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Abstract

The relationship between deforestation and malaria in Amazonian Brazil is complex, and a

deeper understanding of this relationship is required to inform effective control measures in

this region. Here, we are particularly interested in characterizing the impact of land use and

land cover change on the genetics of the major regional vector of malaria, Nyssorhynchus

darlingi (Root). We used nextera-tagmented, Reductively Amplified DNA (nextRAD) geno-

typing-by-sequencing to genotype 164 Ny. darlingi collected from 16 collection sites with

divergent forest cover levels in seven municipalities in four municipality groups that span the

state of Amazonas in northwestern Amazonian Brazil: São Gabriel da Cachoeira, Presi-

dente Figueiredo, four municipalities in the area around Cruzeiro do Sul, and Lábrea. Using

a dataset of 5,561 Single Nucleotide Polymorphisms (SNPs), we investigated the genetic

structure of these Ny. darlingi populations with a combination of model- and non-model-

based analyses. We identified weak to moderate genetic differentiation among the four

municipality groups. There was no evidence for microgeographic genetic structure of Ny.

darlingi among forest cover levels within the municipality groups, indicating that there may

be gene flow across areas of these municipalities with different degrees of deforestation.

Additionally, we conducted an environmental association analysis using two outlier detec-

tion methods to determine whether individual SNPs were associated with forest cover level

without affecting overall population genetic structure. We identified 14 outlier SNPs, and

investigated functions associated with their proximal genes, which could be further charac-

terized in future studies.

Introduction

In the Amazon region, there is an increasing understanding that land use and land cover

(LULC) changes caused by agricultural activity, logging, and road construction are modifying
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the risk of human malaria infection [1–6]. In Amazonian Brazil, malaria rates have been

shown to increase during the earliest stages of settlement, when rainforest is first being cleared,

humans are settling near the forest fringe, and immunity is low [7, 8]. Though a direct, positive

relationship between deforestation and malaria rates in the Amazon has been reported in

numerous studies [1, 2, 5, 6], other studies have found the opposite result [4, 9]. These discrep-

ancies could stem from inconsistencies in defining forest cover and deforestation, and high-

light the complex relationship between landscape change and malaria risk [4]. Furthermore, it

is possible that such discrepancies stem from differences in the effects of landscape changes on

the vectorial capacity of genetically distinct mosquito populations [10].

In the Amazon, the major vector of malaria is Nyssorhynchus darlingi (Root, also known

as Anopheles darlingi Root; we have followed the recommendation in [11] to elevate the sub-

genus Nyssorhynchus to a genus). Deforested areas have been associated with an increased

Ny. darlingi human biting rate [12, 13] and increased larval habitat suitability for Ny. dar-
lingi [14–16]. LULC changes have also been associated with changes in mosquito species

composition, with Ny. darlingi abundance generally highest in human-modified and defor-

ested landscapes [17–20]. Deforestation might additionally impact the population genetic

structure of malaria vectors. Genetic differentiation between and within members of

Anopheles gambiae Giles s.l. has been associated with agricultural activity and the degree of

urban/built environment landscapes [21, 22]. Similarly, population structure was detected

between Ny. darlingi collected from two Brazilian settlements separated by 60 km with very

different forest cover levels [23]. The possibility of microgeographic genetic differentiation

of Ny. darlingi among areas with different forest covers has implications for malaria trans-

mission, as subpopulations of Ny. darlingi may differ in vector competence or vectorial

capacity, or in their response to vector control activities. Differences in Plasmodium infec-

tion rates have previously been identified across genetically distinct populations of Anophe-

linae species [24–26].

Brazil accounts for ~25% of malaria cases reported from the Americas, and has

reported 100,000–200,000 cases annually since 2013 [27]. Over 99% of the malaria burden

in Brazil is concentrated in the Amazon Basin, particularly in the states of Amazonas and

Acre [28, 29]. Though the majority of malaria cases in these states, as in all of Brazil, are

caused by Plasmodium vivax, these states also have a persistently and disproportionately

high proportion of cases caused by Plasmodium falciparum, which is associated with

higher morbidity and mortality [29]. Within these states, malaria transmission is hetero-

geneous [30, 31], with pockets of high malaria infection rates in human and mosquito

populations [32].

