (2006), we assume a half-t prior on all standard deviation

parameters.
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2.4 Model 2

The second model is a truncation of the first, which we apply to Sholl data that has been

aggregated at the animal-level. This model contains population, group, and animal levels, nested

in that order. Notably, we model group and interaction effects for each parameter in Equation 2.1

so that group-level inference can be performed. This model allows for two categorical variables,

each with two groups.

We can see the hierarchical structure of the model in Figure 3. We include effects at the

group level via additive terms on the group level mean parameter. Denoting groups for the first

categorical variable as either ND or MD,

bMD ∼ ϕ(µbMD ,ΣbMD |(−∞,−∞,−µγ ,−µτ ) < bMD < (−µα1 ,−µα2 ,∞,∞), µbMD ,ΣbMD )

is interpreted as a shift in the group mean for group MD. Similarly denoting groups for the second

categorical variable as either I or C,

bC ∼ ϕ(µbC ,ΣbC |(−∞,−∞,−µγ ,−µτ ) < bC < (−µα1 ,−µα2 ,∞,∞), µbC ,ΣbC )

is interpreted as a shift in the group mean for group C. The interaction effect is given by

bMD/C ∼ ϕ(µbMD/C ,ΣbMD/C |AbMD/C < bMD/C < BbMD/C , µbMD/C ,ΣbMD/C )

where

AbMD/C =
(
−∞,−∞,−(µγ + bMD

γ + bCγ ),−(µτ + bMD
τ + bCτ )

)
BbMD/C =

(
− (µα1 + bMD

α1
+ bCα1

),−(µα2 + bMD
α2

+ bCα2
),∞,∞

)
,

which is interpreted as a shift in the group mean for group MD/C.

The bounds on these effects are set to constrain the group level means within (A, B), i.e.

the support of the truncated normal distributions. We assume truncated normal hyper-priors on

mean parameters for each effect, where the truncation is identical to the corresponding effect
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Fig. 4. Hierarchical structure for model 3. As before, all notation is shared with models displayed in

Figures 2.3 and 2.4, except ξ denotes genotype-level parameters. Additionally, bKO denotes the genotype
level effect, bCrush denotes the condition level effect, and bKO/Crush denotes the interaction effect between
condition and genotype. I∗ is an indicator variable equal to 1 for observations in group ∗, and 0 else.

bounds. As before, we assume half-t priors on all standard deviation parameters in the model,

including half-t hyper-priors for the effect standard deviations.

2.5 Model 3

The third model generalizes the second by incorporating cell-level data. Specifically, this model

contains population, genotype, animal, and cell levels in that order. We also show how effects can

be modeled at multiple levels of the hierarchy by including a genotype-level effect, and cell-specific

effects shared across animals.

The full model is shown in Figure 4. At the genotype level, we add an effect for knockout

(KO) as an additive term on the mean parameter for ξKO. Specifically,

ξGeno ∼ ϕ(µ+ IKO · bKO,Σξ|A < ξGeno < B,µ+ IKO · bKO,Σξ)

where

IGeno =

{
1 if Geno = KO

0 if Geno =WT
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The effect is given by

bKO ∼ ϕ(µbKO ,ΣbKO |(−∞,−∞,−µγ ,−µτ ) < bKO < (−µα1
,−µα2

,∞,∞), µbKO ,ΣbKO ).

In our real data example, cell-level curves correspond to either a control eye, or an eye subject

to optical nerve crush injury. Each animal has a crush and control eye, so we model the effect of

condition, and the interaction of condition and genotype at the cell level via

θ
Cond/Geno
jl ∼ ϕ(ωGenol + ICrush · bCrush + IKO/Crush · bKO/Crush,Σθ|

A < θ
Cond/Geno
jl < B,ωGenol , bCrush, bKO/Crush,Σθ,

ξGeno,Σω, µ, b
KO,Σξ)

where

ICrush =

{
1 if Cond = Crush

0 if Cond = Control

and

IKO/Crush =

{
1 if Cond = Crush and Geno = KO

0 else.

The effect of condition is given by

bCrush ∼ ϕ(µbCrush ,ΣbCrush |AbCrush < bCrush < BbCrush , µbCrush ,ΣbCrush)

where

AbCrush =
(
−∞,−∞,−min(Ωγ),−min(Ωτ )

)
BbCrush =

(
−min(Ωα1),−min(Ωα2),∞,∞

)
and Ω∗ = (ωWT

∗,1 , . . . , ω
WT
∗,LWT

, ωKO∗,1 , . . . , ω
KO
∗,LKO

).

The interaction effect is

bKO/Crush ∼ ϕ(µbKO/Crush ,ΣbKO/Crush |AbKO/Crush < bKO/Crush < BbKO/Crush , µbKO/Crush ,ΣbKO/Crush)
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where

AbKO/Crush =

(
−∞,−∞,−

{
min(Ωγ) + bKO/Crushγ

}
,−

{
min(Ωτ ) + bKO/Crushτ

})
BbKO/Crush =

(
−
{
min(Ωα1) + bKO/Crushα1

}
,−

{
min(Ωα2) + bKO/Crushα2

}
,∞,∞

)
.

As before, we assume half-t priors on all standard deviation parameters.

All models were fit using MCMC via rjags (version 4-13).

2.6 Simulation Study

We limit simulation to model 2 (Section 2.4), except we incorporate cell-level data in the model

hierarchy. We simulate data under six scenarios, primarily considering changes for effects on τ

at the group level. Denoting the two grouping variables as either condition or side, the assumed

effects in each scenario are shown in Table 1.

Unless otherwise indicated, all simulation parameters are identical to the baseline scenario. At

baseline, we simulate data using 5 animals per group and 10 cells per animal. For scenario 5, we

double the cells per animal assumed at baseline. The baseline group-level variance parameters are

set as σ2
α1
, σ2
α2

= 0.0000252, σ2
γ = 0.52, and σ2

τ = 0.0252, while baseline variance parameters for all

other levels are set as σ2
α1
, σ2
α2

= 0.00012, σ2
γ = 1, and σ2

τ = 0.052. For scenario 6, we set σ2
τ = 0.25

at the animal-level. Population level parameters are initialized as µ = (−0.002,−0.002, 30, 2) for

each scenario.

To benchmark the proposed method, we first define the posterior probability that some effect

b is less than 0 for simulation run i as Pi(b < 0). Now define

p̂<0 =

∑50
i=1 I{P̂i(b < 0) > 0.95}

50
, (2.2)

which is the proportion of simulation runs where the estimated posterior probability of some

effect b having a negative sign is greater than 0.95. We estimate P̂i(b < 0) as the proportion of
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Effect
Scenario Parameter

Condition Side Interaction

1 α1 0.00 0.00 0.00
α2 0.00 0.00 0.00
γ 0.00 0.00 0.00
τ 0.00 0.00 0.00

2 α1 0.00 0.00 0.00
α2 0.00 0.00 0.00
γ 0.00 0.00 0.00
τ 0.50 0.00 0.00

3 α1 0.00 0.00 0.00
α2 0.00 0.00 0.00
γ 0.00 0.00 0.00
τ 0.00 −0.25 0.00

4 α1 0.00 0.00 0.00
α2 0.00 0.00 0.00
γ 0.00 0.00 0.00
τ 0.50 −0.25 0.50

5 α1 0.00 0.00 0.00
α2 0.00 0.00 0.00
γ 0.00 0.00 0.00
τ 0.50 −0.25 0.50

6 α1 0.00 0.00 0.00
α2 0.00 0.00 0.00
γ 0.00 0.00 0.00
τ 0.50 −0.25 0.50

Table 1. Effects for each simulation scenario. We only consider effects on τ as it’s the most relevant
parameter for the purposes of this article.

MCMC samples for parameter b that fall below 0. We can similarly define Pi(b > 0) and

p̂>0 =

∑50
i=1 I{P̂i(b > 0) > 0.95}

50
. (2.3)

Across simulation runs, we expect p̂<0 (or p̂>0) to approach 1 as the relative strength of a negative

(or positive) effect increases. Similarly, if there is no true effect, we expect both p̂<0 and p̂>0 to

be approximately 0. Similar to the estimated power and FPR in frequentist simulations, p̂<0 and

p̂>0 can be interpreted as the proportion of simulation runs where our decision criteria is met.

Thus, we can add p̂<0 and p̂>0 to measure the probability of a false discovery when there is no

true effect.
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3. Results/Application

3.1 Ungrouped Mouse Dataset

Investigators were interested in being able to assay changes in microglial morphology. To in-

vestigate this, sections of mouse cortical tissue were generated and underwent histology for a

microglia-specific marker. Images of microglia in the primary visual cortex were collected, and

Sholl analysis was performed to assay the number of microglial processes at regular distance

intervals from the cell soma. These data were plotted as Sholl curves to represent the overall

morphological profile of individual microglia. Original analysis detected a range of Sholl curve

profiles at the level of individual cells which were used to generate animal level aggregate Sholl

curves.

Figure 5 shows the fitted curves at each level of the model hierarchy. In this example, we are

primarily interested in the model’s ability to capture the possible range of Sholl curves at any

level of the hierarchy. This desired flexibility is particularly apparent at the cell level, where Sholl

curves can vary greatly within an animal. For example, we see the model has no issues capturing

the curve with abnormally large branch maximum associated with Gazer. There is not much

variation between images within an animal, which isn’t surprising because images are taken of

adjacent areas in the same brain region. The model is able to capture an overall animal level

curve quite well, while also allowing for natural variations between animals.

3.2 MD/ND Dataset

The MD/ND dataset is one part of the data supporting findings from a study interested in

the role of microglia in experience-dependent synaptic plasticity (Sipe and others, 2016). These

data were used to demonstrate that ocular dominance plasticity induces hyper-ramification of

microglia and that this effect is limited to the cortical area undergoing plasticity, which is the
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Fig. 5. Fitted curves at each level of the model hierarchy, obtained with model 1 via MCMC. A: Cell-level
fitted curves for each animal, where color indicates the cell. B: Image-level fitted curves for each animal,
where color indicated image. C: Animal-level fitted curves. D: All cell-level fitted curves displayed in
panel A, superimposed to show the cell-level variation. E: All image-level fitted curves displayed in panel
B, superimposed to show the image-level variation. F: All animal-level fitted curves displayed in panel
C, superimposed to show the animal-level variation.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2023. ; https://doi.org/10.1101/2023.01.23.525256doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.23.525256
http://creativecommons.org/licenses/by-nc/4.0/


16 E. D. VonKaenel and others

Fig. 6. Group-level fitted curves obtained by fitting model 2 to the MD/ND dataset. A: Fitted curves
faceted by group, superimposed over animal level Sholl curves. B: All four facets from panel A, super-
imposed to better show hyper-ramification of the MD/Contra group.

contralateral binocular visual cortex.