In Brazil, nextera-tagmented Reductively Amplified DNA (nextRAD) genotyping-by-

sequencing detected genetic clustering of Ny. darlingi into three groups by biogeographical

region (southeast, west Atlantic, and Amazon) [33]. These results are consistent with previous

studies based on microsatellites [34, 35] and COI sequencing [36] that have shown little genetic

differentiation of Ny. darlingi across Western and Central Amazonian Brazil. At the microgeo-

graphic level, low levels of genetic differentiation have been detected between Ny. darlingi col-

lected in different seasons [37] and habitats [13] using microsatellites. Despite evidence that

deforestation may impact the population genetic structure of Ny. darlingi [23], this question

has not been investigated at a broader geographic scale. To address this, we used nextRAD

genotyping-by-sequencing to determine whether forest cover level is associated with micro-

geographic genetic structuring of Ny. darlingi in four municipality groups in Amazonas and

Acre states in Amazonian Brazil.
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Methods

Study site selection and adult Ny. darlingi collections

Adult female Ny. darlingi were collected in 2015–2017 from 16 sites spread across seven

municipalities in Amazonas and Acre States (Fig 1). For the purposes of this study, the geo-

graphically proximal municipalities of Cruzeiro do Sul, Rodrigues Alves, Mâncio Lima, and

Guajará were grouped together as one municipality group (Cruzeiro do Sul area), and Lábrea,

Presidente Figueiredo, and São Gabriel da Cachoeira were each considered a separate munici-

pality group, for a total of four municipality groups. The collection methods for this study are

described in detail in [32]. Briefly, houses at least 2.5km apart were selected as collection sites

within each municipality. Mosquitoes were collected by human landing catch (HLC) in the

peridomestic area, within ~5m of each house. Collections were done from 6pm to 12am during

the dry season and wet-dry season transition (between April and November). Mosquitoes

were euthanized with ethyl acetate in the field, stored on silica gel, and identified morphologi-

cally to species using entomological keys [38].

All necessary permits were obtained for the field collections. Collections were made under

permanent permit number 12583–1 from Instituto Chico Mendes de Conservação da Biodi-

versidade (ICMBio, SISBIO). Specific permission was not required for these locations as per-

mission to collect was granted under the permanent permit. The collection locations were not

Fig 1. Map of Ny. darlingi collection sites in Amazonas and Acre States, Brazil, with insets for each municipality

group: SAO: São Gabriel da Cachoeira, PRE: Presidente Figueiredo, CRU: Cruzeiro do Sul area, LAB: Lábrea.

Each collection site within each municipality group is indicated by an orange dot, with Levels 1–5 in the municipality

insets indicating the forest cover level (Level 1 = ~0–20% forest cover in a 1km radius, Level 2 = ~20–40% forest cover,

etc.). Green color on inset map indicates areas of tree canopy cover as of the year 2000, pink color indicates forest loss

during the period 2000–2014 (Hansen/UMD/Google/USGS/NASA, http://data.globalforestwatch.org/); and blue color

indicates bodies of water (ESRI World Water Bodies/World Linear Water layers). Basemap: Natural Earth (https://

www.naturalearthdata.com/).

https://doi.org/10.1371/journal.pone.0225005.g001
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privately owned or protected, and the field studies did not involve protected or endangered

species.

For each collection site, forest cover in a 1 km radius around the site was calculated; this

radius was selected to reflect the approximate maximum flight range of Ny. darlingi [39]. For-

est cover was calculated using European Space Agency (ESA) Sentinel 2A satellite imagery

from the closest possible date to the field collection, minimizing cloud coverage. Radiometric

and atmospheric corrections were performed using the ESA’s Sen2Cor software v2.4.0 [40].

Maximum likelihood supervised classification was used to assign each pixel as forest or non-

forest using spectral bands 2, 3, and 4. The percentage forest cover was calculated for each col-

lection site using the formula % Forest Cover ¼
Pn

j¼1
aij

A 100ð Þ, where aij corresponds to the for-

est area and A corresponds to the total area of the landscape.