To examine whether microglia play a role in the process of experience-dependent synaptic

plasticity, investigators assessed microglial response by assaying changes in microglial morphology

after inducing ocular dominance plasticity. Tissue sections were generated from wildtype mice

that had been monocularly deprived via eyelid suturing for 12 hours. Sections underwent histology

for a microglia-specific marker and images of the binocular primary visual cortex were generated

in both brain hemispheres to include visual areas both contralateral and ipsilateral to the deprived

eye. Sholl analysis was performed on individual microglia. Analysis of these data were performed

by constructing animal level aggregate Sholl curves, and fitting an ANOVA at each radius of the

aggregate curves, which were used to test differences in process crossings between experimental

conditions in both cortical hemispheres.

Though these data originally did contain multiple images and cells per animal, we re-analyze

the truncated data using the proposed method. This allows both an example of how our method

can be used when only animal level data is available, along with easier comparison with the
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Fig. 7. 95% credible intervals for each effect in model 2, fitted to the MD/ND dataset. Credible intervals
are computed as the highest density posterior interval. Credible intervals are superimposed over the
approximate posterior distributions obtained via MCMC. Estimated posterior means are represented by
black dots with point estimates displayed above. The dotted red line is fixed at 0.

P̂ (Effect < 0)
Parameter

Condition Side Interaction

α1 0.41 0.39 0.33
α2 0.49 0.46 0.32
γ 0.60 0.85 0.02
τ 0.68 0.87 0.00

Table 2. Estimated posterior probability of a negative effect for each parameter in the MD/ND model.
Quantities are estimated as the proportion of MCMC samples that fall below 0.

original analysis. These data contain two grouping variables: condition and side. Condition is

either monocular deprivation (MD) or no deprivation (ND), and side is either ipsilateral (I) or

contralateral (C).

The fitted curves are displayed in Figure 6, which, as seen in panel A, do well at capturing the

Sholl curves. In panel B we see the curve for group MD/C is quite large relative to other groups,
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indicating potential hyper-ramification of cells in this group. We show 95% credible intervals for

group and interaction effects in Figure 7. These are superimposed over the approximate posterior

density obtained via MCMC. Most parameters have posterior mass roughly centered at 0, with

the exception of interaction effects on τ and γ. Clearly most of the posterior mass for both these

effects falls above 0, which indicates a positive interaction effect associated with these parameters.

To perform formal inference, we define a cutoff of 0.95, and check if an effect has at least 95%

of its posterior mass either above or below 0. Table 2 shows the estimated posterior probability

each effect is less than 0. We say an effect exists in the positive direction for a parameter if this

estimate is less than 0.05. Conversely, an effect exists in the negative direction if this estimate

is more than 0.95. With respect to this cutoff, we can say a positive interaction effect exists for

both τ and γ, while no other effects succeed in meeting this criteria. Recall the branch maximum

and critical value are given by eτ and γ in our model, respectively. This suggests microglia hyper-

ramification is indeed limited to the contraleteral binocular visual cortex, which agrees with the

original analysis of these data.

3.3 GPNMB Knockout Dataset

Investigators were interested in the effect of the loss of transmembrane glycoprotein NMB (GP-

NMB) on the microglial response to an optic nerve crush (ONC) injury. GPNMB can work to

reduce inflammation and is highly expressed in microglia, so the presence or absence of GPNMB

may influence the role of microglia in the retina following ONC injury. An ONC injury was per-

formed on a pilot cohort of 9 mice. Mice had either wildtype expression of GPNMB or a genetic

knockout. For each animal, crush was performed on one eye and the contralateral eye underwent

a sham injury which served as an inter-animal control. Retinas were collected 7 days after injury.

Retinas were stained for microglia-specific markers and the ganglion cell layer/inner plexiform

layer was imaged using confocal microscopy. Sholl analysis was performed on individual microglia
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Fig. 8. Cell-level fitted curves faceted by animal obtained by fitting model 3 to the GPNMB knockout
dataset. An animal is either wild-type (WT), or has gene GPNMB knocked out (KO). Cells are associated
with either an eye subject to optical nerve crush injury, or control. Each animal has both a crush eye
and a control eye.

and, similar to above, analysis was performed by constructing animal level aggregate Sholl curves.

An ANOVA with repeated measures was conducted on both the branch maximum and critical

value to test the differences between genotype, condition, and interaction. Results of this analysis

are shown in Table 3.

Cell-level fitted curves, separated by animal are displayed in Figure 8. Figure 9 shows 95%

credible intervals for effects on genotype, condition, and interaction, superimposed over approx-

imate posterior distributions. As with the MD/ND example, we report the estimated posterior

probability each effect is less than 0 in Table 4. Using an 0.95 cutoff as before, we see the proposed

method and two-way ANOVA detected similar effects on the branch maximum, while the pro-

posed method also detects genotype and interaction effects on the critical value. Additionally, our

method offers increased granularity when differences between curves are not obvious. Unlike the
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Fig. 9. 95% credible intervals for each effect in model 3, fitted to the GPNMB knockout dataset. Credible
intervals are computed as the highest density posterior interval. Credible intervals are superimposed over
the approximate posterior distributions obtained via MCMC. Estimated posterior means are represented
by black dots with point estimates displayed above. The dotted red line is fixed at 0.

MD/ND example, visual differences between fitted curves in Figure 8 are not limited to these two

summaries. Using our method, we are able to quantify these differences by leveraging α1 and α2,

rather than only relying on the curve maximum. Specifically, we detect a negative condition effect

on α1, meaning crush curves have steeper growth states than control curves. Though we only

report effects here, we also have the option to investigate parameters, associated variance terms,

and combinations of parameters (such as the y-intercept) at each level of the model hierarchy,

providing a rich toolbox for investigating subtle curve differences.
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Response Effect nDF dDF F p-value

Branch Maximum Genotype 1 5 14.05 0.01
Condition 1 5 34.62 0.00
Interaction 1 5 10.89 0.02

Critical Value Genotype 1 5 2.66 0.16
Condition 1 5 14.12 0.01
Interaction 1 5 0.23 0.65

Table 3. Two-way ANOVA with repeated measures fit to the branch maximum and critical value of the
truncated GPNMB knockout data

P̂ (Effect < 0)
Parameter

Condition Genotype Interaction

α1 1.00 0.02 0.44
α2 0.89 0.32 0.40
γ 1.00 0.00 1.00
τ 0.93 0.01 1.00

Table 4. Estimated posterior probability of a negative effect for each parameter in the GPNMB knockout
model. Quantities are estimated as the proportion of MCMC samples that fall below 0.

4. Simulation Study

We compare the proposed method to the existing ANOVA based method discussed in Section

2.1 via simulation study. We narrow the scope of simulation to model 2 (Section 2.4), i.e. the

simplest model with effects, but we include an additional level of hierarchy for cell-level data.

The simulated data is truncated at the animal level in order to apply ANOVA, while the full

data is used in the proposed model.

We simulate data under the assumed hierarchical structure of the proposed model. We only

consider effects on τ since the critical value is both a popular summary metric and the most

relevant parameter to the examples we discussed in Section 3. Data are simulated under six

scenarios: 1) baseline scenario with no effects, 2) moderate positive marginal effect, 3) small

negative marginal effect, 4) both effects in the previous two scenarios with moderate positive

interaction effect, 5) identical to scenario 4 except twice as many cells per animal, 6) identical to

scenario 4 except with large animal-level variance.

50 datasets are simulated for each scenario, and both models are fit to each dataset. Details

regarding the MCMC sampling procedure and diagnostics are included in the Supplementary
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Method

Proposed ANOVA

Condition Side Interaction Condition Side Interaction
Scenario Parameter

p̂<0 p̂>0 p̂<0 p̂>0 p̂<0 p̂>0 Power FPR Power FPR Power FPR

1 α1 0.04 0.00 0.00 0.02 0.00 0.00 –– –– –– –– –– ––
α2 0.02 0.02 0.06 0.02 0.00 0.00 –– –– –– –– –– ––
γ 0.04 0.08 0.02 0.02 0.04 0.00 –– 0.06 –– 0.06 –– 0.06
τ 0.10 0.02 0.08 0.06 0.04 0.14 –– 0.12 –– 0.12 –– 0.16

2 α1 0.00 0.02 0.00 0.00 0.00 0.00 –– –– –– –– –– ––
α2 0.02 0.02 0.02 0.00 0.00 0.00 –– –– –– –– –– ––
γ 0.04 0.02 0.02 0.00 0.00 0.00 –– 0.06 –– 0.08 –– 0.06
τ 0.00 1.00 0.04 0.08 0.08 0.06 1.00 –– –– 0.18 –– 0.14

3 α1 0.02 0.00 0.00 0.02 0.00 0.00 –– –– –– –– –– ––
α2 0.02 0.02 0.00 0.00 0.00 0.00 –– –– –– –– –– ––
γ 0.02 0.08 0.00 0.04 0.00 0.02 –– 0.04 –– 0.10 –– 0.04
τ 0.04 0.18 0.92 0.00 0.10 0.06 –– 0.22 0.94 –– –– 0.18

4 α1 0.00 0.02 0.00 0.00 0.00 0.02 –– –– –– –– –– ––
α2 0.02 0.00 0.00 0.00 0.00 0.00 –– –– –– –– –– ––
γ 0.00 0.02 0.00 0.02 0.02 0.02 –– 0.02 –– 0.08 –– 0.00
τ 0.00 1.00 0.80 0.00 0.00 1.00 1.00 –– 0.56 –– 0.98 ––

5 α1 0.02 0.00 0.00 0.00 0.00 0.00 –– –– –– –– –– ––
α2 0.02 0.00 0.00 0.02 0.00 0.00 –– –– –– –– –– ––
γ 0.02 0.02 0.00 0.08 0.00 0.02 –– 0.06 –– 0.02 –– 0.12
τ 0.00 1.00 0.94 0.00 0.00 1.00 1.00 –– 0.34 –– 0.94 ––

6 α1 0.00 0.00 0.00 0.00 0.00 0.00 –– –– –– –– –– ––
α2 0.00 0.04 0.02 0.02 0.00 0.00 –– –– –– –– –– ––
γ 0.02 0.08 0.00 0.08 0.04 0.02 –– 0.06 –– 0.02 –– 0.12
τ 0.00 0.96 0.38 0.00 0.00 0.72 1.00 –– 0.14 –– 0.44 ––

Table 5. Estimated type-I error rate (FPR) and power for ANOVA, compared with p̂<0 and p̂>0 for the
proposed model under each simulation scenario. Power and FPR for the ANOVA model are estimated at
the 0.05 level of significance. p̂<0 and p̂>0 for the proposed model are computed via Equations 2.2 and
2.3. Dashes fill cells where there is no relevant quantity.