For each municipality group, collection sites where at least 10 Ny. darlingi were collected

were selected to cover the maximum possible range of forest cover percentage within each

municipality group. Collection sites were split approximately into quintiles by forest cover

percentage (level 1 = ~0–20% forest cover, level 2 = ~20–40% forest cover etc.). Nyssor-
hynchus darlingi were available from all 5 forest cover levels for two municipality groups

(Lábrea and Cruzeiro do Sul-area), and from 3 levels for the remaining two municipality

groups (Presidente Figueiredo and São Gabriel da Cachoeira), for a total of 16 collection

sites across the four municipality groups. Genomic DNA was extracted from individual Ny.

darlingi using the Qiagen DNeasy Blood & Tissue Kit (Hilden, Germany), and DNA con-

centrations measured using a Qubit Fluorometer (Life Technologies, Carlsbad, CA, USA).

For genotyping, 15 Ny. darlingi with DNA concentration �0.5 ng/μL were selected from

each level 1 and level 5 collection site, and 10 from each level 2, 3, and 4 site, for a total of

190 Ny. darlingi (Table 1).

Table 1. Forest cover, collection date, and sample size for the 16 collection sites.

Municipality Forest Cover Level % Forest Cover in 1km radius Collection Date # Ny. darlingi genotyped # Ny. darlingi in final analysis2

Rodrigues Alves1 1 24% 6/30/2017 15 12

Mâncio Lima1 2 43% 5/28/2015 10 9

Cruzeiro do Sul1 3 58% 4/19/2015 10 7

Rodrigues Alves1 4 70% 6/26/2017 10 9

Guajará1 5 83% 7/14/2017 15 14

Lábrea 1 19% 8/9/2015 15 13

Lábrea 2 31% 8/10/2015 10 9

Lábrea 3 59% 8/2/2015 10 10

Lábrea 4 77% 8/5/2015 10 10

Lábrea 5 87% 8/4/2015 15 14

Presidente Figueiredo 1 18% 8/20/2017 15 12

Presidente Figueiredo 2 30% 8/17/2017 10 8

Presidente Figueiredo 4 72% 8/19/2017 10 6

São Gabriel da Cachoeira 3 40% 11/13/2017 10 9

São Gabriel da Cachoeira 4 69% 11/9/2017 10 9

São Gabriel da Cachoeira 5 78% 11/18/2017 15 13

Total 190 164

1Cruzeiro do Sul area
2Includes only individuals matching to at least 10,000 catalog loci during STACKS analysis.

https://doi.org/10.1371/journal.pone.0225005.t001
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nextRAD genotyping-by-sequencing

Genomic DNA from the 190 individuals was converted into nextRAD genotyping-by-

sequencing libraries by SNPsaurus, LLC as in [41]. Genomic DNA was first fragmented with

Nextera reagent (Illumina, Inc., San Diego, CA, USA), which also ligates short adapter

sequences to the ends of the fragments. The Nextera reaction was scaled down to fragment 3

ng of genomic DNA (the kit is optimized to fragment 50 ng). Fragmented DNA was then

amplified using the Phusion Hot Start Flex DNA Polymerase (New England Biolabs, Inc., Ips-

wich, MA) for 25 cycles at 75˚C, with one of the primers matching the adapter and extending

8 nucleotides into the genomic DNA with the selective sequence TGCAGGAG. Thus, only frag-

ments starting with a sequence that can be hybridized by the selective sequence of the primer

will be efficiently amplified. The nextRAD libraries were sequenced on a HiSeq 4000 with two

lanes of 150 bp reads (University of Oregon). All sequencing reads were uploaded to the NCBI

SRA database (BioProject ID: PRJNA545461).

Sequence processing

Raw sequence reads were analyzed using STACKS v2.3b [42, 43]. Briefly, the STACKS pipeline

collects raw sequencing reads together into matching stacks, then builds a catalog of putative

consensus RAD loci, which span the length of the amplified RAD fragments, by combining

stacks from multiple individuals. The pipeline then matches individuals against the catalog of

loci, and calls SNPs for each individual at each locus based on a maximum likelihood frame-

work. Finally, the set of loci is filtered based on their frequencies in the study populations.