Materials. In Table 5, we report the frequentist power and FPR estimates for the ANOVA at the

0.05 level. Also reported in Table 5 are p̂<0 and p̂>0 for the proposed method.

In scenario 1, when there is no true effect, both methods perform comparably. For the proposed

method, when the larger true effect exists for condition and/or interaction, p̂>0 is almost always

1. For the smaller effect on side, we see slightly smaller values for p̂<0, which are approximately

0.92 and 0.80 in scenarios 3 and 4, respectively. In scenario 5, when cells per animal is increased,

we see p̂<0 for side increase to 0.94. Our method seems to struggle when variance terms are large

relative to the effect size. Specifically, in scenario 6, we see p̂<0 for side and p̂>0 for interaction

dip to 0.38 and 0.72, respectively. In contrast, the ANOVA based method, while fully powered

in some scenarios, struggles when more effects and data are introduced. This is apparent in
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scenario 4, where ANOVA struggles to detect the side effect in the presence of both condition

and interaction effects. Additionally, when the cells per animal is increased in scenario 5, we

actually see a decrease in power to detect the side effect relative to scenario 4. In scenario 6,

ANOVA reports a power of 0.14 for detecting the side effect, which is not much larger than the

FPR of 0.12 when no effect is present. Overall, the proposed method performs favorably across

scenarios when true effects are present, while, at worse, performing comparably to ANOVA at

controlling the false discovery rate.

5. Discussion

Sholl analysis is still the gold standard for morphological analysis in the microglia community. We

propose a model for directly modeling Sholl curves, filling a long existing gap in the morphological

inference pipeline. We generalize this model to a hierarchical Bayesian framework which naturally

captures the nested structure of microglia imaging datasets. We apply our model in three real

data examples and compare the proposed model to the analysis method previously applied to

these data via simulation study.

Our applied examples showcase the flexibility of our method in capturing the myriad of

shapes Sholl curves can take. We also demonstrate our model’s ability to capture relevant effects,

potentially existing at multiple levels of the hierarchy. In our simulation study, we show the

proposed method performs well when true effects are present, while being comparable to the

competing method at controlling false discovery. In comparison, the ANOVA based method can

be fully powered when a large enough effect exists but can become problematic as more data

below the level of truncation is made available, in the presence of many true effects, or when the

effect size is too small.

Our method can have some trouble sampling α1 and associate effects. Often we see low effective

sample size relative to other parameters, along with difficulty getting chains to converge. That
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latter is reflected in both the Rhat and the approximate posterior for α1 effects in Figure 9. This

could be alleviated by re-parameterizing the model. Instead of modeling the growth curve with α1,

we can instead model the y-intercept directly. This may even be the preferred parameterization if

estimating the number of processes originating from the soma is of interest. Our simulation study

was also limited to effects on τ , leaving the door open for more rigorous study of other model

parameters. Work can be done to relax assumptions on variance terms in the model, i.e. allowing

for more than one shared variance parameter at each level of the hierarchy. Additionally, there

are two primary ways this model can be further generalized: allowing for a negative binomial

random component and including nonlinear parameters κ1 and κ2 in the mean model via

logµi =

{
α1(γ − xi)

κ1 + τ , for xi < γ

α2(xi − γ)κ2 + τ , else

for κ1, κ2 > 1. The former relaxes the mean-variance relationship of the Poisson model, while the

latter allows more flexible characterization of the growth and decay states.

In summary, we believe Sholl based morphological analyses can greatly benefit from model-

based methods which utilize all available data. Though the applied examples in this paper are

limited to microglia, Sholl analysis is also a common method for quantifying the morphology of

other cells, particularly neurons. We predict that our method is flexible enough to adequately

capture the Sholl curve of other cell types, though modifications should be made to the specific

model hierarchy to match the experimental design. We developed this method as a step toward

more rigorous morphological analysis when Sholl analysis is the preferred method to quantify

cell morphology. We anticipate that the proposed methodology will lead to improved analysis of

microglial images by uncovering the changes in morphology that are most predictive of alterations

in microglial function.
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6. Supplementary Materials

The reader is referred to the online Supplementary Materials for technical appendices and anno-

tated R code.
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Supplementary Material

Fig. S1. A: Aggregate Sholl curves from either the ipsilateral or contralateral side of mice subject to
either monocular deprivation (MD) or control (ND). B: The semi-log model fit to the Sholl curves
displayed in panel A. Notice how the transformed data oscillates about the fitted curve despite the
linearization appearing adequate. Additionally, there appears to be mild heteroskedasticity near the tail
of the transformed data. C: The log-log method fit to the Sholl curves displayed in panel A. The tail of
the transformed curves drops quickly, suggesting this model may be more suited for Sholl curves with
longer tails.
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Fig. S2. Cell-level log-transformed Sholl curves are displayed for the ungrouped animal dataset, where each
facet corresponds to a difference animal. Our proposed model (Equation 2.1) fits a piece-wise parabola
to the log-mean process crossings, which captures the structure of the data directly.
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S0.1 MCMC Sampling Procedures

S0.1.1 Ungrouped Mouse Dataset We sample from the posterior using the JAGS implementa-

tion of MCMC, running 4 chains in parallel. For each chain, we we allow the sampler to adapt

for 5000 iterations, followed by a 50000 iteration burn-in. The sampler is then run for 150000

iterations. Autocorrelation is alleviated by thinning, keeping a sample every 50 iterations.

S0.1.2 MD/ND Dataset For each of 4 chains, we adapted a JAGS sampler for 5000 iterations,

followed by a 50000 iteration burn in before running the sampler for 150000 iterations. Auto-

correlation is alleviated by thinning, keeping a sample every 50 iterations.

S0.1.3 GPNMB Knockout Dataset As before, the model is fit using a JAGS sampler and 4

chains, each of which are adapted with 10000 iterations. A burn-in of 250000 iterations was

performed before obtaining 500000 samples. Auto-correlation is alleviated by thinning, keeping

a sample every 50 iterations.

S0.1.4 Simulation Study For each dataset, we simulate a seed for each of 4 chains which are all

run in parallel. Then for each chain, a JAGS sampler was adapted for 5000 iterations, followed

by a burn in of 15000 and 20000 iterations. Auto-correlation is alleviated by thinning, keeping a

sample every 20 iterations.
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S0.2 Simulation Diagnostics

Parameter Min 1st Qu. Mean Median 3rd Qu. Max

α1 1.00 1.01 1.02 1.02 1.03 1.11
α2 1.00 1.00 1.01 1.01 1.01 1.10
γ 1.00 1.00 1.01 1.01 1.01 1.05
τ 1.00 1.00 1.00 1.00 1.00 1.01

Table S1. Summary of R-hat at the cell-level for simulation scenario 1. Due to the number of cell level
parameters, the reported summaries are taken across the 50 simulation runs AND all cell-level parameters.

Parameter Min 1st Qu. Mean Median 3rd Qu. Max

α1 1.00 1.02 1.03 1.02 1.04 1.13
α2 1.00 1.01 1.02 1.01 1.02 1.11
γ 1.00 1.01 1.01 1.01 1.02 1.06
τ 1.00 1.00 1.00 1.00 1.00 1.01

Table S2. Summary of R-hat at the animal-level for simulation scenario 1. Due to the number of animal
level parameters, the reported summaries are taken across the 50 simulation runs AND all animal-level
parameters.
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Parameter Min 1st Qu. Mean Median 3rd Qu. Max

bCond
α1

1.00 1.02 1.03 1.03 1.05 1.10

α
ND/Ipsi
1 1.01 1.03 1.04 1.04 1.06 1.13

α
ND/Contra
1 1.01 1.02 1.04 1.03 1.05 1.14

α
MD/Ipsi
1 1.00 1.02 1.03 1.02 1.03 1.09

α
MD/Contra
1 1.00 1.01 1.02 1.02 1.03 1.07

bIntα1
1.00 1.01 1.02 1.02 1.02 1.06

αPop
1 1.01 1.03 1.04 1.04 1.05 1.13

σAnimal
α1

1.00 1.01 1.03 1.02 1.04 1.12
σCell
α1

1.01 1.03 1.06 1.06 1.08 1.13
σGroup
α1

1.00 1.00 1.00 1.00 1.00 1.01

bSideα1
1.01 1.01 1.02 1.02 1.03 1.06

bCond
α2

1.00 1.01 1.02 1.01 1.02 1.04

α
ND/Ipsi
2 1.01 1.02 1.03 1.02 1.03 1.09

α
ND/Contra
2 1.00 1.01 1.02 1.02 1.03 1.05

α
MD/Ipsi
2 1.00 1.01 1.01 1.01 1.02 1.06

α
MD/Contra
2 1.00 1.01 1.02 1.01 1.02 1.06
bIntα2

1.00 1.00 1.01 1.01 1.01 1.03

αPop
2 1.01 1.01 1.02 1.02 1.03 1.07

σAnimal
α2

1.00 1.00 1.01 1.01 1.02 1.04
σCell
α2

1.00 1.01 1.04 1.03 1.05 1.20

σGroup
α2

1.00 1.00 1.00 1.00 1.00 1.01
bSideα2

1.00 1.01 1.01 1.01 1.02 1.04
bCond
γ 1.00 1.00 1.01 1.01 1.01 1.02

γND/Ipsi 1.00 1.01 1.02 1.01 1.02 1.05
γND/Contra 1.00 1.01 1.01 1.01 1.02 1.04

γMD/Ipsi 1.00 1.00 1.01 1.01 1.01 1.03
γMD/Contra 1.00 1.00 1.01 1.01 1.01 1.03

bIntγ 1.00 1.00 1.00 1.00 1.01 1.01
γPop 1.00 1.01 1.01 1.01 1.01 1.02
σAnimal
γ 1.00 1.00 1.01 1.00 1.01 1.03

σCell
γ 1.00 1.00 1.00 1.00 1.01 1.02

σGroup
γ 1.00 1.00 1.00 1.00 1.00 1.01
bSideγ 1.00 1.00 1.01 1.01 1.01 1.02
bCond
τ 1.00 1.01 1.01 1.01 1.01 1.02

τND/Ipsi 1.00 1.00 1.01 1.01 1.01 1.02

τND/Contra 1.00 1.00 1.00 1.00 1.00 1.01
τMD/Ipsi 1.00 1.00 1.00 1.00 1.00 1.01
τMD/Contra 1.00 1.00 1.00 1.00 1.00 1.00

bIntτ 1.00 1.01 1.01 1.01 1.01 1.03
τPop 1.00 1.00 1.01 1.01 1.01 1.02

σAnimal
τ 1.00 1.00 1.00 1.00 1.00 1.00
σCell
τ 1.00 1.00 1.00 1.00 1.00 1.00

σGroup
τ 1.00 1.00 1.00 1.00 1.00 1.00
bSideτ 1.00 1.01 1.01 1.01 1.01 1.03

Table S3. Summary of R-hat for other model parameters in simulation scenario 1. The reported summaries
are taken across the 50 simulation runs.
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Parameter Min 1st Qu. Mean Median 3rd Qu. Max

α1 24.47 152.43 303.09 228.72 375.43 2057.37
α2 27.82 327.22 746.28 589.48 1009.41 3227.31
γ 64.01 533.65 760.42 706.77 940.37 2263.53
τ 1086.32 3215.64 3435.31 3489.82 3725.82 4306.63

Table S4. Summary of the effective sample size for parameters at the cell-level in simulation scenario 1.
Due to the number of cell level parameters, the reported summaries are taken across the 50 simulation
runs AND all cell-level parameters.

Parameter Min 1st Qu. Mean Median 3rd Qu. Max

α1 21.42 100.24 171.70 149.67 217.71 640.26
α2 28.86 193.07 381.97 312.29 505.21 1480.60
γ 51.03 238.88 349.68 315.86 425.71 1065.84
τ 846.68 2554.64 2892.98 2962.69 3263.67 4073.51

Table S5. Summary of the effective sample size for parameters at the animal-level in simulation scenario 1.
Due to the number of animal level parameters, the reported summaries are taken across the 50 simulation
runs AND all animal-level parameters.
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Parameter Min 1st Qu. Mean Median 3rd Qu. Max

bCond
α1

30.36 92.68 153.25 137.12 207.91 326.10

α
ND/Ipsi
1 27.44 72.08 105.16 106.70 124.92 236.36

α
ND/Contra
1 18.90 70.34 125.05 120.73 167.46 373.09

α
MD/Ipsi
1 36.36 107.48 164.40 163.32 214.01 331.17

α
MD/Contra
1 53.22 129.36 187.72 157.42 230.31 443.92

bIntα1
55.00 180.80 258.47 253.87 323.75 435.86

αPop
1 28.15 77.88 112.33 112.26 135.53 246.47

σAnimal
α1

31.32 105.96 180.50 145.66 268.44 546.59
σCell
α1

20.08 41.20 76.09 62.55 85.71 359.72
σGroup
α1

940.53 1489.37 1644.45 1668.24 1835.09 2081.27

bSideα1
74.50 112.19 173.45 157.44 210.78 386.38

bCond
α2

109.46 203.18 292.18 307.11 357.13 498.25

α
ND/Ipsi
2 50.02 143.46 198.67 208.35 255.55 423.05

α
ND/Contra
2 71.25 141.62 250.45 241.85 323.27 607.22

α
MD/Ipsi
2 62.92 240.01 353.68 352.90 473.58 659.49

α
MD/Contra
2 42.78 193.61 380.22 370.17 489.70 996.91
bIntα2

210.36 349.21 448.51 466.80 525.13 689.20

αPop
2 70.67 163.80 216.93 225.57 284.88 410.54

σAnimal
α2

120.77 220.75 572.29 456.28 710.64 2151.51
σCell
α2

16.35 66.67 248.81 113.74 221.95 1692.43

σGroup
α2

1321.57 1729.02 1874.20 1913.14 2050.86 2241.40
bSideα2

94.39 257.54 322.23 331.74 387.66 489.65
bCond
γ 380.61 601.90 695.17 712.28 782.51 980.35

γND/Ipsi 78.53 235.25 314.35 278.56 350.89 718.05
γND/Contra 127.14 234.59 369.67 324.78 412.52 1179.35

γMD/Ipsi 93.26 387.59 553.52 521.22 708.32 1065.30
γMD/Contra 119.14 358.88 551.01 499.26 662.54 1380.03

bIntγ 427.20 709.38 807.87 798.69 908.77 1159.57
γPop 267.44 429.95 527.31 516.78 624.33 845.27
σAnimal
γ 140.23 857.51 1430.95 1476.07 1937.88 3168.76

σCell
γ 253.25 707.66 1240.74 1078.97 1754.37 2698.75

σGroup
γ 437.41 1207.59 1328.12 1343.09 1496.96 1815.15
bSideγ 332.11 618.00 688.15 691.01 790.79 971.68
bCond
τ 269.34 412.90 504.69 515.66 578.18 917.00

τND/Ipsi 344.12 524.08 669.66 649.05 793.81 1193.15

τND/Contra 738.08 1050.53 1201.07 1232.81 1361.07 1600.93
τMD/Ipsi 841.92 1080.25 1250.18 1247.70 1407.17 2017.91
τMD/Contra 1320.92 1680.06 1850.21 1822.81 1989.66 2569.23

bIntτ 242.10 400.82 482.58 482.73 568.19 746.59
τPop 291.34 426.01 547.14 522.29 658.94 952.19

σAnimal
τ 2225.78 2792.01 2947.24 3000.07 3138.19 3458.27
σCell
τ 3190.68 3652.78 3819.74 3878.85 4006.02 4248.74

σGroup
τ 1108.64 1505.31 1642.92 1647.56 1831.31 2018.81
bSideτ 242.09 421.41 502.22 493.95 597.24 839.97

Table S6. Summary of the effective sample size for parameters at the animal-level in simulation scenario
1. The reported summaries are taken across the 50 simulation runs.
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Parameter Min 1st Qu. Mean Median 3rd Qu. Max

α1 1.00 1.01 1.02 1.02 1.03 1.11
α2 1.00 1.00 1.01 1.01 1.01 1.10
γ 1.00 1.00 1.01 1.01 1.01 1.05
τ 1.00 1.00 1.00 1.00 1.00 1.01

Table S7. Summary of R-hat at the cell-level for simulation scenario 2. Due to the number of cell level
parameters, the reported summaries are taken across the 50 simulation runs AND all cell-level parameters.

Parameter Min 1st Qu. Mean Median 3rd Qu. Max

α1 1.00 1.02 1.03 1.02 1.04 1.13
α2 1.00 1.01 1.02 1.01 1.02 1.11
γ 1.00 1.01 1.01 1.01 1.02 1.06
τ 1.00 1.00 1.00 1.00 1.00 1.01

Table S8. Summary of R-hat at the animal-level for simulation scenario 2. Due to the number of animal
level parameters, the reported summaries are taken across the 50 simulation runs AND all animal-level
parameters.
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Parameter Min 1st Qu. Mean Median 3rd Qu. Max

bCond
α1

1.00 1.02 1.03 1.03 1.05 1.10

α
ND/Ipsi
1 1.01 1.03 1.04 1.04 1.06 1.13

α
ND/Contra
1 1.01 1.02 1.04 1.03 1.05 1.14

α
MD/Ipsi
1 1.00 1.02 1.03 1.02 1.03 1.09

α
MD/Contra
1 1.00 1.01 1.02 1.02 1.03 1.07

bIntα1
1.00 1.01 1.02 1.02 1.02 1.06

αPop
1 1.01 1.03 1.04 1.04 1.05 1.13

σAnimal
α1

1.00 1.01 1.03 1.02 1.04 1.12
σCell
α1

1.01 1.03 1.06 1.06 1.08 1.13
σGroup
α1

1.00 1.00 1.00 1.00 1.00 1.01

bSideα1
1.01 1.01 1.02 1.02 1.03 1.06

bCond
α2

1.00 1.01 1.02 1.01 1.02 1.04

α
ND/Ipsi
2 1.01 1.02 1.03 1.02 1.03 1.09

α
ND/Contra
2 1.00 1.01 1.02 1.02 1.03 1.05

α
MD/Ipsi
2 1.00 1.01 1.01 1.01 1.02 1.06

α
MD/Contra
2 1.00 1.01 1.02 1.01 1.02 1.06
bIntα2

1.00 1.00 1.01 1.01 1.01 1.03

αPop
2 1.01 1.01 1.02 1.02 1.03 1.07

σAnimal
α2

1.00 1.00 1.01 1.01 1.02 1.04
σCell
α2

1.00 1.01 1.04 1.03 1.05 1.20

σGroup
α2

1.00 1.00 1.00 1.00 1.00 1.01
bSideα2

1.00 1.01 1.01 1.01 1.02 1.04
bCond
γ 1.00 1.00 1.01 1.01 1.01 1.02

γND/Ipsi 1.00 1.01 1.02 1.01 1.02 1.05
γND/Contra 1.00 1.01 1.01 1.01 1.02 1.04

γMD/Ipsi 1.00 1.00 1.01 1.01 1.01 1.03
γMD/Contra 1.00 1.00 1.01 1.01 1.01 1.03

bIntγ 1.00 1.00 1.00 1.00 1.01 1.01
γPop 1.00 1.01 1.01 1.01 1.01 1.02
σAnimal
γ 1.00 1.00 1.01 1.00 1.01 1.03

σCell
γ 1.00 1.00 1.00 1.00 1.01 1.02

σGroup
γ 1.00 1.00 1.00 1.00 1.00 1.01
bSideγ 1.00 1.00 1.01 1.01 1.01 1.02
bCond
τ 1.00 1.01 1.01 1.01 1.01 1.02

τND/Ipsi 1.00 1.00 1.01 1.01 1.01 1.02

τND/Contra 1.00 1.00 1.00 1.00 1.00 1.01
τMD/Ipsi 1.00 1.00 1.00 1.00 1.00 1.01
τMD/Contra 1.00 1.00 1.00 1.00 1.00 1.00

bIntτ 1.00 1.01 1.01 1.01 1.01 1.03
τPop 1.00 1.00 1.01 1.01 1.01 1.02

σAnimal
τ 1.00 1.00 1.00 1.00 1.00 1.00
σCell
τ 1.00 1.00 1.00 1.00 1.00 1.00

σGroup
τ 1.00 1.00 1.00 1.00 1.00 1.00
bSideτ 1.00 1.01 1.01 1.01 1.01 1.03

Table S9. Summary of R-hat for other model parameters in simulation scenario 2. The reported summaries
are taken across the 50 simulation runs.
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Parameter Min 1st Qu. Mean Median 3rd Qu. Max

α1 24.47 152.43 303.09 228.72 375.43 2057.37
α2 27.82 327.22 746.28 589.48 1009.41 3227.31
γ 64.01 533.65 760.42 706.77 940.37 2263.53
τ 1086.32 3215.64 3435.31 3489.82 3725.82 4306.63

Table S10. Summary of the effective sample size for parameters at the cell-level in simulation scenario 2.
Due to the number of cell level parameters, the reported summaries are taken across the 50 simulation
runs AND all cell-level parameters.