Low-quality reads were dropped using the STACKS process_radtags program, and ustacks was

used to align reads into stacks, with the minimum depth of coverage required to create a stack

set to 3, the maximum distance allowed between stacks set to 4, and the maximum distance

allowed to align secondary reads to primary stacks set to 6. A catalog of putative loci was built

using 24 representative Ny. darlingi individuals (S3 File) collected from Brazil and Peru,

including 5 individuals from the current study, 4 from [44], 2 from [33], and the remainder

from Chu et al. (manuscript submitted). All 24 individuals were sequenced, and the reads pro-

cessed in ustacks, using the methods described above. The catalog was built using the STACKS

cstacks program, allowing 4 mismatches between stacks, with gapped alignments enabled. The

catalog loci were mapped to the Ny. darlingi genome (AdarC3) [45] using BWA MEM with

default parameters [46]; only loci mapping to the genome were retained. After processing in

ustacks, stacks from the 190 individuals in the current study were searched against the catalog,

and SNPs called, with the STACKS sstacks, tsv2bam, and gstacks programs using default

settings.

To control for quality and sequence coverage variation among individuals, only individuals

that matched to at least 10,000 catalog loci were included in the analysis (n = 164, including at

least 6 individuals from each municipality group/deforestation level combination; Table 1).

The STACKS populations program was used to select the first SNP from each RAD locus

found in all 4 municipality groups, and in at least 50% of the individuals in each municipality

group, with the minimum minor allele frequency set to 0.02 and the maximum observed het-

erozygosity set to 0.7. A bash script including the STACKS parameters used is included as S4

File, and the STRUCTURE file used for subsequent analyses is included as S5 File.

Population structure analysis

STRUCTURE v2.3.4 [47] was run using the program StrAuto [48] for 10 replicates each of

K = 1 to 8, with a burn-in of 100,000 generations and an MCMC chain of 1,000,000 genera-

tions. The Evanno method [49] implemented in STRUCTURE Harvester [50] was used to

Ny. darlingi population genetic structure across forest cover levels
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determine the optimal number of genetic clusters. CLUMPP v1.1.2 [51] was run using default

settings, and STRUCTURE plots visualized, using the R v3.5.2 [52] package pophelper v2.2.7

[53]. As a less computationally intensive method to investigate substructure within municipal-

ity groups, fastStructure [54] analysis was run for the full dataset (to confirm that results were

comparable to STRUCTURE results) and then for each municipality group separately using

default settings for five replicates each of K = 1 to 10. The replicate runs were combined using

CLUMPP and visualized in pophelper as above.

Principal components analysis (PCA) was performed using the R package ade4 v1.7–13

[55] dudi.pca() function, and PCA plots were created using the R package factoextra v1.0.5

[56] fviz_pca_ind() function. Discriminant Analysis of Principal Components (DAPC) [57]

was performed using the R package adegenet v2.1.1 [58].

A hierarchical Analysis of Molecular Variance (AMOVA), with individuals grouped into

forest cover levels within municipality groups, was calculated using the poppr.amova() func-

tion in the R package poppr v2.8.2 [59]. Pairwise FST values with confidence intervals using 999

bootstrap samples were calculated using the stamppFst() function in the R package StAMPP
v1.5.1 [60]. Isolation by distance was examined by plotting the geographic distance between

each collection site vs. Prevosti’s genetic distance (calculated using the dist.genpop() function

in adegenet) and calculating a Mantel test to compare the two distance matrices using the man-

tel.randtest() function in ade4.

Outlier analysis

Two methods were used to identify SNPs associated with forest cover. First, latent-factor

mixed modelling (LFMM) [61] was run using the R package LEA v2.4.0 [62]. In preparation

for LFMM, a sparse non-negative matrix factorization (sNMF) [63] analysis completed using

LEA was run with ten repetitions of K = 1 through 10. The optimal number of populations,

where the cross-entropy curve was at a minimum, was four. The sNMF results were used to

impute missing genotypes using the LEA impute() function. Five repetitions of LFMM were

run on the imputed dataset, with a burn-in of 5000 and 10000 iterations for each, adjusting for

four latent factors (as suggested by optimal number of populations from the sNMF analysis),

with forest cover percentage as the explanatory variable. The z-scores from the five runs were

combined, and the p-values adjusted for multiple testing using the Benjamini-Hochberg pro-

cedure as recommended by the authors [61]. SNPs with an adjusted p-value of 0.05 were con-

sidered outliers.