Parameter Min 1st Qu. Mean Median 3rd Qu. Max

α1 21.42 100.24 171.70 149.67 217.71 640.26
α2 28.86 193.07 381.97 312.29 505.21 1480.60
γ 51.03 238.88 349.68 315.86 425.71 1065.84
τ 846.68 2554.64 2892.98 2962.69 3263.67 4073.51

Table S11. Summary of the effective sample size for parameters at the animal-level in simulation scenario
2. Due to the number of animal level parameters, the reported summaries are taken across the 50
simulation runs AND all animal-level parameters.
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40 REFERENCES

Parameter Min 1st Qu. Mean Median 3rd Qu. Max

bCond
α1

30.36 92.68 153.25 137.12 207.91 326.10

α
ND/Ipsi
1 27.44 72.08 105.16 106.70 124.92 236.36

α
ND/Contra
1 18.90 70.34 125.05 120.73 167.46 373.09

α
MD/Ipsi
1 36.36 107.48 164.40 163.32 214.01 331.17

α
MD/Contra
1 53.22 129.36 187.72 157.42 230.31 443.92

bIntα1
55.00 180.80 258.47 253.87 323.75 435.86

αPop
1 28.15 77.88 112.33 112.26 135.53 246.47

σAnimal
α1

31.32 105.96 180.50 145.66 268.44 546.59
σCell
α1

20.08 41.20 76.09 62.55 85.71 359.72
σGroup
α1

940.53 1489.37 1644.45 1668.24 1835.09 2081.27

bSideα1
74.50 112.19 173.45 157.44 210.78 386.38

bCond
α2

109.46 203.18 292.18 307.11 357.13 498.25

α
ND/Ipsi
2 50.02 143.46 198.67 208.35 255.55 423.05

α
ND/Contra
2 71.25 141.62 250.45 241.85 323.27 607.22

α
MD/Ipsi
2 62.92 240.01 353.68 352.90 473.58 659.49

α
MD/Contra
2 42.78 193.61 380.22 370.17 489.70 996.91
bIntα2

210.36 349.21 448.51 466.80 525.13 689.20

αPop
2 70.67 163.80 216.93 225.57 284.88 410.54

σAnimal
α2

120.77 220.75 572.29 456.28 710.64 2151.51
σCell
α2

16.35 66.67 248.81 113.74 221.95 1692.43

σGroup
α2

1321.57 1729.02 1874.20 1913.14 2050.86 2241.40
bSideα2

94.39 257.54 322.23 331.74 387.66 489.65
bCond
γ 380.61 601.90 695.17 712.28 782.51 980.35

γND/Ipsi 78.53 235.25 314.35 278.56 350.89 718.05
γND/Contra 127.14 234.59 369.67 324.78 412.52 1179.35

γMD/Ipsi 93.26 387.59 553.52 521.22 708.32 1065.30
γMD/Contra 119.14 358.88 551.01 499.26 662.54 1380.03

bIntγ 427.20 709.38 807.87 798.69 908.77 1159.57
γPop 267.44 429.95 527.31 516.78 624.33 845.27
σAnimal
γ 140.23 857.51 1430.95 1476.07 1937.88 3168.76

σCell
γ 253.25 707.66 1240.74 1078.97 1754.37 2698.75

σGroup
γ 437.41 1207.59 1328.12 1343.09 1496.96 1815.15
bSideγ 332.11 618.00 688.15 691.01 790.79 971.68
bCond
τ 269.34 412.90 504.69 515.66 578.18 917.00

τND/Ipsi 344.12 524.08 669.66 649.05 793.81 1193.15

τND/Contra 738.08 1050.53 1201.07 1232.81 1361.07 1600.93
τMD/Ipsi 841.92 1080.25 1250.18 1247.70 1407.17 2017.91
τMD/Contra 1320.92 1680.06 1850.21 1822.81 1989.66 2569.23

bIntτ 242.10 400.82 482.58 482.73 568.19 746.59
τPop 291.34 426.01 547.14 522.29 658.94 952.19

σAnimal
τ 2225.78 2792.01 2947.24 3000.07 3138.19 3458.27
σCell
τ 3190.68 3652.78 3819.74 3878.85 4006.02 4248.74

σGroup
τ 1108.64 1505.31 1642.92 1647.56 1831.31 2018.81
bSideτ 242.09 421.41 502.22 493.95 597.24 839.97

Table S12. Summary of the effective sample size for parameters at the animal-level in simulation scenario
2. The reported summaries are taken across the 50 simulation runs.
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Parameter Min 1st Qu. Mean Median 3rd Qu. Max

α1 1.00 1.01 1.04 1.02 1.04 1.69
α2 1.00 1.01 1.03 1.01 1.03 1.61
γ 1.00 1.00 1.02 1.01 1.01 1.56
τ 1.00 1.00 1.01 1.00 1.00 1.54

Table S13. Summary of R-hat at the cell-level for simulation scenario 3. Due to the number of cell
level parameters, the reported summaries are taken across the 50 simulation runs AND all cell-level
parameters.

Parameter Min 1st Qu. Mean Median 3rd Qu. Max

α1 1.00 1.02 1.05 1.03 1.05 1.71
α2 1.00 1.01 1.04 1.02 1.04 1.62
γ 1.00 1.01 1.03 1.02 1.03 1.59
τ 1.00 1.00 1.01 1.00 1.00 1.55

Table S14. Summary of R-hat at the animal-level for simulation scenario 3. Due to the number of animal
level parameters, the reported summaries are taken across the 50 simulation runs AND all animal-level
parameters.
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Parameter Min 1st Qu. Mean Median 3rd Qu. Max

bCond
α1

1.01 1.02 1.03 1.03 1.04 1.10

α
ND/Ipsi
1 1.02 1.03 1.06 1.04 1.06 1.62

α
ND/Contra
1 1.01 1.03 1.06 1.04 1.06 1.61

α
MD/Ipsi
1 1.01 1.02 1.05 1.03 1.06 1.63

α
MD/Contra
1 1.01 1.03 1.06 1.04 1.07 1.71

bIntα1
1.00 1.01 1.02 1.02 1.03 1.10

αPop
1 1.02 1.02 1.05 1.04 1.05 1.61

σAnimal
α1

1.00 1.02 1.04 1.03 1.06 1.19
σCell
α1

1.01 1.04 1.09 1.07 1.11 1.50
σGroup
α1

1.00 1.00 1.00 1.00 1.00 1.01

bSideα1
1.01 1.02 1.03 1.03 1.04 1.08

bCond
α2

1.00 1.01 1.02 1.01 1.02 1.08

α
ND/Ipsi
2 1.00 1.02 1.04 1.03 1.04 1.55

α
ND/Contra
2 1.01 1.02 1.04 1.03 1.04 1.56

α
MD/Ipsi
2 1.00 1.01 1.04 1.02 1.03 1.55

α
MD/Contra
2 1.00 1.02 1.04 1.03 1.04 1.61
bIntα2

1.00 1.01 1.02 1.01 1.02 1.15

αPop
2 1.00 1.02 1.04 1.02 1.03 1.55

σAnimal
α2

1.00 1.01 1.03 1.02 1.03 1.24
σCell
α2

1.00 1.02 1.07 1.05 1.10 1.31

σGroup
α2

1.00 1.00 1.00 1.00 1.00 1.01
bSideα2

1.00 1.01 1.02 1.02 1.03 1.15
bCond
γ 1.00 1.00 1.01 1.01 1.01 1.02

γND/Ipsi 1.00 1.01 1.03 1.01 1.02 1.55
γND/Contra 1.00 1.01 1.03 1.02 1.03 1.54

γMD/Ipsi 1.00 1.01 1.03 1.01 1.02 1.54
γMD/Contra 1.00 1.01 1.03 1.02 1.03 1.60

bIntγ 1.00 1.00 1.01 1.01 1.01 1.02
γPop 1.00 1.01 1.02 1.01 1.01 1.53
σAnimal
γ 1.00 1.00 1.01 1.00 1.01 1.03

σCell
γ 1.00 1.00 1.01 1.01 1.01 1.25

σGroup
γ 1.00 1.00 1.00 1.00 1.00 1.01
bSideγ 1.00 1.00 1.01 1.01 1.01 1.02
bCond
τ 1.00 1.00 1.01 1.01 1.01 1.03

τND/Ipsi 1.00 1.00 1.02 1.00 1.01 1.54

τND/Contra 1.00 1.00 1.01 1.00 1.00 1.53
τMD/Ipsi 1.00 1.00 1.01 1.00 1.00 1.53
τMD/Contra 1.00 1.00 1.01 1.00 1.00 1.53

bIntτ 1.00 1.00 1.01 1.01 1.01 1.02
τPop 1.00 1.00 1.02 1.01 1.01 1.53

σAnimal
τ 1.00 1.00 1.00 1.00 1.00 1.01
σCell
τ 1.00 1.00 1.00 1.00 1.00 1.01

σGroup
τ 1.00 1.00 1.00 1.00 1.00 1.01
bSideτ 1.00 1.00 1.01 1.01 1.01 1.02

Table S15. Summary of R-hat for other model parameters in simulation scenario 3. The reported sum-
maries are taken across the 50 simulation runs.
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REFERENCES 43

Parameter Min 1st Qu. Mean Median 3rd Qu. Max

α1 6.37 105.14 266.43 179.50 333.79 1996.41
α2 6.77 175.76 475.21 329.11 664.90 2544.24
γ 6.98 324.76 554.77 494.92 729.60 2052.84
τ 7.09 3051.74 3258.37 3371.76 3634.91 4343.75

Table S16. Summary of the effective sample size for parameters at the cell-level in simulation scenario 3.
Due to the number of cell level parameters, the reported summaries are taken across the 50 simulation
runs AND all cell-level parameters.

Parameter Min 1st Qu. Mean Median 3rd Qu. Max

α1 6.31 74.13 134.93 118.40 173.72 453.28
α2 6.77 114.65 218.24 184.71 298.38 668.99
γ 6.84 135.80 238.85 210.60 302.29 826.14
τ 7.05 2132.71 2488.94 2538.66 2931.25 4042.59

Table S17. Summary of the effective sample size for parameters at the animal-level in simulation scenario
3. Due to the number of animal level parameters, the reported summaries are taken across the 50
simulation runs AND all animal-level parameters.
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44 REFERENCES

Parameter Min 1st Qu. Mean Median 3rd Qu. Max

bCond
α1

31.04 92.73 153.92 161.76 212.65 281.61

α
ND/Ipsi
1 6.73 56.52 102.19 96.29 132.79 233.45

α
ND/Contra
1 6.84 61.80 99.40 87.01 130.48 203.24

α
MD/Ipsi
1 6.88 67.86 122.50 124.95 154.13 298.08

α
MD/Contra
1 6.37 52.92 95.09 83.29 125.51 246.80

bIntα1
51.05 144.16 197.91 187.39 243.57 516.20

αPop
1 6.84 62.29 107.10 105.07 137.97 245.43

σAnimal
α1

17.44 65.91 154.00 128.62 198.65 509.31
σCell
α1

7.87 32.77 60.88 50.20 82.40 166.76
σGroup
α1

740.27 1581.38 1694.44 1724.93 1850.43 2063.79

bSideα1
44.42 95.87 140.75 145.11 177.61 240.60

bCond
α2

45.23 191.75 265.06 251.12 346.87 532.47

α
ND/Ipsi
2 7.24 115.71 166.25 159.10 215.88 357.42

α
ND/Contra
2 7.12 107.58 172.50 155.55 225.90 407.53

α
MD/Ipsi
2 7.07 127.17 196.45 174.31 273.59 444.71

α
MD/Contra
2 6.88 105.23 160.45 142.54 205.65 368.04
bIntα2

19.03 231.75 317.62 327.18 383.75 536.61

αPop
2 7.21 132.62 183.76 181.75 245.69 370.27

σAnimal
α2

12.89 138.24 314.98 268.23 460.51 998.17
σCell
α2

11.13 45.17 141.55 78.23 179.03 714.92

σGroup
α2

1339.78 1738.93 1856.44 1865.71 2024.53 2227.03
bSideα2

18.63 180.41 245.35 254.30 306.26 406.24
bCond
γ 299.72 552.90 669.84 637.19 793.57 1135.51

γND/Ipsi 7.14 170.36 305.08 295.77 424.26 716.68
γND/Contra 7.15 140.78 257.54 231.93 341.84 768.40

γMD/Ipsi 7.21 206.00 327.74 289.32 424.09 773.41
γMD/Contra 6.82 157.19 229.59 204.39 289.71 620.36

bIntγ 415.71 612.89 705.10 716.91 816.42 1068.36
γPop 7.23 406.73 510.00 507.27 612.18 992.78
σAnimal
γ 91.82 423.66 1076.68 857.35 1495.07 3066.69

σCell
γ 11.74 558.06 880.76 787.26 1076.20 3325.31

σGroup
γ 841.15 1199.09 1348.37 1350.29 1492.69 1692.14
bSideγ 251.02 488.17 593.15 591.14 687.93 978.95
bCond
τ 262.67 415.95 523.44 517.90 617.07 814.72

τND/Ipsi 7.19 545.86 672.43 654.53 812.59 1054.68

τND/Contra 7.25 1018.42 1175.38 1170.70 1322.25 1850.04
τMD/Ipsi 7.22 1052.61 1216.44 1280.48 1419.59 1729.18
τMD/Contra 7.23 1526.34 1630.46 1638.73 1811.07 2146.61

bIntτ 289.40 422.75 501.08 492.16 590.48 706.62
τPop 7.38 452.55 551.84 515.18 668.62 818.51

σAnimal
τ 2259.42 2663.99 2845.03 2873.41 3007.70 3561.13
σCell
τ 2926.08 3426.54 3678.84 3791.55 3948.19 4306.71

σGroup
τ 966.21 1505.71 1646.89 1648.96 1775.15 2036.35
bSideτ 313.18 430.21 527.54 507.12 607.66 809.99

Table S18. Summary of the effective sample size for parameters at the animal-level in simulation scenario
3. The reported summaries are taken across the 50 simulation runs.
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Parameter Min 1st Qu. Mean Median 3rd Qu. Max

α1 1.00 1.01 1.04 1.02 1.03 1.68
α2 1.00 1.00 1.02 1.01 1.01 1.55
γ 1.00 1.00 1.02 1.01 1.01 1.59
τ 1.00 1.00 1.01 1.00 1.00 1.56

Table S19. Summary of R-hat at the cell-level for simulation scenario 4. Due to the number of cell
level parameters, the reported summaries are taken across the 50 simulation runs AND all cell-level
parameters.

Parameter Min 1st Qu. Mean Median 3rd Qu. Max

α1 1.00 1.02 1.06 1.03 1.05 1.69
α2 1.00 1.01 1.03 1.01 1.02 1.58
γ 1.00 1.01 1.03 1.01 1.02 1.61
τ 1.00 1.00 1.01 1.00 1.00 1.57

Table S20. Summary of R-hat at the animal-level for simulation scenario 4. Due to the number of animal
level parameters, the reported summaries are taken across the 50 simulation runs AND all animal-level
parameters.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2023. ; https://doi.org/10.1101/2023.01.23.525256doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.23.525256
http://creativecommons.org/licenses/by-nc/4.0/


46 REFERENCES

Parameter Min 1st Qu. Mean Median 3rd Qu. Max

bCond
α1

1.00 1.02 1.04 1.03 1.04 1.22

α
ND/Ipsi
1 1.01 1.03 1.07 1.04 1.07 1.63

α
ND/Contra
1 1.01 1.03 1.07 1.05 1.06 1.69

α
MD/Ipsi
1 1.00 1.02 1.06 1.04 1.04 1.62

α
MD/Contra
1 1.00 1.01 1.05 1.02 1.04 1.62

bIntα1
1.00 1.01 1.03 1.02 1.03 1.14

αPop
1 1.01 1.03 1.07 1.04 1.06 1.63

σAnimal
α1

1.00 1.01 1.04 1.03 1.05 1.35
σCell
α1

1.01 1.04 1.09 1.06 1.11 1.61
σGroup
α1

1.00 1.00 1.00 1.00 1.00 1.01

bSideα1
1.01 1.02 1.04 1.03 1.04 1.20

bCond
α2

1.00 1.01 1.02 1.01 1.02 1.08

α
ND/Ipsi
2 1.00 1.01 1.04 1.02 1.03 1.55

α
ND/Contra
2 1.01 1.01 1.03 1.02 1.03 1.59

α
MD/Ipsi
2 1.00 1.01 1.03 1.01 1.02 1.58

α
MD/Contra
2 1.00 1.01 1.02 1.01 1.02 1.58
bIntα2

1.00 1.01 1.01 1.01 1.01 1.03

αPop
2 1.01 1.01 1.03 1.02 1.03 1.55

σAnimal
α2

1.00 1.00 1.01 1.01 1.01 1.07
σCell
α2

1.00 1.01 1.05 1.03 1.04 1.42

σGroup
α2

1.00 1.00 1.00 1.00 1.00 1.01
bSideα2

1.00 1.01 1.02 1.02 1.02 1.08
bCond
γ 1.00 1.00 1.01 1.01 1.01 1.02

γND/Ipsi 1.00 1.01 1.03 1.01 1.02 1.55
γND/Contra 1.01 1.01 1.03 1.02 1.02 1.56

γMD/Ipsi 1.00 1.01 1.02 1.01 1.02 1.57
γMD/Contra 1.00 1.00 1.02 1.01 1.01 1.57

bIntγ 1.00 1.00 1.01 1.00 1.01 1.02
γPop 1.00 1.00 1.02 1.01 1.01 1.45
σAnimal
γ 1.00 1.00 1.00 1.00 1.01 1.05

σCell
γ 1.00 1.00 1.01 1.00 1.00 1.15

σGroup
γ 1.00 1.00 1.00 1.00 1.00 1.01
bSideγ 1.00 1.00 1.01 1.01 1.01 1.02
bCond
τ 1.00 1.00 1.01 1.01 1.01 1.06

τND/Ipsi 1.00 1.00 1.02 1.00 1.01 1.54

τND/Contra 1.00 1.00 1.01 1.00 1.00 1.54
τMD/Ipsi 1.00 1.00 1.01 1.00 1.00 1.53
τMD/Contra 1.00 1.00 1.01 1.00 1.00 1.53

bIntτ 1.00 1.00 1.01 1.01 1.01 1.02
τPop 1.00 1.00 1.02 1.01 1.01 1.53

σAnimal
τ 1.00 1.00 1.00 1.00 1.00 1.01
σCell
τ 1.00 1.00 1.00 1.00 1.00 1.02

σGroup
τ 1.00 1.00 1.00 1.00 1.00 1.01
bSideτ 1.00 1.00 1.01 1.01 1.01 1.02

Table S21. Summary of R-hat for other model parameters in simulation scenario 4. The reported sum-
maries are taken across the 50 simulation runs.
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Parameter Min 1st Qu. Mean Median 3rd Qu. Max

α1 6.39 129.23 298.57 220.21 382.89 1920.85
α2 6.99 328.06 691.34 594.05 930.17 3319.50
γ 6.78 504.60 754.90 716.64 963.59 2528.36
τ 6.93 3224.80 3359.88 3506.84 3730.98 4269.48

Table S22. Summary of the effective sample size for parameters at the cell-level in simulation scenario 4.
Due to the number of cell level parameters, the reported summaries are taken across the 50 simulation
runs AND all cell-level parameters.

Parameter Min 1st Qu. Mean Median 3rd Qu. Max

α1 6.36 84.80 168.81 134.60 217.33 924.15
α2 6.84 187.53 355.42 299.74 467.53 1383.16
γ 6.67 207.65 354.89 319.81 471.83 1412.78
τ 6.92 2514.09 2860.24 2969.69 3336.94 4098.29

Table S23. Summary of the effective sample size for parameters at the animal-level in simulation scenario
4. Due to the number of animal level parameters, the reported summaries are taken across the 50
simulation runs AND all animal-level parameters.
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Parameter Min 1st Qu. Mean Median 3rd Qu. Max

bCond
α1

13.73 107.46 138.25 124.13 169.95 324.67

α
ND/Ipsi
1 6.69 54.76 97.01 86.48 126.76 318.23

α
ND/Contra
1 6.50 53.05 96.78 88.42 127.19 312.64

α
MD/Ipsi
1 6.74 88.40 143.19 128.62 168.01 343.02

α
MD/Contra
1 6.62 115.83 201.50 177.40 276.74 592.24

bIntα1
21.38 137.17 238.65 206.02 352.03 533.52

αPop
1 6.73 64.05 102.76 97.30 133.88 321.19

σAnimal
α1

9.82 94.07 164.69 148.49 203.18 469.37
σCell
α1

6.97 28.60 66.16 57.50 89.09 186.35
σGroup
α1

354.16 1604.74 1670.73 1696.49 1835.69 2262.50

bSideα1
15.49 90.53 137.96 132.38 187.79 278.32

bCond
α2

47.37 216.52 306.15 308.51 383.52 540.17

α
ND/Ipsi
2 7.22 125.54 186.18 173.64 237.77 452.14

α
ND/Contra
2 6.83 136.35 214.19 202.05 278.13 484.84

α
MD/Ipsi
2 6.96 194.06 317.61 310.87 426.64 706.98

α
MD/Contra
2 6.92 270.81 416.65 419.40 532.95 886.18
bIntα2

184.94 374.80 426.95 444.27 482.56 585.61

αPop
2 7.20 143.35 200.52 182.56 247.98 431.26

σAnimal
α2

56.06 273.63 518.34 398.96 663.91 1733.68
σCell
α2

8.41 93.70 194.60 137.40 255.22 1004.30

σGroup
α2

1214.99 1758.51 1892.83 1913.84 2067.42 2272.51
bSideα2

47.46 211.22 278.68 284.53 339.88 451.60
bCond
γ 249.47 612.57 726.87 756.37 841.56 1104.59