As a second method to identify SNPs associated with forest cover, bayenv2 [64] was run,

following conversion of the vcf file in PGDSpider v2.1.1.5 [65], with each collection site as a

population. Three replicate covariance matrices were computed, using 100,000 iterations. As

no significant differences between the three matrices were detected using the cortest() function

in the R package psych v1.8.12 [66], the first matrix was used. bayenv2 was run using the corre-

lation matrix and the standardized forest cover percentage for each population, for 100,000

iterations, using the -c flag to include non-parametric tests. SNPs that were within both the top

5% of Bayes factors and the top 10% of Spearman’s ρ values were considered outliers. The final

set of outlier SNPs includes only SNPs identified using both LFMM and bayenv2.

Gene ontology analysis

Genes in the annotated Ny. darlingi genome scaffolds [67] located within 100 kb of each outlier

SNP were investigated for gene function. A wide search window was selected because this was

intended to be a broad, exploratory investigation with the goal of hypothesis generation. Dro-
sophila orthologs of all genes were investigated. In addition, a gene ontology (GO) enrichment

Ny. darlingi population genetic structure across forest cover levels
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analysis was performed using the R package topGO v2.34.0 [68] to determine whether particu-

lar GO terms were enriched among these genes compared to the rest of the genome. Separate

Fisher tests were calculated for each sub-ontology (BP: biological process, CC: cellular compo-

nent, MF: molecular function) using the weight01 algorithm and a cut-off p-value of 0.01.

Results

An average of 3,191,681 quality-filtered reads were sequenced from each of the 190 individual

Ny. darlingi (range 359,366–7,845,737). From these, an average of 30,025 stacks per individual

(range 259–409,973) made up of 643,458 total reads (range 2,035–6,430,931) matched to the

catalog (S2 File). The final dataset includes one biallelic SNP from each of 5,561 loci from 164

individuals meeting the filtering constraints described in the Methods (S5 File). The average

sequencing depth across all loci and individuals was 35X (range per locus: 7X-150X, SD 16X;

per individual: 8X-97X, SD 19X).

Population structure

STRUCTURE Harvester analysis determined that the optimal number of genetic clusters was

two, though the estimated natural log probability of the data (lnPr(X|K)) started leveling off at

K = 5 (Fig A in S1 File). STRUCTURE results for K = 2–6 are shown in Fig 2, with individuals

grouped by municipality group and forest cover level. Overall, there is evidence for structure

among the four municipality groups, particularly between the Cruzeiro do Sul area and the

other three municipalities, but no evidence of substructure among forest cover levels within

each municipality group. fastStructure results were consistent with the STRUCTURE results

(Fig B Panel A in S1 File), and separate fastStructure analyses for each municipality group con-

firmed that there was no evidence for microgeographic structure within each municipality

group (Fig B Panels B-E in S1 File).

A PCA similarly showed separation among CRU, PRE, and LAB/SAO along the first two

dimensions, and between LAB and SAO along the third dimension (Fig C in S1 File). Though

the Bayesian Information Criterion (BIC) of the k-means clustering algorithm used in prepara-

tion for DAPC indicated that the optimal number of clusters was one, the Akaike Information

Criterion (AIC) indicated that the optimal number of clusters was three or four (Fig D in S1

File). Setting the number of clusters to four discriminated perfectly among the four municipal-

ity groups, while setting the number of clusters to three collapsed SAO, LAB, and one individ-

ual from PRE into a single cluster (Fig 3).

By hierarchical AMOVA (Table 2), 95% of the total genetic variation was within or between

individuals, 4.5% was between municipality groups, and only 0.5% was among forest cover lev-

els within municipality groups, supporting weak genetic differentiation between the munici-

pality groups and very little differentiation among forest cover levels. Pairwise FST values

between municipality groups ranged from 0.026 (Lábrea vs. São Gabriel) to 0.075 (Presidente

Figueiredo vs. Cruzeiro do Sul area) (Table 3). There was evidence for isolation by distance

(Mantel r = 0.84, p = 0.001, Fig E in S1 File).

Outlier and gene ontology analyses

To determine whether there were individual SNPs associated with forest cover percentage, we

conducted environmental association analyses using the 5,561 SNP dataset. LFMM detected

67 SNPs associated with forest cover percentage, and bayenv2 detected 139. Of these, 14 SNPs

were detected by both methods (Figs F-G in S1 File). In the Ny. darlingi genome scaffolds, 150

genes are located within 100 kb of these 14 SNPs. These genes have a variety of functions in

numerous structural and cell signaling pathways (S6 File). One (ADAC006142) encodes a

Ny. darlingi population genetic structure across forest cover levels
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venom allergen. The topGO analysis found six GO terms significantly enriched among these

150 genes compared to the rest of the Ny. darlingi genome (Table A in S1 File): GO:0035278

(miRNA mediated inhibition of translation), GO:0018149 (peptide cross-linking), GO:0005

576 (extracellular region), GO:0003810 (protein-glutamine gamma-glutamyltransferase activ-

ity), GO:0052689 (carboxylic ester hydrolase activity), and GO:0035091 (phosphatidylinositol

binding).

Fig 2. Results of STRUCTURE analysis of the 5,561 SNP dataset, comparing Ny. darlingi collected from different

municipality groups (CRU: Cruzeiro do Sul area, LAB: Lábrea, PRE: Presidente Figueiredo, SAO: São Gabriel da

Cachoeira) and forest cover levels (1–5), depicting K = 2–6 inferred clusters.

https://doi.org/10.1371/journal.pone.0225005.g002
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Discussion

We did not find evidence of microgeographic genetic structure among 164 Ny. darlingi col-

lected from multiple forest cover levels within four Amazonian Brazil municipality groups

based on model- and non-model based analyses of genotypes at 5,561 SNP loci. This could

indicate that there are high levels of gene flow across populations of Ny. darlingi in areas with

different forest cover levels, consistent with studies in other insects in South America [69, 70]

(but see [71]). Our results are not consistent with a previous study in Ny. darlingi [23], that

found microgreographic structure between two municipalities in Brazil with divergent forest

cover levels based on analysis of ~2,000 SNP loci generated using ddRADseq. It is possible that

the structure between the two municipalities in the Campos et al. study was due to unmea-

sured differences between the two municipalities not related to forest cover, such as differences

in breeding site ecology or vector control activities. The current study more comprehensively

Fig 3. Results of Discriminant Analysis of Principal Components (DAPC) using the 5,561 SNP dataset. Ordination plots for DAPCs of three (A) and four (B) clusters,

with insets showing the distribution of eigenvalues for the principal components analysis (PCA) and discriminant analysis (DA). For both analyses, 100 principal

components were retained in the PCA, accounting for 73.8% of the variance in the dataset. CRU: Cruzeiro do Sul area, LAB: Lábrea, PRE: Presidente Figueiredo, SAO:

São Gabriel da Cachoeira. �SAO/LAB cluster in (A) also includes one individual from PRE.

https://doi.org/10.1371/journal.pone.0225005.g003

Table 2. Analysis of molecular variance (AMOVA), with individual Ny. darlingi nested within forest covers nested within municipality groups.

Source of variation Degrees of freedom Sum of squares Variance components Percentage of variation p-value�

Among municipality groups 3 17634.98 54.83 4.54 0.001

Among forest cover levels within municipality groups 12 18259.70 6.54 0.54 0.001

Among individuals within forest cover levels 148 205587.54 242.10 20.03 0.001

Within individuals 164 148406.03 904.91 74.89 0.001

Total 327 389888.25 1208.38 100.00

�based on 999 Monte Carlo permutation tests

https://doi.org/10.1371/journal.pone.0225005.t002
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investigates the relationship between forest cover and population structure, as it includes inter-

mediate forest cover levels, as well as four replicate municipality groups. It is also possible that

the adaptive response to forest cover differences varies among Ny. darlingi populations in dif-

ferent locations due to other factors in the external environment.