γND/Ipsi 7.07 169.18 323.77 308.66 428.32 805.23
γND/Contra 7.03 184.08 281.35 273.61 387.42 587.35

γMD/Ipsi 6.95 310.21 504.86 495.69 682.32 990.06
γMD/Contra 6.91 433.55 696.39 715.78 920.70 1514.73

bIntγ 420.73 745.58 821.19 834.52 911.00 1215.32
γPop 9.96 455.99 564.99 583.60 681.91 1051.80
σAnimal
γ 66.31 610.21 1405.77 1250.02 2012.18 3220.44

σCell
γ 18.66 804.56 1309.23 1219.47 1800.88 2625.33

σGroup
γ 420.79 1166.12 1321.96 1359.90 1458.38 1674.98
bSideγ 371.02 594.77 679.73 695.62 772.25 898.75
bCond
τ 53.30 448.86 537.37 530.69 627.02 889.12

τND/Ipsi 7.17 596.61 702.40 701.15 828.54 1034.23

τND/Contra 7.13 1027.05 1157.35 1188.00 1321.60 1637.24
τMD/Ipsi 7.20 1106.01 1259.14 1290.20 1447.72 1934.01
τMD/Contra 7.18 1694.14 1874.93 1893.98 2088.55 2683.78

bIntτ 257.26 450.02 514.09 512.42 573.26 872.70
τPop 7.32 503.59 579.73 584.22 662.55 970.81

σAnimal
τ 1285.37 2671.51 2899.62 3002.78 3172.64 3603.70
σCell
τ 293.48 3667.94 3724.89 3863.88 3962.55 4241.13

σGroup
τ 841.01 1542.26 1626.42 1677.08 1727.69 2125.28
bSideτ 279.52 466.03 540.77 529.54 602.19 990.05

Table S24. Summary of the effective sample size for parameters at the animal-level in simulation scenario
4. The reported summaries are taken across the 50 simulation runs.
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REFERENCES 49

Parameter Min 1st Qu. Mean Median 3rd Qu. Max

α1 1.00 1.01 1.03 1.02 1.03 1.27
α2 1.00 1.00 1.01 1.00 1.01 1.14
γ 1.00 1.00 1.01 1.00 1.01 1.06
τ 1.00 1.00 1.00 1.00 1.00 1.01

Table S25. Summary of R-hat at the cell-level for simulation scenario 5. Due to the number of cell
level parameters, the reported summaries are taken across the 50 simulation runs AND all cell-level
parameters.

Parameter Min 1st Qu. Mean Median 3rd Qu. Max

α1 1.00 1.01 1.04 1.02 1.05 1.28
α2 1.00 1.00 1.02 1.01 1.02 1.16
γ 1.00 1.01 1.02 1.01 1.02 1.13
τ 1.00 1.00 1.00 1.00 1.00 1.02

Table S26. Summary of R-hat at the animal-level for simulation scenario 5. Due to the number of animal
level parameters, the reported summaries are taken across the 50 simulation runs AND all animal-level
parameters.
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50 REFERENCES

Parameter Min 1st Qu. Mean Median 3rd Qu. Max

bCond
α1

1.01 1.01 1.03 1.02 1.04 1.13

α
ND/Ipsi
1 1.01 1.02 1.04 1.04 1.06 1.22

α
ND/Contra
1 1.00 1.02 1.03 1.03 1.05 1.09

α
MD/Ipsi
1 1.00 1.01 1.02 1.02 1.04 1.08

α
MD/Contra
1 1.00 1.01 1.02 1.01 1.03 1.15

bIntα1
1.00 1.01 1.02 1.01 1.02 1.07

αPop
1 1.01 1.02 1.04 1.03 1.05 1.17

σAnimal
α1

1.00 1.01 1.04 1.03 1.06 1.11
σCell
α1

1.01 1.04 1.11 1.07 1.14 1.49
σGroup
α1

1.00 1.00 1.00 1.00 1.00 1.00

bSideα1
1.00 1.01 1.03 1.02 1.03 1.09

bCond
α2

1.00 1.01 1.01 1.01 1.02 1.03

α
ND/Ipsi
2 1.00 1.01 1.02 1.02 1.02 1.05

α
ND/Contra
2 1.00 1.01 1.02 1.01 1.02 1.06

α
MD/Ipsi
2 1.00 1.00 1.01 1.01 1.01 1.06

α
MD/Contra
2 1.00 1.00 1.01 1.01 1.01 1.05
bIntα2

1.00 1.00 1.01 1.01 1.01 1.04

αPop
2 1.00 1.01 1.02 1.01 1.02 1.05

σAnimal
α2

1.00 1.00 1.01 1.01 1.02 1.09
σCell
α2

1.00 1.01 1.04 1.02 1.04 1.35

σGroup
α2

1.00 1.00 1.00 1.00 1.00 1.01
bSideα2

1.00 1.01 1.01 1.01 1.01 1.06
bCond
γ 1.00 1.00 1.01 1.00 1.01 1.02

γND/Ipsi 1.00 1.01 1.01 1.01 1.01 1.07
γND/Contra 1.00 1.01 1.01 1.01 1.01 1.04

γMD/Ipsi 1.00 1.00 1.01 1.00 1.01 1.05
γMD/Contra 1.00 1.00 1.01 1.00 1.01 1.02

bIntγ 1.00 1.00 1.00 1.00 1.01 1.01
γPop 1.00 1.00 1.01 1.01 1.01 1.02
σAnimal
γ 1.00 1.00 1.00 1.00 1.00 1.05

σCell
γ 1.00 1.00 1.01 1.00 1.01 1.03

σGroup
γ 1.00 1.00 1.00 1.00 1.00 1.01
bSideγ 1.00 1.00 1.01 1.01 1.01 1.02
bCond
τ 1.00 1.00 1.01 1.01 1.01 1.02

τND/Ipsi 1.00 1.00 1.01 1.01 1.01 1.01

τND/Contra 1.00 1.00 1.00 1.00 1.00 1.01
τMD/Ipsi 1.00 1.00 1.00 1.00 1.00 1.01
τMD/Contra 1.00 1.00 1.00 1.00 1.00 1.01

bIntτ 1.00 1.01 1.01 1.01 1.01 1.02
τPop 1.00 1.00 1.01 1.01 1.01 1.02

σAnimal
τ 1.00 1.00 1.00 1.00 1.00 1.00
σCell
τ 1.00 1.00 1.00 1.00 1.00 1.00

σGroup
τ 1.00 1.00 1.00 1.00 1.00 1.01
bSideτ 1.00 1.00 1.01 1.01 1.01 1.02

Table S27. Summary of R-hat for other model parameters in simulation scenario 5. The reported sum-
maries are taken across the 50 simulation runs.
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REFERENCES 51

Parameter Min 1st Qu. Mean Median 3rd Qu. Max

α1 11.11 141.74 486.34 288.16 700.77 3040.43
α2 19.97 599.73 1189.70 1142.90 1671.86 3681.30
γ 45.02 789.45 1226.08 1181.48 1612.85 3428.68
τ 1567.24 3514.99 3672.27 3727.87 3880.35 4455.70

Table S28. Summary of the effective sample size for parameters at the cell-level in simulation scenario 5.
Due to the number of cell level parameters, the reported summaries are taken across the 50 simulation
runs AND all cell-level parameters.

Parameter Min 1st Qu. Mean Median 3rd Qu. Max

α1 11.06 86.95 236.03 161.30 317.53 1155.84
α2 17.95 254.59 495.23 429.68 658.39 1840.49
γ 20.70 213.24 426.90 356.55 578.78 1567.86
τ 350.33 2526.58 2937.82 3059.34 3418.69 4166.47

Table S29. Summary of the effective sample size for parameters at the animal-level in simulation scenario
5. Due to the number of animal level parameters, the reported summaries are taken across the 50
simulation runs AND all animal-level parameters.
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52 REFERENCES

Parameter Min 1st Qu. Mean Median 3rd Qu. Max

bCond
α1

23.18 125.65 203.19 202.32 263.52 402.33

α
ND/Ipsi
1 13.43 72.46 137.74 121.47 184.10 347.49

α
ND/Contra
1 34.69 78.59 147.84 108.67 198.97 401.84

α
MD/Ipsi
1 34.41 125.95 250.45 191.29 384.72 585.66

α
MD/Contra
1 18.85 145.88 345.77 314.36 524.86 852.61

bIntα1
43.44 193.55 281.90 257.71 382.08 512.53

αPop
1 16.91 80.64 148.77 141.36 196.19 337.95

σAnimal
α1

30.37 69.44 194.78 124.57 264.28 895.44
σCell
α1

7.54 21.46 58.59 44.04 76.93 230.73
σGroup
α1

1319.43 1604.99 1811.73 1844.29 1995.51 2227.34

bSideα1
29.84 124.36 188.55 173.24 245.59 372.63

bCond
α2

158.75 355.62 425.69 436.31 515.89 693.78

α
ND/Ipsi
2 77.27 225.50 291.30 290.62 352.53 564.00

α
ND/Contra
2 65.43 214.22 323.12 292.25 430.71 720.41

α
MD/Ipsi
2 50.47 405.94 551.76 557.13 722.05 917.75

α
MD/Contra
2 117.61 394.74 747.40 781.88 954.30 1400.75
bIntα2

88.47 411.93 514.89 537.17 632.05 758.80

αPop
2 84.37 268.84 317.45 318.23 378.46 553.41

σAnimal
α2

45.76 325.91 824.76 706.90 1211.46 2143.54
σCell
α2

9.58 90.80 323.01 229.30 483.31 1180.71

σGroup
α2

1204.00 1776.92 1863.16 1870.35 1986.50 2369.23
bSideα2

81.85 333.23 398.50 410.52 467.46 613.45
bCond
γ 334.90 788.00 870.64 863.58 954.65 1226.48

γND/Ipsi 55.49 364.98 517.55 538.08 660.03 897.76
γND/Contra 101.96 326.58 470.39 414.83 629.24 966.70

γMD/Ipsi 61.12 656.85 943.16 955.02 1212.40 1780.35
γMD/Contra 249.89 772.73 1232.94 1230.98 1693.06 2338.29

bIntγ 631.33 819.93 910.47 877.19 991.38 1322.61
γPop 289.40 653.96 741.87 749.81 862.88 1144.89
σAnimal
γ 56.32 998.19 1662.90 1604.86 2270.71 3608.87

σCell
γ 168.66 887.25 1186.96 1042.13 1638.01 2360.48

σGroup
γ 680.91 1234.93 1333.33 1394.07 1449.62 1648.20
bSideγ 458.61 677.21 788.29 800.51 875.40 1188.63
bCond
τ 279.97 437.19 495.61 483.05 567.75 739.55

τND/Ipsi 334.12 574.20 654.96 657.88 774.18 1009.51

τND/Contra 737.52 1055.29 1206.50 1183.87 1363.23 1811.29
τMD/Ipsi 696.82 1055.96 1245.21 1253.99 1439.23 1726.87
τMD/Contra 1119.65 1638.32 1853.95 1840.55 2108.02 2584.36

bIntτ 249.26 411.73 467.26 456.19 514.13 751.31
τPop 308.66 468.08 538.37 534.21 600.73 826.37

σAnimal
τ 2186.10 2868.69 2974.29 3007.48 3170.68 3493.24
σCell
τ 3290.10 3735.85 3841.18 3888.10 4022.97 4175.15

σGroup
τ 872.80 1475.21 1624.84 1656.30 1785.26 1989.23
bSideτ 255.68 439.53 498.22 486.54 555.06 830.31

Table S30. Summary of the effective sample size for parameters at the animal-level in simulation scenario
5. The reported summaries are taken across the 50 simulation runs.
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REFERENCES 53

Parameter Min 1st Qu. Mean Median 3rd Qu. Max

α1 1.00 1.01 1.04 1.02 1.03 1.69
α2 1.00 1.00 1.02 1.01 1.01 1.59
γ 1.00 1.00 1.02 1.01 1.01 1.56
τ 1.00 1.00 1.01 1.00 1.00 1.53

Table S31. Summary of R-hat at the cell-level for simulation scenario 6. Due to the number of cell
level parameters, the reported summaries are taken across the 50 simulation runs AND all cell-level
parameters.

Parameter Min 1st Qu. Mean Median 3rd Qu. Max

α1 1.00 1.01 1.05 1.03 1.04 1.70
α2 1.00 1.01 1.03 1.01 1.02 1.61
γ 1.00 1.01 1.03 1.01 1.02 1.60
τ 1.00 1.00 1.03 1.00 1.00 1.59

Table S32. Summary of R-hat at the animal-level for simulation scenario 6. Due to the number of animal
level parameters, the reported summaries are taken across the 50 simulation runs AND all animal-level
parameters.
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54 REFERENCES

Parameter Min 1st Qu. Mean Median 3rd Qu. Max

bCond
α1

1.00 1.02 1.04 1.03 1.05 1.38

α
ND/Ipsi
1 1.01 1.02 1.07 1.04 1.06 1.73

α
ND/Contra
1 1.00 1.03 1.07 1.04 1.06 1.62

α
MD/Ipsi
1 1.00 1.02 1.05 1.03 1.05 1.61

α
MD/Contra
1 1.01 1.01 1.05 1.02 1.04 1.60

bIntα1
1.00 1.01 1.03 1.02 1.03 1.18

αPop
1 1.01 1.02 1.06 1.04 1.06 1.64

σAnimal
α1

1.00 1.02 1.04 1.03 1.04 1.55
σCell
α1

1.01 1.03 1.07 1.05 1.08 1.62
σGroup
α1

1.00 1.00 1.00 1.00 1.00 1.02

bSideα1
1.00 1.02 1.04 1.03 1.04 1.24

bCond
α2

1.00 1.01 1.02 1.02 1.02 1.06

α
ND/Ipsi
2 1.00 1.01 1.04 1.02 1.03 1.60

α
ND/Contra
2 1.00 1.01 1.04 1.02 1.03 1.61

α
MD/Ipsi
2 1.00 1.01 1.03 1.01 1.02 1.55

α
MD/Contra
2 1.00 1.01 1.03 1.01 1.02 1.54
bIntα2

1.00 1.01 1.01 1.01 1.01 1.02

αPop
2 1.01 1.01 1.04 1.02 1.03 1.59

σAnimal
α2

1.00 1.00 1.01 1.01 1.02 1.08
σCell
α2

1.00 1.01 1.04 1.02 1.06 1.31

σGroup
α2

1.00 1.00 1.00 1.00 1.00 1.01
bSideα2

1.00 1.01 1.02 1.01 1.02 1.09
bCond
γ 1.00 1.00 1.01 1.01 1.01 1.03

γND/Ipsi 1.00 1.01 1.03 1.01 1.02 1.60
γND/Contra 1.00 1.01 1.03 1.02 1.02 1.57

γMD/Ipsi 1.00 1.00 1.02 1.01 1.01 1.54
γMD/Contra 1.00 1.00 1.02 1.01 1.01 1.53

bIntγ 1.00 1.00 1.01 1.01 1.01 1.02
γPop 1.00 1.01 1.02 1.01 1.01 1.55
σAnimal
γ 1.00 1.00 1.00 1.00 1.00 1.03

σCell
γ 1.00 1.00 1.01 1.00 1.01 1.20

σGroup
γ 1.00 1.00 1.00 1.00 1.00 1.01
bSideγ 1.00 1.00 1.01 1.01 1.01 1.03
bCond
τ 1.00 1.01 1.04 1.02 1.03 1.57

τND/Ipsi 1.00 1.01 1.04 1.02 1.02 1.53

τND/Contra 1.00 1.00 1.04 1.01 1.01 1.53
τMD/Ipsi 1.00 1.00 1.04 1.01 1.01 1.57
τMD/Contra 1.00 1.00 1.04 1.01 1.01 1.59

bIntτ 1.00 1.01 1.04 1.02 1.03 1.39
τPop 1.00 1.01 1.04 1.02 1.03 1.52

σAnimal
τ 1.00 1.00 1.02 1.00 1.00 1.59
σCell
τ 1.00 1.00 1.02 1.00 1.00 1.53

σGroup
τ 1.00 1.00 1.00 1.00 1.00 1.01
bSideτ 1.00 1.01 1.02 1.02 1.03 1.17

Table S33. Summary of R-hat for other model parameters in simulation scenario 6. The reported sum-
maries are taken across the 50 simulation runs.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2023. ; https://doi.org/10.1101/2023.01.23.525256doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.23.525256
http://creativecommons.org/licenses/by-nc/4.0/


REFERENCES 55

Parameter Min 1st Qu. Mean Median 3rd Qu. Max

α1 6.39 140.09 336.30 245.07 470.24 2090.21
α2 6.82 358.02 800.78 706.29 1164.21 3026.36
γ 6.95 504.34 789.05 748.06 1061.43 2587.86
τ 7.14 3158.38 3291.37 3485.88 3727.91 4359.24

Table S34. Summary of the effective sample size for parameters at the cell-level in simulation scenario 6.
Due to the number of cell level parameters, the reported summaries are taken across the 50 simulation
runs AND all cell-level parameters.

Parameter Min 1st Qu. Mean Median 3rd Qu. Max

α1 6.35 93.95 178.60 145.10 237.75 882.78
α2 6.71 187.11 358.75 317.39 489.30 1397.01
γ 6.79 199.43 370.92 335.35 518.86 1148.44
τ 6.77 2579.49 2850.93 3072.70 3454.64 4136.71

Table S35. Summary of the effective sample size for parameters at the animal-level in simulation scenario
6. Due to the number of animal level parameters, the reported summaries are taken across the 50
simulation runs AND all animal-level parameters.
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56 REFERENCES

Parameter Min 1st Qu. Mean Median 3rd Qu. Max

bCond
α1

9.01 82.73 152.11 160.46 210.98 275.79

α
ND/Ipsi
1 6.18 53.04 98.56 95.71 136.84 231.15

α
ND/Contra
1 6.75 50.95 103.01 99.71 137.61 275.02

α
MD/Ipsi
1 6.73 93.81 163.65 157.87 205.18 429.86

α
MD/Contra
1 6.84 110.02 204.03 178.83 278.33 516.24

bIntα1
53.54 158.57 222.91 203.79 296.93 422.86

αPop
1 6.56 58.25 103.87 102.60 143.58 232.96

σAnimal
α1

7.13 86.22 168.97 145.02 215.33 540.56
σCell
α1

6.93 48.86 75.10 67.49 95.38 261.38
σGroup
α1

411.12 1590.40 1678.65 1721.90 1869.89 2161.81

bSideα1
14.34 89.85 152.15 153.18 201.98 295.94

bCond
α2

73.25 241.75 317.48 330.19 393.84 548.64

α
ND/Ipsi
2 6.87 102.62 182.79 188.98 247.05 379.48

α
ND/Contra
2 6.79 133.90 196.25 191.64 246.81 465.31

α
MD/Ipsi
2 7.18 201.48 311.36 302.91 412.07 649.93

α
MD/Contra
2 7.15 260.25 417.49 391.43 561.18 924.93
bIntα2

185.21 367.60 424.34 441.28 489.00 597.48

αPop
2 6.95 122.73 198.87 213.47 262.65 413.06

σAnimal
α2

40.62 273.00 513.63 421.67 617.99 1614.80
σCell
α2

10.59 79.04 287.46 171.40 407.30 1375.27

σGroup
α2

1083.77 1786.75 1871.10 1892.07 1988.82 2213.12
bSideα2

34.53 238.43 297.57 319.05 363.93 543.73
bCond
γ 188.18 623.00 716.14 749.37 817.13 1011.63

γND/Ipsi 6.76 229.60 334.21 321.44 431.39 804.02
γND/Contra 6.93 182.90 294.85 267.61 400.82 636.14

γMD/Ipsi 7.14 358.26 585.36 558.20 777.96 1264.61
γMD/Contra 7.27 504.38 768.16 728.43 1033.68 1578.21

bIntγ 358.89 692.60 772.29 805.06 878.46 1054.73
γPop 7.03 470.71 531.50 556.41 646.03 996.44
σAnimal
γ 144.84 1062.96 1674.61 1573.09 2302.05 3631.06

σCell
γ 14.47 745.35 1206.19 1290.52 1645.19 2407.93

σGroup
γ 922.69 1275.44 1381.45 1360.82 1516.21 1917.44
bSideγ 149.12 538.84 657.99 674.40 777.05 1057.89
bCond
τ 7.12 125.47 173.63 164.54 228.71 421.39

τND/Ipsi 7.30 150.62 205.94 201.30 253.78 654.07

τND/Contra 7.18 313.49 396.52 419.25 465.14 1033.83
τMD/Ipsi 6.93 298.79 406.81 432.09 490.81 1049.53
τMD/Contra 6.89 548.90 676.03 713.73 785.70 2015.58

bIntτ 8.77 128.91 166.40 156.38 209.01 419.54
τPop 7.37 140.29 189.30 186.68 235.09 522.71

σAnimal
τ 6.80 1793.50 1980.07 2031.54 2422.40 2744.67
σCell
τ 7.15 3596.69 3619.12 3773.26 3921.45 4198.83

σGroup
τ 1153.94 1708.51 1794.91 1856.89 1945.74 2155.08
bSideτ 95.22 137.90 182.85 174.33 216.18 446.59

Table S36. Summary of the effective sample size for parameters at the animal-level in simulation scenario
6. The reported summaries are taken across the 50 simulation runs.
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