Anthropogenic changes in forest cover may produce adaptive phenotypic changes in mos-

quito populations not reflected in genomic studies, particularly among Ny. darlingi, as this spe-

cies has been shown to display a high degree of plasticity in life history traits [72] and biting

behavior [44]. Deforestation has been shown to affect the survival and reproductive fitness of

An. gambiae [73], An. arabiensis [74], and An. minimus [75]. Additionally, it is possible that

whole genome sequencing, or identification of structural variants [76, 77] could identify

genetic adaptation to forest cover within Ny. darlingi populations not reflected in our SNP

dataset.

We identified weak to moderate genetic differentiation (FST = 0.026–0.075) among four

municipality groups across Amazonian Brazil separated by 800–1,600 km. This is consistent

with a previous study using microsatellites that found similar FST values comparing Ny. dar-
lingi collected from localities in central and western Amazonian Brazil separated by compara-

ble geographic distances to the current study [34]. However, it contrasts with previous

findings that Ny. darlingi from Amazonian Brazil belong to a single genetic population [33, 35,

36]. This discrepancy could be the result of a combination of increased resolution provided by

nextRAD genotyping-by-sequencing [23], different geographic scales of analyses of these stud-

ies, and the use of different collection sites. It is clear that more research into the population

genetic structure of Ny. darlingi at both continental and regional scales is needed.

The differentiation that we identified between the municipality groups could be the result

of isolation by distance (IBD), isolation by barrier (IBB), isolation by resistance (IBR), or isola-

tion by environment (IBE). It is not possible to differentiate between these possibilities with

the sampling scheme of the current study because of the lack of intermediate sampling points

between these municipality groups. The overall low level of differentiation between municipal-

ity groups, with the highest FST (0.075) between the two most geographically separated munici-

pality groups (Presidente Figueiredo and Cruzeiro do Sul area), in combination with a

significant Mantel test, is suggestive of IBD. Several previous population genetics studies of Ny.

darlingi using nuclear and mitochondrial markers detected IBD [35, 36, 78, 79], including one

study that genotyped Ny. darlingi at eight microsatellite loci from municipalities in Amazonian

Brazil at a similar geographic scale to the current study [34]. However, other studies of Ny. dar-
lingi have not found evidence of IBD [33, 80, 81]. Additionally, there are geographic barriers

between the municipality groups in the current study, including rivers, primary forest, and

extensive areas of unsuitable habitats. It is possible that the particular pattern of barriers

Table 3. Pairwise FST values between municipality groups (CRU: Cruzeiro do Sul area, LAB: Lábrea, PRE: Presi-

dente Figueiredo, SAO: São Gabriel da Cachoeira) with 95% confidence intervals based on 999 bootstrap samples

(below the diagonal), and geographic distances between the centroid of collection sites in each municipality group

(above the diagonal).

CRU LAB PRE SAO

CRU - 884 km 1558 km 1044 km

LAB 0.042

(0.038, 0.045)

- 820 km 849 km

PRE 0.075

(0.071, 0.079)

0.052

(0.048, 0.055)

- 808 km

SAO 0.043

(0.040, 0.046)

0.026

(0.024, 0.028)

0.055

(0.051, 0.059)

-

https://doi.org/10.1371/journal.pone.0225005.t003
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separating the municipality groups could explain the fact that individuals from SAO and LAB

are more similar than other pairs of municipality groups that are separated by a similar dis-

tance (Table 3). Future studies could explore the effects of these barriers on genetic divergence

between these Ny. darlingi populations.

We identified 14 SNPs associated with forest cover percentage using two outlier detection

methods. These SNPs were located within 100 kb of 150 genes, among which 6 GO terms were

over-represented compared with the rest of the Ny. darlingi genome. We acknowledge that

this type of analysis is limited both by the highly fragmented nature of the current Ny. darlingi
genome assembly [45], and by the possibility of false positives [82]. Therefore, we present

these results cautiously, with the intention of generating hypotheses for future studies.

Conclusions

Using nextRAD genotyping-by-sequencing, we report weak genetic structure among four

municipality groups in the Amazonian Brazil, but a lack of microgeographic structure across

forest cover levels within these municipality groups. These results do not preclude an adaptive

response of Ny. darlingi to deforestation in the Amazon, but indicate that such an adaptive

response was not associated with genome-wide differentiation. Additional studies using whole

genome sequencing and an improved Ny. darlingi genome assembly should be undertaken to

further explore this topic.
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